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Abstract. The stride interval in normal human gait is not strictly constant, but fluctuates from step to
step in a random manner. Herein we show that contrary to the traditional assumption of uncorrelated
random errors, these fluctuations have long-time memory. However, rather than being a monofractal
process as found earlier, there exists a multiplicative time scale that characterizes the process in
addition to the fractal dimension. Further, these long-time correlations are interpreted in terms of an
allometric control process.
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1. Introduction

It has been known for over a century that there is variation in the stride interval
of humans during walking [1]. This variation is approximately 3–4% of the time it
takes to complete a step on the average, as measured by the standard deviation, and
is so small, that the biomechanical community has historically considered these
fluctuations to be an uncorrelated random process. In practice this means that the
fluctuations in gait were thought to contain no useful information. In Figure 1a is
depicted typical data of the time interval between successive maximum extensions
of the leg for a healthy individual walking in a relaxed manner. The fluctuations
about the average value in this time series, approximately 0.8 seconds, looks like
a random process. However, we can detect a somewhat richer structure in the time
series, by comparing these experimental data with a computer-generated data set,
for a truly uncorrelated Gaussian process with the same mean and variance, as
depicted in Figure 1b. The question is whether there is a quantifiable difference
between the two time series and whether we can determine this measure is a simple
way. Herein we provide evidence that human gait time series is a modified random
fractal process and that a relatively simple data processing technique is all that is
necessary to provide quantitative information about this time series to establish this
fact.

Previous gait studies by Hausdorff et al. [2, 3] demonstrated for the first time
that the stride-interval time series exhibit long-time correlations, suggesting that
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Figure 1. The time intervals between strides for the first 900 steps made by the seventh walker
in the experiment are depicted in (a). Lines are used to connect the data points to aid the eye
in seeing any patterns. In (b) a computer generated time series having Gaussian statistics with
the same mean and variance as in (a) and no correlations is depicted.

the phenomenon of walking may well be a self-similar, fractal activity. Subsequent
studies by West and Griffin [4, 5] support these conclusions using a completely
different experimental protocol for generating the stride-interval time series data
and a very different method of analysis. The argument for the fractal nature of
walking is based on the complexity of this apparently simple activity, since the
locomotor system synthesizes inputs from the motor cortex, the basal ganglia and
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the cerebellum, as well as feedback from the vestibular, visual and proprioceptive
sources. In these earlier studies the gait time series were argued to be monofractal.
Herein we find that things are not quite that simple, and instead of the process
having no characteristic time scale, as would be the case for a monofractal, there is
a preference for a multiplicative time scale in the physiological control system.
An argument based on a renormalization group relation is used to explain this
preference.

The procedure we use to analyze the stride interval time series is based on the
relative dispersion, the ratio of the standard deviation to the mean, as we aggregate
the data. The variation in the relative dispersion with the degree of aggregation
gives an unambiguous indication of the scaling behavior of the time series. In
Section 2 we review the method of aggregated relative dispersion and show that it
yields an inverse power law for a random fractal time series. In Section 3 we apply
this method to the ten time series obtained in the present study [6] and determine
that the interpretation of human gait as a monofractal process [4, 5], while not
wrong, is overly restrictive. A better fit to the data is obtained in Section 5 using
an argument involving multiple time scales, leading to a renormalization group
relation between the relative dispersion at different levels of aggregation developed
in Section 4. In Section 6 we discuss the properties of the random mode-switching
model, whose second moment has the same monofractal properties as does the
stride interval time series, and may therefore suggest how to interpret the experi-
mental finding. The implications of these results and some conclusions are drawn
in Section 7.

2. Aggregating data and relative dispersion

The correlation of discrete time series data is here determined by grouping the
data into aggregates of two or more of the original data points and calculating the
relative dispersion, the ratio of the standard deviation to the mean. The procedure
can be repeated using groupings of two, three, four and more data points. In this
way the fractal dimension that is independent of the degree of coarse-graining can
be determined. Let us examine how the relative dispersion changes as a function
of the number of adjacent data elements we aggregate. To see this we aggregate
n-adjacent data points, so that thej th data element in such an aggregation is given
by

Y
(n)
j = Ynj + Ynj−1+ Ynj−2+ . . .+ Ynj−(n−1). (1)

