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Abstract
The study of diabetic cardiomyopathy (diabetic CM) is an area of significant interest given the
strong association between diabetes and the risk of heart failure. Many unanswered questions
remain regarding the clinical definition and pathogenesis of this metabolic cardiomyopathy. This
article reviews the current understanding of diabetic CM with a particular emphasis on the
unresolved issues that have limited translation of scientific discovery to patient bedside.
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Case Vignette
A 58-year male with no past medical history presents with 3 months of progressive dyspnea
on exertion and mild LE edema. On initial evaluation his hemoglobin A1c is elevated at
7.8%, fasting triglycerides are increased at 220 mg/dl, and his HDL is low at 30 mg/dl. He
undergoes an echocardiogram which reveals moderate LVH, low normal EF (45%),
pseudonormal diastolic filling, and a dilated IVC. He has mild, diffuse coronary artery
disease on cardiac catheterization and his blood pressure is 135/80.

What is the most likely etiology of his heart failure?

How does diabetes influence cardiac metabolism and function?

How should his diabetes be treated given his cardiomyopathy?

1. Introduction
The prevalence of obesity in the United States has reached epidemic proportions. As a
consequence, obesity related diseases, such as diabetes, also continue to increase at a
staggering rate. Cardiovascular complications are common in diabetics and account for the
majority of morbidity and mortality in this population. In particular, the link between
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diabetes and heart failure (HF) has gained increased attention over the past several decades.
The term “diabetic cardiomyopathy” (diabetic CM) was first coined in the early 1970’s by
Rubler, who identified 4 patients at autopsy with diabetic nephrosclerosis and a non-
ischemic cardiomyopathy 1. Since that time epidemiologic studies have confirmed that
diabetics are more than twice as likely to develop HF compared to non-diabetics 2.
Moreover, the survival of diabetic HF patients is also reduced relative to those without
diabetes 3. For these reasons, understanding the pathogenic mechanisms responsible for
diabetic myocardial disease is of significant interest.

The accepted clinical definition of diabetic CM is the presence of diastolic or systolic
cardiac dysfunction in a diabetic patient without other obvious causes for cardiomyopathy,
such as coronary artery disease (CAD), hypertension (HTN), or valvular heart disease.
Given the vague nature of this definition and lack of true diagnostic criteria, diabetic CM
remains a somewhat elusive entity. However, extensive clinical and animal model research
has identified certain structural and pathologic findings that characterize this metabolic
cardiomyopathy. Typically, left ventricular hypertrophy (LVH) and diastolic dysfunction are
the earliest manifestations of diabetic CM, with systolic dysfunction occurring later in the
course of disease. However, given the loose clinical criterion for diagnosing diabetic CM,
there is some uncertainty as to its natural history.

The strong association between diabetes and HF has fueled intense human and animal
research aimed at identifying the mechanisms underlying diabetic myocardial disease.
Several pathologic abnormalities have been identified in the diabetic heart including
myocardial lipid overload, altered substrate utilization, oxidative stress, fibrosis,
inflammation, and mitochondrial dysfunction. Although significant progress has been made,
the precise underpinnings of diabetic CM remain controversial. In fact, many still question
whether diabetes in and of itself is capable of producing overt HF. In this chapter, we will
discuss the current thinking with regards to the pathogenesis and management of diabetic
CM, with an emphasis on areas of uncertainty. In addition, the interplay between diabetes
and other HF risk factors will be discussed.

2. Pathogenesis
The pathogenesis of diabetic CM is complex and multifactorial (Fig. 1). However, several
common themes have emerged. This section will focus first on the structural and functional
abnormalities that occur in the diabetic heart, and then review the potential molecular
mechanisms contributing to myocyte dysfunction.

2.1 Structural and functional characterization of Diabetic CM
LVH—LVH is a significant predictor for the development of heart failure, and is associated
with increased mortality 4, 5. Although hypertension is the leading risk factor for the
development of LVH, substantial evidence indicates that diabetes can also trigger this
pathologic remodeling response. Echocardiographic studies performed in diabetic patients
have consistently shown a strong association between diabetes, increased LV mass, and
LVH even in the absence of coexistent HTN 6, 7. Moreover, obesity itself also portends an
increased risk of concentric LVH independent of elevated blood pressures 8. Consistent with
this observation, there is evidence to suggest that adipose tissue derived cytokines may
contribute to cardiac hypertrophy in situations of nutrient excess 9. Moreover,
hyperinsulinemia may also contribute to cardiac myocyte hypertrophy 10. Although the
precise mechanisms of the hypertrophic response to metabolic stress remain to be fully
elucidated, LVH has become a defining structural characteristic of diabetic CM.
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Diastolic Dysfunction—LVH and hypertrophic remodeling are associated with abnormal
myocardial relaxation and diastolic dysfunction. Similar to the data surrounding LVH in
metabolic disease, there is strong link between diabetes and diastolic dysfunction. In fact,
diastolic abnormalities are thought to be amongst the earliest functional manifestations of
diabetic CM. The prevalence of diastolic dysfunction in diabetics ranges between 40–
75% 11, 12. Moreover, the majority of type 1 and type 2 diabetic animal models also reveal
diastolic function abnormalities by echocardiography and pressure-volume loop analysis 13.
Importantly, diastolic dysfunction is apparent in these models even in the absence of HTN or
CAD. The mechanism of diastolic dysfunction in the diabetic heart may be a consequence of
abnormal calcium handling, impaired energetics, cardiac lipid accumulation, and/or
myocardial fibrosis. Interestingly, the early stages of diastolic dysfunction are reversible in
diabetics who lose weight and normalize their metabolism 14. This finding implies that the
pathogenesis of diabetic CM may have a reversible phase and emphasizes the importance of
early, aggressive lifestyle modification in diabetics with impaired myocardial relaxation.

Systolic Dysfunction—Reduced LV systolic function is generally considered to be a late
manifestation of diabetic CM. It is unknown whether systolic HF is the final common
pathway of diabetic CM or is an alternate phenotype determined by the interaction between
genetics and diabetes in susceptible individuals. It is also important to recognize that many
diabetics with “normal” ejection fraction may actually have impaired systolic function when
more sophisticated measures, such as myocardial strain measurements or tissue doppler, are
employed 15. As such, the early stages of systolic dysfunction are likely to go unrecognized
clinically. Similar to the general population, the presence of systolic HF is associated with
worse prognosis in patients with diabetes.

2.2 Cellular and Molecular Defects in Diabetic CM
Glucotoxicity—Hyperglycemia has long been considered a central component in the
pathogenesis of diabetic CM. In part, this is supported by evidence that poor blood glucose
control correlates with increased risk of developing HF in diabetic patients 16. In general,
hyperglycemia is thought to contribute to cardiac dysfunction through two potential
mechanisms: 1) the generation of advanced glycation end products (AGEs) and/or 2) the
induction of oxidative stress.

Elevated blood glucose levels can lead to the non-enzymatic post-translational modification
of proteins, lipids, and nucleic acids. Following rearrangement to the more stable amadori
products these modified molecules are referred to as AGEs 17. Not surprisingly, the level of
AGEs in serum and tissue are significantly elevated in patients with diabetes 18. In addition
to impairing the function of modified proteins or nucleic acids, AGEs can trigger biologic
responses via the receptor for AGEs, or RAGE. RAGE is a member of the immunoglobulin
superfamily that is expressed on a wide variety of cells including macrophages, cardiac
myoctyes, endothelial cells, and smooth muscle cells 19. RAGE signaling leads to the
activation of MAP kinases, PI-3 Kinase, rho GTPases, NF-κB, and NADPH oxidase which
triggers inflammatory cytokine production and reactive oxygen species (ROS) generation.
Evidence supporting a role for RAGE activation in the pathogenesis of cardiac dysfunction
in diabetes was recently published using a streptozotocin (STZ)-induced model of type 1
diabetes in rats. In this study, treatment of diabetic rats with aminoguanidine, a small
molecule that prevents AGE formation, reduced ventricular and vascular stiffening20.
However, aminoguanidine also has RAGE-independent effects that may be relevant to this
phenotype. There is still debate about the importance of AGE/RAGE signaling in diabetic
CM as most of the data comes from animal models of profound and untreated
hyperglycemia. Thus, additional research will be necessary to address this question.
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Hyperglycemia has also been linked to increased oxidative stress independent of RAGE.
The mechanism of ROS generation in this instance can occur via increased glucose flux
through the polyol pathway, hexosamine pathway, and mitochrondrial oxidative
phosphorylation 21. A more detailed discussion of oxidative stress in the pathogenesis of
diabetic CM is presented below.