For example, whenn = 3 each value of the new variable, defined by (1), consists
of the sum of three non-overlapping original data points, and the number of new
data points is given by[N/3], where the bracket denotes the closest integer value
andN is the original number of data points. In terms of these new data the average
is defined as the sum over the total number of data points[N/n] divided by this
number
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Ȳ (n) = 1

[N/n]
[N/n]∑
j=1

Y
(n)

j=1Y
(n)
j = nȲ (1). (2)

The variance, for a monofractal time series, is similarly given by [8]

V arȲ (n) = n2HV arȲ (1) (3)

where the superscript (1) on the average variable indicates that it was determined
using all the original data without aggregation and the superscript(n) on the aver-
age variable indicates that it was determined using the aggregation ofn data points.
Thus, the relative dispersion for an aggregated data set is

RD(n) =
√
V arȲ (n)

Ȳ (n)
=
√
n2HV arȲ (1)

nȲ (1)
= nH−1RD(1) (4)

which is exactly an inverse power law in the aggregation number for the Hurst
exponent in the interval, 0≤ H ≤ 1. It is well established [7, 8], that the exponent
in such scaling equations is related to the fractal dimension,D, of the underlying
time series byD = 2−H .

A simple monofractal time series, therefore, satisfies the inverse power-law
relation for the relative dispersion given by (4). This technique has been applied
to a number of biomedical data sets [8] and most recently to the stride interval time
series using the linear regression relation [4, 5, 6]

logRD(n) = loga + b logn (5)

whereb = 1− D. The significance of the fractal dimension can be determined
using the auto-correlation function, which for nearest-neighbor data points can be
written [10]

r1 = 23−2D − 1. (6)

If the fractal dimension is given byD = 1.5, the exponent in (6) is zero and
consequentlyr1 = 0, indicating that the data points are linearly independent of
one another. This would be the case for a slope ofb = −0.5 in (5) and in the
log-log plots of the relative dispersion versus aggregation number,n. This fractal
dimension corresponds to an uncorrelated random process with normal statistics,
often referred to as Brownian motion. If, one the other hand, the nearest neighbors
are perfectly correlated,r1 = 1, the irregularities in the time series are uniform
at all times and the fractal dimension is determined by the exponent in (6) to be
D = 1.0. A fractal dimension of unity implies that the time series is regular, such
as it would be for simple periodic motion.

Most time series have fractal dimensions that fall somewhere between the two
extremes of Brownian motion withD = 1.5, and complete regularity withD =
1.0. Let us now examine the gait time series data to determine if human gait is
more like the former or more like the latter.
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Figure 2. The stride interval data, for two of the walkers in the experiment, are used to con-
struct the coarse-grained relative dispersion as indicated by the dots. The log of the relative
dispersion is plotted versus the log of the number of points used in the aggregating process
for a maximum ofn = 46. The solid lines are the best mean-square linear regression to the
aggregated data points using (5), fit over the entire range data.

3. First results

The data obtained, by an individual walking at a relaxed pace, consists of the
time interval for each stride and the number of strides in a sequence of steps. The
maximal extension of the right leg, the ‘stride interval’ versus the stride number,
plotted on a graph, has all the characteristics of a time series, cf. Figure 1a. There
were ten participants in the study (four males and six females), all in good health,
with no acute injuries, ranging in age from 20 to 46 years old with a median
age of 29 years. Relaxed walking was monitored for the ten participants, and an
electrogoniometer was used to collect kinematic data on the angular extension of
the right leg. The signal from the electrogoniometer was recorded at 100 Hz by
a computer contained in a ‘fanny pack’ attached to the walker. These data were
downloaded to a PC after twelve to fifteen minutes and the interval between suc-
cessive maximal extensions of the right leg in the analog signal was digitized and
used as the time series data, which we then processed. The time series for the
interstride interval, for a typical walker, is depicted in Figure 1a. In this figure
we can see that the fluctuations closely resembles that of a simple random walk
process, shown in Figure 1b. These experimental data are from the first 900 steps
of a particular individual in the study. Preliminary studies by West and Griffin [4,
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5] have shown that the control of walking is apparently a fractal random process
which can be characterized by a power-law index, the fractal dimension. Similar
results were found somewhat earlier by Hausdorff et al. [2, 3]. In Figure 2 we plot
the aggregated relative dispersion of the data for two walkers versus the number of
aggregated data points on log-log graph paper. In this figure the data aggregation
sizesn = 1,2, . . . ,46 are used. The fit to the aggregated relative dispersion is of
the form (5).