Given the dogma that hyperglycemia drives diabetic cardiovascular disease, it is surprising
that clinical studies have failed to show that aggressive blood glucose control reduces the
incidence of cardiovascular complications in diabetics22, 23. Although this may reflect an
inadequate understanding of how best to lower blood glucose, an alternative explanation is
that other metabolic factors contribute to the pathogenesis of diabetic myocardial disease
independent of hyperglycemia. Potential candidates are altered lipid metabolism,
inflammation, and mitochondrial dysfunction. These factors and their sequela will be
discussed in the following sections.

Altered lipid metabolism—The heart is a metabolic omnivore that is capable of using
diverse substrates for ATP generation. Under normal conditions the heart generates ~ 70%
of its ATP from fatty acid oxidation (FAO), with glucose oxidation contributing most of the
remainder 24. Substrate flexibility is also a hallmark of cardiac metabolism. To maintain
adequate ATP generation in the face of physiologic or metabolic stress the heart must be
able shift substrate utilization. This metabolic flexibility is thought to play a crucial role in
protecting cardiac myocytes from injury when ATP demand increases and/or substrate
availability decreases.

The impact of obesity and diabetes on myocardial metabolism has been well studied over
the past 2 decades. In diabetes, the heart is bathed in elevated concentrations of fatty acids
and glucose. Human studies using positron emission tomography tracers have reproducibly
demonstrated increased basal FAO and reduced glucose oxidation rates in patients with
obesity and diabetes 25, 26. Consistent with these findings, in vivo and ex vivo animal
models have also shown that type 1 and type 2 diabetes lead to increased myocardial FAO
capacity 27, 28 As observed in human studies, animal models also confirm that both
glycolysis and glucose oxidation are reduced in the diabetic myocardium 29. In part, this is a
reflection of myocardial insulin resistance 30. Thus, despite the presence of elevated glucose
in the extracellular environment, its uptake and utilization is impaired in the diabetic heart.

Metabolic reprogramming in the diabetic heart includes transcriptional and post-
transcriptional mechanisms. The PPARα gene expression network is induced in hearts from
diabetic animals and humans based on mRNA and protein analysis 31, 32. PPARα is a
nuclear receptor transcription factor whose activity is regulated by fatty acid ligands. The
gene targets of PPARα are involved in fatty acid import, FAO, and triglyceride synthesis 33.
In addition, PPARα can suppress glucose oxidation via the transcriptional induction of
PDK4, which prevents the entry of glucose into the citric acid cycle 34. PPARα-independent
mechanisms also contribute to the metabolic shift in the diabetic myocardium, including
reduced expression of the insulin responsive glucose transporter GLUT4 35. As a
consequence of reduced myocardial glucose uptake, FAO rates increase to maintain constant
levels of cellular ATP.

The augmentation of FAO in diabetes is likely an adaptive mechanism in the short term,
designed to handle excessive fatty acid delivery and reduced glucose availability. However,
over time this response becomes maladaptive and can potentially lead to myocyte
dysfunction. The mechanisms by which altered fatty acid metabolism contributes to cardiac
dysfunction is an area of active research, but may include excessive mitochondrial ROS
production, less efficient energy generation, and the production of incompletely oxidized
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acyl-carnatine metabolites and/toxic lipid species 36. Metabolic reprogramming of the
diabetic heart also reduces its substrate flexibility. This is relevant in times of stress when
the inability to utilize more efficient substrates, such as glucose, could lead to myocyte
energy depletion and dysfunction. There are no clinically available therapies for HF targeted
towards modulating myocardial metabolism, making this an attractive area for continued
research and clinical translation.

Lipotoxicity—The presence of cardiac myocyte steatosis is a well-established pathologic
hallmark of diabetic CM. The accumulation of lipid may seem paradoxical in the setting of
increased fatty acid utilization, but this observation reflects the imbalance between FA
uptake and oxidation that occurs in the diabetic heart. Autopsy studies of patients with non-
ischemic cardiomyopathy have revealed that diabetic patients have a significantly more
neutral lipid within cardiac myocytes compared to non-diabetics 37. Consistent with these
observations, MRI based quantification of myocardial triglyceride has also demonstrated
that insulin resistance and diabetes are associated with a significant increase in cardiac lipid
content 38, 39. Cardiac steatosis is also readily observed in animal models of diabetes,
arguing that this is a defining characteristic of diabetic CM 40. Of note, the accumulation of
lipid appears to precede the onset of cardiac dysfunction.

There is a growing body of evidence that supports a role for myocardial lipid accumulation
in the pathogenesis of diabetic CM. Several transgenic mouse models of cardiac steatosis
have demonstrated that lipid overload can promote LVH and cardiomyopathy in the absence
of systemic metabolic perturbations such as insulin resistance and hyperglycemia 31, 41–43.
The mechanism(s) by which lipids promotes cardiac toxicity is not clear, but animal model
and cell culture data have implicated ER stress, ceramide accumulation, oxidative stress, and
mitochondrial dysfunction 44, 45. Moreover, lipid remodeling of ER and mitochondrial
membranes may also be important in the pathogenesis of lipotoxicity. Further investigation
with non-transgenic animal models will be required to determine the importance of
lipotoxicity to the phenotype of diabetic CM.

Oxidative Stress—Increased oxidative stress is another common theme in models of
diabetic CM. As discussed above, animal and human data demonstrates increased ROS in
the diabetic myocardium. Oxidative stress appears to correlate with excess lipid delivery and
elevated mitochondrial FAO rates, arguing that mitochondria are an important source of free
radicals in the diabetic heart 40. However, high rates of FAO do not always lead to excessive
ROS generation, implying other derangements in mitochondrial structure and function must
also be involved 46. Hyperglycemia can also trigger oxidative stress via mitochondrial and
non-mitochondrial glucose metabolic pathways 47. Enzymatic sources of ROS such as that
generated by the NAPDH oxidase complex, which is induced by RAGE activation, may also
be important for the redox environment in diabetic cardiomyoctyes. In support of this
notion, it was recently published that the NAPDH oxidase system is activated in the diabetic
heart 48. Dysfunctional ROS scavenging mechanisms have also been proposed to contribute
to the severity of oxidative stress in the diabetic heart 49. More than likely, a combination of
these mechanisms is responsible for the ROS observed in diabetic CM.

The functional importance of oxidative stress in diabetic CM has also been investigated.
Mechanistically, it has been postulated that ROS can cause contractile dysfunction through
damage of intracellular organelles and proteins. In support of this concept, overexpression of
antioxidants such as superoxide dismutase, catalase, metallothionein, and glutathione
peroxidase significantly improved contractile function in ex vivo hearts and cardiac
myocytes from diabetic mice 50–53. Despite these promising results, most of the data to date
comes from STZ models of diabetic heart failure. Whether these findings will translate to
other diabetic animal models and humans remains to be determined. Nonetheless, the
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consistent finding of increased oxidant stress in diabetic CM warrants additional research to
define the pathologic consequences of excess ROS on cardiac function and to explore the
optimal means of reducing this oxidative stress.

Abnormal calcium handling—Cardiac myocyte calcium handling is known to play a
key role in the regulation of myocardial contraction and relaxation. In systole, L-type
calcium channels allow the influx of calcium which triggers calcium mediated calcium
release from the SR. The mobilization of SR calcium is mediated by the ryanodine sensivie
(RyR) calcium channel. During diastole, calcium must be re-sequestered into the SR to
allow for cardiac myocyte relaxation. The SERCA2a channel is necessary for this to occur.
In diabetes, both the RyR and SERCA channels are dysregulated. The RyR channel is
downregulated and hyperphosphorylated in models of both type 1 and type 2 diabetes 54–56.
Hyperphosphylation leads to increased calcium leak from the RyR receptor, thereby
depleting SR calcium and increasing cytoplasmic calcium during diastole. At the same time,
SERCA2a activity is reduced in the diabetic state, further exacerbating SR calcium depletion
and impairing calcium sequestration during diastole 57. In combination, these changes in
calcium flux impair both systolic contractility and diastolic relaxation. Interestingly, both
oxidative stress and mitochondrial dysfunction have been implicated in impaired calcium
flux 58.