In Figure 2 we depict the best straight line fit to the stride interval data using (5)
for two of the walker data sets. In the graph using the second walker data we see that
the relative dispersion has a slope ofb = −0.16 and an intercept of lna = −3.39,
or an amplitude ofa = 0.03, so that taking the antilogarithm of the fitting equation
we obtain for the relative aggregated dispersion

RD(n) = 0.03

n0.30
. (7)

The fractal dimension is therefore determined to beD = 1.30. A similar result
was found for the seventh walker as well. However, it is clear from Figure 2 that
the data systematically deviates from this inverse power-law fit.

We found that some individuals are better represented by an inverse power law
form for the aggregated relative dispersion than are others. Since at least half of the
ten individuals in the study display aggregated relative dispersions that deviate sys-
tematically from the inverse power law form, as we shall show, we concluded that
the analysis based on the assumption of a monofractal time series is not adequate
to describe the phenomenon. Thus, in the next section we consider an argument
first made in an economic context by Montroll and Shlesinger [11] that gives rise
to the kind of behavior observed.

4. Multiplicative preferential scale

The deviation of the aggregated relative dispersion data from the best inverse power-
law fit, shown in Figure 2, clearly suggests that an underlying mechanism exits that
is producing this effect. Consider a random functionf (n, λ) that is related to the
theoretical relative dispersion at aggregation leveln, but which is characterized by
a time scaleλ. We know that the relative dispersion does not have a characteristic
time scale, in fact, at each leveln there are a number of such scales present. The
fluctuations inf (n, λ) can then be characterized by a distribution ofλ’s, that is,
p(λ)dλ is the probability that a particular scale is present in the relative dispersion.
The theoretical relative dispersion at thenth aggregation level is then

RD
(n) =

∫
f (n, λ)p(λ)dλ (8)

where we average out the dependence on time scales. However, if the distribution
of scales contains finite central moments, then the theoretical relative dispersion
given by (8) will contain this scale. So how do we get around this difficulty?
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Consider any distributionp(λ) that has finite central moments, say a mean
value λ̄. Now following Montroll and Shlesinger [11], we apply an amplification
mechanism such thatp(λ) has a new mean valuēλ/b:

p(λ/λ̄)→ p(bλ/λ̄)

and we assume this amplification occurs with relative frequency 1/a. We apply this
amplification a second time so that the scaled mean is again scaled and the new
mean isλ̄/b2 and occurs with relative frequency 1/a2. This amplification process
is repeated over and over again and eventually generates the new (unnormalized)
distribution:

P(ξ) = p(ξ)+ 1

a
p(bξ)+ 1

a2
p(b2ξ)+ . . . (9)

in terms of the dimensions variableξ = λ/λ̄. We use the distribution (9) to evaluate
the observed relative dispersion in terms of the theoretical relative dispersion

RD(n) = RD(n) + 1

a
RD

(n/b) + 1

a2
RD

(n/b2) + . . . . (10)

or in a more compact form

RD(n) = 1

a
RD(n/b) + RD(n)

. (11)

Equation (11) has the form of a renormalization group relation.
We can solve (11) approximately by neglecting the second term on the right-

hand side of the equation. Alternatively we can separate the exact solution into an
analytic and a singular part, the latter part dominating. The singular part of the
solution, denoted by thes subscript, satisfies the functional equation

RD(n)
s =

1

a
RD(n/b)

s . (12)

The solution to (12) is known to be, see, for example [9]

RD(n)
s =

A(n)

nα
(13)

where by direct substitution we obtain for the power-law index

α = ln a

ln b
(14)

and the modulation function

A(n) = A(n/b) =
∞∑

k=−∞
Ake

−ik2π ln n
ln b . (15)
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Figure 3. The stride interval data for the ten walkers are used to construct the coarse-grained
relative dispersion, as indicated by the dots, for the log of the relative dispersion plotted versus
the log of the number of points used in the aggregating process for a maximum ofn = 46.
The solid lines are the best mean-square linear regression to the aggregated data points using
the solution to the renormalization group relation (16), fit over the entire range of data.

Thus, the relative dispersion has a dominant inverse power law with an index given
by (14) and is modulated by a function that varies logarithmically with aggregation
number with a period lnb. Note that the solution (13) does not depend on the
specific form of the distribution of scales, only on the condition that the distribu-
tion has a finite mean. This mean is then leveraged by means of the amplification
mechanism to yield the modulated inverse power law.