PKC signaling—Several protein kinase C (PKC) isoforms are hyperactivated in the
diabetic myocardium 59. The regulation of PKC activity occurs via the lipid signaling
molecule diacylglyerol (DAG). In the diabetic heart, DAG levels are elevated as a
consequence of enhanced angiotensin II and catacholemine mediated activation of
phospholipase C, the enzyme which cleaves phosphatidylinositol 4,5-bisphosphate to form
DAG 60. In addition, de novo synthesis of DAG is augmented in states of glucose and fatty
acid excess, such as occurs in diabetic cardiomyocytes.

Hyperactive PKC signaling in the heart can influence calcium handling, ROS generation,
and inflammation all of which can affect cardiac performance. In support of this notion,
transgenic mice that overexpress PKCβ in cardiac myocytes develop cardiomyopathy 61.
There is also evidence that PKCβ inhibition can improve the cardiac phenotype of STZ-
injected rats 62. Future investigation will be needed to determine the utility of PKC
modulation in other models of diabetic myocardial disease.

Apoptosis/inflammation/fibrosis—Inflammation, cell damage/death, and fibrosis are
also pathologic hallmarks of diabetic CM. Inflammation is now recognized as a key
participant in the pathogenesis of diabetes and its complications 63. In models of type 1 and
type 2 diabetes the expression of inflammatory cytokines such as TNFα and IL-6 is
increased in the myocardium 64, 65. A modest increase in macrophages and monocytes has
been described in the diabetic myocardium, but the role of these cells in diabetic CM has not
been well studied. The initial trigger for metabolic inflammation may be ER stress
pathways, ROS, and/or the release of danger associated molecular patterns (DAMPS)
released from damaged myocytes. Interestingly, inhibition of TNF or caspase 1 (responsible
for IL-1β production) reduced myocardial inflammation and improved cardiac function in a
rat model of STZ-induced diabetes 64, 66. Thus, targeting specific inflammatory pathways
may be a novel therapeutic approach for the treatment. Future research investigating the
initiation and consequences of metabolic inflammation in the diabetic heart is needed. In
particular, defining the molecular mechanisms of crosstralk between myocytes and cardiac
leukocytes is of interest.

Increased myocyte necrosis and apoptosis is seen in animal and human diabetic hearts 67–69.
Although the mechanism of cell death remains unclear, impaired energetics, oxidative stress,
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inflammatory cytokines and fatty acid–induced lipotoxicity have all been implicated in this
response 70. The loss of cardiac myocytes in diabetic CM could contribute directly to LV
systolic dysfunction, but more likely the dying cells and their intracellular contents serve to
amplify pro-inflammatory and pro-fibrotic pathways.

Cardiac fibrosis is frequently observed in diabetic hearts and this association is independent
of CAD or HTN 71, 72. Both animal model and human tissue samples provide evidence that
progressive myocardial fibrosis may be a component of diastolic and systolic dysfunction in
diabetic CM. However, it should be noted that significant fibrosis is not a feature in all
models of diabetic CM 73. Cardiac myocyte cell death and inflammation can activate pro-
fibrotic pathways in the heart. TGF-β is thought to play an important role in this process 74.
In addition, the expression and activity of matrix metalloproteinase (MMP) 2 is significantly
diminished in STZ-induced diabetic CM, potentially reducing collagen turnover and
increasing fibrosis 75–77. In combination, increased production and reduced degradation of
collagen may contribute to the pathogenesis of the progressive fibrosis observed in diabetic
CM.

Mitochondrial dysfunction—As discussed above, diabetes dramatically alters
mitochondrial substrate utilization and oxidative flux. Early in the course of insulin
resistance there is an increase in both mitochondrial number and FAO capacity 78, 79. This
appears to be an adaptive response designed to handle the increase in lipid delivery and the
reduction in glucose import. However, as overt diabetes develops mitochondrial dysfunction
becomes apparent. Specifically, there are changes in the morphology, respiratory capacity,
and proteome of mitochondria in the diabetic heart 80.

Mitochondrial respiratory function has been studied in numerous diabetic models. In type 2
diabetes, the expression of mitochondrial uncoupling proteins is increased which enhances
oxygen consumption and reduces ATP generation during mitochondrial oxidative
phosphorylation 81, 82. This results in reduced cardiac efficiency and increased ROS
generation. These observations were recently extended to humans where freshly isolated
human atrial myocytes from diabetic and non-diabetic patients undergoing CABG were
investigated. Consistent with the mouse data, mitochondrial preparations from diabetic
myocytes had less efficient ATP generation and increased ROS production compared to
non-diabetic samples 83. Together this data argues that mitochondria in the diabetic heart are
less able to generate ATP and more likely to trigger oxidative stress in cardiac myocytes.
However, whether the diabetic myocardium is truly “energy deficient” is still an area of
debate.

It is attractive to consider that abnormalities in mitochondrial biology may be a unifying
feature of the multitude of derangements present in the diabetic myocardium. Mitochondria
play a key role in metabolic flux/energy production, ROS generation, and inflammation. All
of which are core features of diabetic heart failure (Fig. 1). Moreover, alterations in cellular
energetics and redox environment likely contribute to many of stress responses observed in
the diabetic heart such as cell death and dysregulated calcium handling. Thus, modulating
mitochondrial function in the heart has the potential to improve numerous aspects of the
diabetic CM phenotype.

2.3 Summary
The last 30 years have witnessed an explosion of research focused on the diabetic heart. As
illustrated in the above sections, the impact of diabetes on myocardial biology is complex
and multifactorial. Moreover, much of the cardiac functional data in animal models comes
from ex vivo assessment of cardiac myocyte performance. In fact, reports of in vivo
functional abnormalities in mouse models of type 1 and type 2 diabetes, as determined by
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echocardiography, have been inconsistent and often underwhelming 73, 84–87. This is further
confounded by the large amount of data derived from STZ-induced diabetic models where
profound hyperglycemia, volume depletion, tissue atrophy and/or the direct effects of STZ
on the myocardium likely contribute to the observed phenotypes 88. In the end, it is still a
legitimate question to ask what is diabetic CM? It is clear that the diabetic milieu influences
myocardial biology and when pushed to extremes can produce cardiac dysfunction.
However, the more clinically relevant issue may be how diabetes modulates the myocardial
response to other stressors. This is particularly true in humans, where diabetes frequently co-
exists with other HF risk factors. In the next section we will explore this concept further and
discuss the interplay between diabetes and other cardiac stress.

3. Diabetes and the vulnerable myocardium
The preceding section focused on the mechanisms by which diabetes, as a single disease,
can impact myocardial biology. However, the vast majority of diabetics also have other co-
morbidities that can influence cardiac function such as CAD and HTN.

For this reason understanding how diabetes impacts the response of the myocardium to other
injurious stimuli is clinically relevant. Strong evidence supports the concept that the diabetic
heart is more susceptible to damage inflicted by other stressors (Fig. 2). Thus, diabetes can
function as an amplifier cardiac injury. This point is illustrated by data investigating the
interaction between diabetes and cardiac damage induced by acute myocardial infarction
(AMI) and aortic stenosis (AS).

3.1 Diabetes and Myocardial Ischemia
Diabetes is associated with accelerated CAD and an increased risk of AMI 89. What is less
well appreciated is that diabetes also alters the response of the myocardium to ischemic
stress. Clinical data has consistently demonstrated that diabetics have an increased risk of
death following acute MI 90–92. This holds true even when the size of the initial infarct is
considered. The excess mortality in this patient population is largely due to an increased
incidence of post-infarction HF 93–95. These observations highlight the importance of
understanding the mechanisms by which diabetes influences the myocardial response to
ischemic injury.

Animal models of diabetes and AMI outcomes have replicated the findings of clinical
studies. Namely, AMI leads to exaggerated adverse LV remodeling and increased mortality
following left anterior descending artery occlusion in type 1 and type 2 diabetic
models 96–99. The similarities in cardiac phenotype between diabetic humans and mice
following AMI suggest that animal models may be useful to dissect the mechanisms of this
phenomenon. The majority of data in this area has been descriptive; however, enhanced
myocardial injury following ischemia in diabetes has been proposed to involve dysregulated
inflammation, increased oxidative stress, and/or microvascular disease 100. The molecular
basis of these responses and whether they will serve as therapeutic targets in the future
remains to be determined.