If the functionA(n) is constant then (13) reduces to (4) and the underlying
gait phenomenon becomes monofractal. In the literature it often appears that one
has only two choices, either a process is a monofractal or it is a multifractal.
The latter choice, applied to a time series, would imply that the fractal dimension
changes over time, ultimately leading to a distribution of fractal dimensions [7].
That is not the situation here, however. The aggregated relative dispersion given
by (13) indicates that the process has a preferential scale length,b, in addition
to the monofractal behavior determined by the inverse power-law index,α. Thus,
there is the interleaving of two mechanisms, one that is scale free and produces the
monofractal, the other has equal weighting on a logarithmic scale and is sufficiently
slow as to not disrupt the much faster fractal behavior.

We shall see in the next section that the scales in the stride-interval time series
are tied together in two distinct ways. The inverse power law, or monofractal, as
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Figure 3. Continued.

obtained earlier [2, 4, 5], and the multiplicative time scale giving rise to the log-
periodicity.

5. Data analysis

In the preceding section we used a renormalization argument to obtain an expres-
sion for the aggregated relative dispersion that is the product of an inverse power
law and a modulation function that varies as the logarithm of the aggregation
number, with a period determined by the scaling parameterb. Here we use (13)
to motivate a fitting function of the form

logRD(n) = loga1 + a2 logn+ a3 sin[a4 logn] (16)

where the four parameters are obtained by fitting the aggregated relative dispersion
plotted versus the aggregation number on log-log graph paper. Note that the mod-
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Table I. The four coefficients from the least square fitting formula for the relative
dispersion are listed in the table for each of the ten experimental stride interval time
series

Interval time series

Walker a1 a2 a3 a4 χ2

1 –1.73 –0.23 –0.64 0.39 0.02

2 –2.04 –0.19 –0.13 1.07 0.004

3 –2.00 –0.22 –0.54 0.41 0.01

4 –3.17 –0.24 –0.52 0.26 0.02

5 –2.06 –0.36 –2.29 0.06 0.02

6 –3.28 –0.33 –0.60 0.48 0.02

7 –3.28 –0.17 –0.45 0.60 0.01

8 –3.28 –0.38 –1.09 0.14 0.04

9 –2.87 –0.28 –0.67 0.40 0.01

10 –2.34 –0.36 –1.19 0.12 0.05

Averg. −2.60± 0.63 −0.27± 0.08 −0.81± 0.60 0.39± 0.29

Table II. Here we list the fractal dimension, Hurst exponent and nearest neighbor
correlation coefficient for the ten experimental stride interval time series

Walker D-fratal dimension H -Hurst exponent r1-correlation coefficient

1 1.23 0.65 45%

2 1.19 0.86 54%

3 1.22 0.66 47%

4 1.24 0.66 43%

5 1.36 0.56 21%

6 1.33 0.41 27%

7 1.17 0.83 58%

8 1.38 0.62 18%

9 1.28 0.72 36%

10 1.36 0.64 21%

Average 1.27± 0.08 0.73± 0.08 45%± 14.4%

ulation term in (16) is a particular form for the general functionA(n) discussed in
the last section. The identification is made complete if we associate the parameters
as follows:a1 = a, a2 = −α anda4 = 2π/ logb. The regression of (16) on the
aggregated relative dispersion is shown in Figure 3 to be remarkably good for all
ten data sets. The relative dispersion for the seventh walker is seen in Figure 2 to
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deviate markedly from the inverse power law. In Figure 3 we see that (16) fits these
data to the form

RD(n) = 0.13

n0.17
e−0.45 sin[0.6 lnn] (17)

and the constants obtained by fitting the other nine data sets are recorded in Table I.
We introduced (16) into the nonlinear fitting technique inMathematicato fit the
data, and record the parameter values in Table I including aχ2 value for the fit.
Note that the modulation function in (17) is periodic, but not harmonic. The fractal
dimension for the gait time series of the seventh walker is nowD = 1.17, a value
quite different from 1.3 that we obtained earlier, using a simple inverse power law
to fit the data. Alternatively, we can use the relationD = 2 − H to determine
the Hurst exponent to beH = 0.83. These values of the parameters imply a 58%
correlation coefficient as recorded in Table II.