3.2 Diabetes and Aortic Stenosis
In addition to acute ischemic stress, the response of the diabetic myocardium to chronic
pressure overload, such as seen with AS, is also abnormal. In a recent study of patients with
severe AS, diabetes was associated with increased LV mass and reduced systolic function
despite similar aortic value gradients 101. Moreover, this association was independent of co-
existing CAD. In a similar study, diabetics with AS had increased myocardial fibrosis as
compared to their non-diabetic counterparts 102. Interestingly, diabetes was also associated
with increased levels of the hypophosphorylated N2B titin isoform. In sum these changes
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could significantly increase myocardial stiffness, exacerbate diastolic dysfunction, and
worsen HF symptoms. There is still much to learn about how diabetes renders the heart
more vulnerable to damage from ischemia and pressure overload. Morever, the impact of
diabetes on other myocardial stressors such as myocarditis and genetic stress should be
explored

3.3 Diabetes and the progression of heart failure
In addition to being a risk factor for HF, diabetes can also modulate the natural history of
this disease. In retrospective analyses of patients with reduced and preserved systolic
function HF, diabetes is an independent predictor of rehospitalizations and mortality 103–105.
Moreover, diabetes also promotes accelerated adverse myocardial remodeling in the setting
of HTN, another important HF risk factor 106. Thus, diabetic myocardial remodeling appears
to significantly impact the evolution of HF irrespective of the etiology. Continued
investigation into the mechanism(s) of this phenomenon is warranted.

4. Management of Diabetes of HF
There are no clear guidelines for the management of diabetes in HF patients. In large part
this a consequence of the paucity of clinical trial data in this area. This section will briefly
discuss issues to consider when managing diabetes in patients with HF.

4.1 Insulin replacement strategies
In addition to insulin injections, this group also includes the orally administered
sulfonylureas (SU), such as glyburide. In retrospective analyses, the use of insulin for DM
was associated with an increased incidence and severity of HF 107, 108. However, given the
retrospective, non-randomized nature of these studies, it is not possible to determine whether
insulin treatment truly increases of the risk of HF or identifies a higher risk diabetic patient.
Similar data is present for the SUs. Moreover, the risk of hypoglycemia is increased with the
use of insulin or SUs. In general, these agents should not be used as first line therapy for
diabetes in HF patients.

4.2 Insulin sensitizing strategies
The drugs in this class include the biguanides, such as metformin, and the thiozolidendiones
(TZDs), such as pioglitazone and rosiglitazone. Metformin was initially contraindicated in
patients with HF due to the perceived risk of lactic acidosis. However, more recent
observational data argues that the risk of lactic acidosis is very low in this patient
population 109. This has led to renewed interest in metformin as a treatment option for
patients with HF and diabetes. In a study by Eurich et al, diabetic HF patients treated with
metformin alone or in combination with a SU had a significant reduction in mortality
compared to patients treated with a SU alone 110. Similar results have also been reported
from other retrospective database analyses 13, 111. Although no randomized controlled trial
data exists, it appears that metformin treatment is safe in patients with DM and HF, and it
may improve outcomes.

The TZDs have been a source of controversy in the field of cardiology. The impact of these
medications on CAD is still a topic of debate; however, the initial concerns appear to
overstate the risk 112, 113. In 5–10% of patients TZDs will trigger fluid retention, which
leads to an increased risk of HF hospitalization in patients with diastolic and/or systolic
dysfunction 114. For this reason, many patients with diabetes and HF will not tolerate these
medications. Similar to metformin, there is retrospective data that associates TZD-
containing regimens with improved mortality in HF patients 115. However, given the lack of
clinical trials to prove benefit and the potential harm of increasing hospitalization for HF,
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TZDs should be used with caution in HF patients. Whether TZDs can reduce the risk of
developing HF in patients with diabetics with normal cardiac function remains an
unanswered question. In the future, more selective TZDs may produce the desired metabolic
effects without the risk of fluid retention.

4.3 Incretin based therapies
Modulation of the incretin system has shown promise as a means to improve blood glucose
levels and reduce diabetic complications. Natural incretins, such as glucagon-like peptide-1
(GLP1), are small molecules that are secreted by intestinal epithelial cells in response to
food ingestion. GLP-1 mediates its biologic effects via the GLP-1 receptor, which is
expressed on a wide variety of cells in the pancreas, heart, lung, kidney and, hypothalamus.
In response to GLP-1, glucose-stimulated insulin release from the pancreas is enhanced. The
clearance of GLP-1 is extremely rapid and controlled by the enzyme dipeptidyl peptidase 4
(DPP4). The available agents targeting this pathway function either as the GLP-1 receptor
agonists (i.e. exentinide/Byetta) or DPP4 inhibitors (sitiglipitin/Januvia).