The range of correlations in the stride interval time series was determined to
be 0.21 ≤ r1 ≤ 0.58, that is, from very strongly correlated to nearly uncorrel-
ated. From Table II we see that an uncorrected random process is one having a
fractal dimension close toD = 1.5. In the statistical physics literature this is
called Brownian motion as we observed above. It is clear that seven out of the
ten participants have a correlation coefficient greater than 25% and would therefore
qualify as having long-term memory. We discuss this more completely in Section 7.

5.1. SIGNIFICANCE OF RESULTS

One way to determine if the gait time series corresponds to a linear, additive, un-
correlated random process (white noise), or to a nonlinear dynamical process with
long-time memory, is through the use of surrogate data. Theiler et al. [12] point
out that, in the language of statistical hypothesis testing, we require two compon-
ents: a null hypotheses against which observations are tested, and a discriminating
statistic with which to test the hypothesis. In this method the null hypothesis is a
potential explanation that the discriminating statistic is used to show is inadequate
for explaining the data. Surrogate data are obtained by shuffling the data points,
which is to say, randomly changing their relative positions in the data set, much
like shuffling a deck of cards. This shuffling suppresses any long-time correlations
that may be present in the time series and which resides in the order of the data
points. The null hypothesis we formulate is that the difference between the original
and surrogate data sets may be explained by a linear, additive, uncorrelated normal
statistical process, that is, white noise. We emphasize these properties of white
noise, because these are precisely the properties of the statistics being tested by
the surrogate data technique. Thus, we randomly shuffle the points in the gait
data sets to obtain new time series containing all the original data points, but in a
randomly changed order. The aggregation procedure is applied to ten realizations
of the surrogate data and the resulting relative dispersion versus aggregation num-
ber are plotted in Figure 4 for the seventh walker time series. A larger number
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Figure 4. The solid lines are the best mean-square regressions to the ten realizations to the
surrogate data obtained by shuffling the data of the seventh walker time series. The average
slope of these ten curves is –0.49 with a standard deviation of 0.04 so the average fractal
dimension is 1.49± 0.04 in agreement with Brownian motion.

Figure 5. Testing the statistical significance of the fractal dimension using the relative dis-
persion. For each of the walkers, the meanDs from ten data sets obtained by shuffling the
data points, was compared withD of the original data set using (18).S is the number of
standard deviations separating the original and shuffled fractal dimension values. Error bars
are computed using (19).

of realizations of the surrogate data is often employed, but this is generally done
to improve the statistics of the measures of statistical significance. In the present
case, however, the statistics are so good with only these few realizations that more
was considered to be a waste of computer time. The average slopes of the curves
in Figure 4 is given by−0.49± 0.04 (SD), in agreement with an uncorrelated
Brownian motion process. We can see from the figure that the ten realizations form
a tightly interwoven set of straight lines, indicating that the various surrogates are
very much like one another. They are not identical, however.
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6. Measure of significance

Due to the variability in the slopes of the realizations of the surrogate data, seen in
Figure 4, we need a quantitative measure of how statistically different the original
gait variability data and surrogate time series are from one another. We use the
fractal dimension as the discriminating statistic, that is, as an indicator of the non-
linear dynamical properties of the time series and determine the level of statistical
significance using at-test:

S = |D −Ds|
σs

(18)

whereD is the fractal dimension for the gait variability data,Ds is the average
fractal dimension for the ensemble of surrogate data using that particular gait time
series, andσs is the standard deviation in the values of the fractal dimensions
in the surrogate ensemble. As discussed by Theiler et al. [12] if the distribution
of the statistic is normal (and numerical experiments indicate that a linear, ad-
ditive, uncorrelated normal distribution is often a reasonable approximation) the
probability of observing a significanceS or larger isp = erf c[S/√2], where
erf c is the complementary error function. Thus, the surrogate gait data cannot be
distinguished from the uncorrelated random time series with normal statistics and
the probability that the difference between the original data and the surrogate data
can be described by a linear, additive, uncorrelated random time series isp. Said
differently, in comparing the fractal dimension of the gait with that of the average
of the corresponding surrogate ensemble we require a significance level greater
than 0.001. This level of significance is achieved withS > 3.29. The significance
level for the seventh walker is determined to be substantially greater than this value,
in fact,S = 8.03, which might be called a eight sigma point. All ten of the stride
interval time series are well above the required level of significance, cf. Figure 5.

Thus, the chances that the difference between the gait time series and the surrog-
ate data could be explained by a linear, additive, uncorrelated normal process are
less than one in a million and we can feel confidant in rejecting the null hypothesis.
From the analysis here and in the preceding section we can associate the long-time
memory in the gait time series with an underlying nonlinear dynamical process.
This does not mean, however, that we can associate the source of the fluctuations
with chaos.

6.1. VARIABILITY OF THE SIGNIFICANCE

As a final point we calculatie the error bars on the measure of significance,S, for a
typical data set. Assuming the statistics in the measure of significance given by (18)
are normally distributed, the error1S is determined using the usual propagation of
error methodology to be [12]

1S =
√

1

Ns

(
1+ S

2

2

)
+ 1

N

(
σD

σs

)2

. (19)
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Since there is only a single realization of the gait time series in each test, we have
for the variance of the fractal dimensionσD = 0 in (19). In this way the error bars
in the present analysis, for ten realizations of the surrogate ensemble(Ns = 10)
for walker number seven, becomes1S = 1.82. Thus, we have for the measure
of significanceS = 8.03± 1.82, so that even with these few realizations of the
surrogate ensemble the rejection of the null hypothesis is statistically significant.
The measure of the significance parameter along with the associated error bar for
each of the walker data sets is graphed in Figure 5. The horizontal line is the value
of thep = 0.001 significance parameter. The least significant of the data sets has
p ≈ 10−11.

7. The random mode-switching model

One way in which random time series are modeled in physics is by means of
random walks, in which case the second moment of the random walk variable,
X(n), is, aftern steps [9],

〈X(n)2〉 ∝ n2H (20)

so that the mean-square value of the random variable is a power law in time (the
number of steps). In the language of random walks for 1/2 ≤ H ≤ 1 the walker
has a tendency to continue in the direction she is going, so there ispersistence
to the process; given a step in a particular direction that step is remembered and
the likelihood of the next step being in the same direction is greater than that of
changing directions. Analogously, for 1/2 ≥ H ≥ 0 the random walker prefers
to change her mind with each step, so there is ananti-persistence; given a step
in a particular direction that step is remembered and the likelihood of the next
step being in the same direction is less than that of reversing directions. Finally,
for H = 1/2 there is no bias and the random walker is equally likely to step in
either direction no matter what the last step. The last is a normal diffusion process
where the second moment grows linearly in time. The former two walks lead to
anomalous diffusion.

We use a slightly modified version of the argument of Hausdorff et al. [2] and
introduce the random variableI (n) for the stride interval of thenth step of the
walker. The total length of the time series is the sum ofN steps in an experiment

X(N) =
N∑
j=1

I (nj). (21)

We can use this quantity to obtain a theoretical fractal dimension for the locomotion
process. The second moment of this time series is given by

〈X(N)2〉 = 〈
N∑
j=1

I (nj )

N∑
k=1

I (nk)〉, (22)
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where the brackets denote an average over the steps in the time series. We now
assume that the stride interval is related to an underlying mode (frequency) in
which the locomotor system is operating [2]. Ifκ indexes the mode, thenκ(n)
denotes the mode in operation at the stepn. Now since the stride intervals are
demonstrably random, the locomotor system must make random transitions from
mode to mode. In this way we can reduce (22) to

〈X(N)2〉 ∝
N∑
j=1

N∑
k=1

〈δ[κ(nj )− κ(nk)]〉 (23)

so that irrespective of the functional form for the stride interval mode, the modes
are statistically independent of one another. Here we interpret the brackets on the
right-hand side of (23) as being an average over all configurations of the modes in
the locomotor system.

The Dirac delta function in (23) can be replaced by its integral representation

〈X(N)2〉 ∝
N∑
j=1

N∑
k=1

∫
dz

2π
〈eiz[κ(nj )−κ(nk)]〉 (24)

wherez is a dummy variable. If the distribution of modes is Gaussian, with zero
mean, the average term under the integral can be replaced with

〈X(N)2〉 ∝
N∑
j=1

N∑
k=1

∫
dz

2π
exp

[
−z

2

2
〈{κ(nj)− κ(nk)}2〉

]
. (25)

If the mode index itself is represented by a simple random walk process, that is,
delta correlated steps, then fornj > nk

〈{κ(nj )− κ(nk)}2〉 = nj − nk (26)

and the integration can be carried out to yield [2]

〈X(N)2〉 ∝
N∑
j=1

N∑
k=1

(nj − nk)−1/2 ∝ N3/2. (27)

Note that this result is a consequence of the statistics of the random transitions
between modes, so that with each step we randomly access a different frequeney
in the locomotor system.