Evidence supporting the use of incretin-based therapies for reducing cardiovascular
complications in diabetes is growing. In an animal model of atherosclerosis, GLP-1
significantly reduced plaque burden 116. In addition to anti-atherogenic effects, the GLP-1
pathway may also have cardioprotective properties. In animal models of AMI and
hypertensive CM, GLP-1 infusion reduced adverse LV remodeling, improved cardiac
function, and prolonged survival 117, 118. Although the data in humans is less well-
established, increased activation of the GLP-1 axis leads modest weight loss, an improved
lipid profile, and lower blood pressures. Moreover, in a small/non-randomized study GLP-1
infusion was associated with a significant improvement in ejection fraction in patients who
presented with AMI and reduced LV function 119. Currently there are several ongoing
clinical trials designed to address the impact of enhancing GLP-1 signaling on
cardiovascular outcomes in diabetes. The results of these studies will provide important
information about the use of these agents for the prevention and treatment of diabetic
cardiovascular complications.

5. Summary
Since the term diabetic cardiomyopathy was first coined in 1972 there has been intense
interest in this disease entity. With the growing population of diabetic patients the
prevalence of diabetic cardiovascular disease will continue to rise. Although animal model
and human studies have elucidated several pathologic features of diabetic CM, our
understanding of the inciting events that lead to contractile dysfunction and/or increase
myocardial susceptibility to injury remains murky. Moreover, diabetic CM as a cause of
clinical HF likely involves the intersection between diabetic-myocardial reprogramming and
other cardiac stressors. Given the lack of consensus on how to define or diagnose diabetic
CM, there has been limited progress on developing specific treatments for this form of HF.
In spite of this, mitochondrial dysfunction may explain several of the diabetic CM hallmarks
such as metabolic substrate dysregulation, excess ROS generation, inflammation, and ATP
depletion. Thus, targeting mitochondrial biology may lead to important new approaches to
improve cardiac function in diabetics.

The currently available pharmacologic options for treating diabetes have not been studied
rigorously with regards to prevention and/or treatment of diabetic CM. As a consequence, no
specific recommendations can be made for the use of these agents with respect to heart
failure. However, both metformin and the incretin-modulator therapies improve metabolic
parameters and may be cardioprotective. In contrast, TZDs can exacerbate fluid retention
making these drugs problematic in HF patients. Insulin replacement therapy should be
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reserved for those unresponsive to oral therapy as it may be associated with an increased risk
of HF incidence and mortality. Further research of these agents in patients with early and
late manifestations of diabetic CM will be important to define the optimal regimen.
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Key Points

• Diabetes is associated with an increased risk of developing heart failure and
portends a worse prognosis in heart failure patients.

• The pathophysiology of diabetic cardiomyopathy is multifactorial, but
mitochondrial dysfunction appears to be the final common pathway leading to
heart failure.

• The diabetic myocardium is more susceptible to injury induced by myocardial
ischemia or pressure overload, leading to a further increase in heart failure
among diabetics with other cardiac risk factors.

• Current pharmacologic therapies for diabetes improve hyperglycemia, but the
benefit in heart failure is unknown. Metformin and incretin-modulating drugs
show promise as cardioprotective anti-diabetic agents.
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Figure 1. The multifaceted effects of diabetes on cardiomyocyte biology
In the diabetic state, excess fatty acids are present inside the cell leading to excessive
mitochondrial FAO, PPARα activation, and the generation of lipid signaling molecules such
as ceramide and DAG. This metabolic reprogramming leads to mitochondrial dysfunction
manifested by excess ROS production, less efficient ATP generation, metabolic inflexibility.
Stressed mitochondria also amplify inflammatory and cell death responses. Hyperglycemia
can further augment cardiac myocyte toxicity via the formation of AGEs as well as
promoting excess ROS and DAG generation.
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Figure 2. Diabetes amplifies cardiac injury response to a variety of stimuli
Diabetes augments the risk of adverse cardiovascular outcomes in patients with ischemic
heart disease, HTN, AS, and heart failure (blue boxes). The dashed arrows connecting to the
text boxes indicate how diabetes influences the outcomes of the above-mentioned
cardiovascular diseases.

Schilling and Mann Page 19

Heart Fail Clin. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