Now in comparing (27) with the general expression for anomalous diffusion
(20) we observe thatH = 0.75 in the random mode-switching model. This value
of the Hurst exponent is completely consistent with the experimental stride interval
data, so that the stride interval phenomenon is persistent in terms of the random
walk model.
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8. Conclusion

The observation that the stride-interval time series is a random fractal is consistent
with the results of Hausdorff et al. [2], who used a detrending fluctuation ana-
lysis in processing their data, and whose interpretation of the gait time series as
a random fractal was elaborated on by Liebovitch and Todorov [13]. In fact we
find from our data that the average Hurst exponent we obtain,H = 0.73± 0.08
(SD), is in essential agreement with these earlier findings and with the random
mode-switching model. In terms of the random walk model the phenomenon of
fluctuations in human gait is persistent. The stride interval fluctuations are not
completely random, like Brownian motion, nor are they the result of processes
with short term correlations. Instead, the inverse power-law form of the correlation
function reveals that the stride intervals at any given time is influenced by fluc-
tuations that occurred hundreds of strides earlier, see also [2]. This behavior is a
consequence of the fractal nature of the stride interval time series.

The principle of allometry, as it is called in the biological literature, has long
been an expression of the interdependence, organization and concinnity of physiolo-
gical processes. We have extended the allometry idea to irregular allometric time
series in terms of the properties of feedback control. An allometric system achieves
its purpose through scaling, enabling a complex system such as that of gait to be
adaptive, and accomplish concinnity of the many interacting subsystems [4, 5].
If each of these subsystems has its own characteristic set of frequencies then the
mode-switching model shifts the burden of control randomly from one subsystem
to another, thereby achieving stability. This random switching provides the overall
persistence that is observed in the stride interval time series.

The control process required for human gait therefore manifests scaling through
the long-time correlations of the fluctuations in the stride interval. However, there is
the additional mechanism of the modulation of this monofractal behavior. The tying
together of the long and short time scales is necessary in order for the feedback to
adaptively regulate the complex gait process in a changing environment. The log-
periodic modulation of the inverse power law was shown by Shlesinger and West
[14] to be a consequence of the correlation function satisfying a renormalization
group relation and having a complex fractal dimension. This theme was expanded
on by Sornette [15] who argues that the log-periodicity is a result of what he calls
discrete scale invariance (DSI), that is also a consequence of renormalization group
properties of the system. In Section 4 we used such an argument to show that the
relative dispersion should have such a log-periodic modulation in general. In the
present context this implies that the motor control system for gait does have a
discrete characteristic scale that is an invariant of the random mode switching.

Jörgi et al. [16] explain that DSI is qualitatively similar to the idea of lacun-
arity, which we interpret to be the multiplicative spacing between frequencies in
the random-switching model. This is also the multiplicative preferentical scale
developed through the renormalization group ideas in Section 4. The physiolo-
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gical implication of this observation is that the frequency spectrum of the human
gait control system is not continuous, but has gaps due to the spacing between
frequencies of the constituent subsystems. A more detailed interpretation of this
mechanism requires additional experiments.

One final comment regarding processing. We choose the relative dispersion
technique because, while it is not new, it does highlight the modulation of the
inverse power law. Other techniques, that smooth the data, suppress this effect [16].
In addition it is straight forward and because it does not involve higher order mo-
ments of the time series, is readily understood by scientists with minimal training
in statistics and mathematics.

Failure to accommodate changes through an inability to regulate high frequency
motor control in a coordinated way with low frequency motor control occurs in
certain pathologies and in the elderly [3]. The suppression of high frequency re-
sponse is indicated through an decrease in the value of the power-law index,H ,
below the range of that of healthy individuals. Note that asH decreases the fractal
dimension increases towards the Brownian motion value of 1.5 and the memory in
the gait fluctuations process disappears. The implication is that the control vanishes
with the memory. This is consistent with a hypothesis made by West and Goldber-
ger [17] concerning the use of inverse power laws in physiology as diagnostics
concerning the health of physiological system.
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