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Abstract

Image labeling is an essential step for quantitative analysis of medical images. Many image 

labeling algorithms require seed identification in order to initialize segmentation algorithms such 

as region growing, graph cuts, and the random walker. Seeds are usually placed manually by 

human raters, which makes these algorithms semi-automatic and can be prohibitive for very large 

datasets. In this paper an automatic algorithm for placing seeds using multi-atlas registration and 

statistical fusion is proposed. Atlases containing the centers of mass of a collection of 

neuroanatomical objects are deformably registered in a training set to determine where these 

centers of mass go after labels transformed by registration. The biases of these transformations are 

determined and incorporated in a continuous form of Simultaneous Truth And Performance Level 

Estimation (STAPLE) fusion, thereby improving the estimates (on average) over a single 

registration strategy that does not incorporate bias or fusion. We evaluate this technique using real 

3D brain MR image atlases and demonstrate its efficacy on correcting the data bias and reducing 

the fusion error.
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1. INTRODUCTION

Image labeling is an important step in automated analysis of medical images. Several 

segmentation algorithms that can be used for labeling, such as region growing, the random 

walker[1], and graph cuts[2], require the identification of one or more initial seeds. Typically, 

seeds are manually picked by human raters, which means that these algorithms are not fully-

automatic, and the burden of providing human raters to pick seeds on a very large database 

of images can become prohibitive due to either time or cost reasons. In some cases, multiple 
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raters may be desirable for robustness in face of human error, and this becomes even more 

costly. It has become increasingly common to use human raters to establish an initial atlas of 

validated training data from which a fully-automated, multi-atlas algorithm is established to 

mimic the human raters to carry out the desired task on an otherwise prohibitively large 

dataset. The statistical fusion of object labels carried over from multiple registrations of a set 

of labeled atlases has been well explored and is being actively investigated and 

improved[3, 4, 5, 6]. In this paper, we explore the statistical fusion of seeds that are intended 

to initialize a segmentation algorithm that would run in the native subject space. At this 

stage of development, we consider seeds that are defined as object centers of mass, but the 

basic technique we present can be easily modified to estimate seeds that are optimized for a 

particular segmentation algorithm or to establish multiple seeds within each object.

2. METHODS

Suppose an atlas of labeled objects in a standardized space (such as affine-registered MNI 

space) is available. Then a subject image is registered into this standardized space and the 

centers of mass on each of its objects are desired. A "standard" approach might be to register 

all objects into the subject space, fuse the labels using (for example) classic discrete 

Simultaneous Truth And Performance Level Estimation (STAPLE) algorithm[3], and then 

recompute the centers of mass. In this work, we are looking for a general approach in which 

centers of mass that are known in the atlas spaces might be directly fused after registration 

without requiring a recomputation based on an estimated label fusion.

Therefore, first we deformably register[7] each atlas from the training set into the subject, 

establishing a collection of estimates of centers of mass for each object. Before these data 

can be fused, in correspondence to our previously reported method called MAP-

CSTAPLE[6] where both the continuous STAPLE algorithm (CSTAPLE)[4, 5] and prior 

information on rater (training atlas) performance (bias and variance) are needed, we still 

need to establish a prior model of rater performance. So now we only consider the training 

set having the centers of mass of all labeled objects. Every atlas in it is deformably 

registered to all other atlases and the transformed centers of mass are compared to the true 

positions, generating a set of error vectors. Some atlases will perform well on some datasets 

and not so well on others, and in general each object within each atlas will have an a priori 

performance[8] characterized statistically by its bias and variance. With this prior 

information also incorporated, continuous data fusion is established by MAP-CSTAPLE 

resulting in reduced error due to the expected bias and variance of each training atlas taken 

into account.

To explain mathematically, let the subject atlas be denoted as At, and R training atlases are 

denoted as {A1, A2, …, AR} with corresponding labels {I1(x), I2(x), …, IR(x)}. Each label 

set contains same number of object labels, i.e. the jth label of atlas Am is donated with 

indicator function  where it is 1 when coordinate x belongs to the label and 0 

elsewhere. The center of mass of this object label is define as
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(1)

Our approach has the following steps, as illustrated using a flowchart in Figure 1.

1. Register every training atlas to the subject atlas. Deformable registration is required 

to properly align different atlases. In our experiments we apply FNIRT algorithm[7] 

for the registration. The deformation fields from atlas Am to At are calculated and 

stored as {φ1t, φ2t, …, φRt}.

2. Deform the labels of all training atlases with the deformation field, which will 

result in R registered label sets in the subject space {I1t(x), I2t(x), …, IRt(x)}, where

(2)

3. For every label j, calculate the centers of mass  after labels are 

transformed by registration, i.e., the centers of mass of {I1t(x), I2t(x), …, IRt(x)}, by

(3)

4. The bias of a center of mass must be learned as prior information to be applied 

within MAP-CSTAPLE. Both forward and backward registrations are performed 

on every pair of the training atlases, so that we know the location  of every 

center of mass j in its own space Am as well as the location  in the space of any 

other training atlas An. Under the assumption that the biases of all atlases lie in the 

same standardized space after registration, the bias  of center of mass j is 

computed by the equation below.

(4)

5. Now we can apply the MAP-CSTAPLE algorithm as described in our previous 

report. In contrast to STAPLE, which estimates a fusion of discrete labels as well 

as rater performance parameters (sensitivity and specificity) simultaneously, 

CSTAPLE deals with multi-dimensional continuous variables. The labeled point 

location is usually written in the form of vector , which is the decision of rater m 

for point j. A fusion of these decisions denoted as tj is to be found for each point j. 

And also for each rater m, the performance parameter, i.e., bias μm, and variance 

Σm is to be estimated simultaneously. Mathematically, it can be proved that under 

the same maximum likelihood estimation framework as discrete STAPLE, 

CSTAPLE yields equal likelihood for arbitrary rater bias parameter μm so that bias 

is indeterminate[6]. If a rater has a systematic bias, the resulting fusion may not be 
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accurate if this bias is not accounted. Therefore we previously proposed the MAP-

CSTAPLE algorithm which utilizes prior information to restrict the rater bias and 

guide the iterations to converge to a proper bias estimate through a maximum a 

posteriori estimation framework. The proposed EM iteration[9, 10] equations are

E-Step:

(5)

M-Step:

(6)

where μμm and  are the prior mean and prior variance of bias μm, and J is the 

total number of points. Notice that in this method, the bias of a specific rater is 

assumed to be unchanged at different points. Comparison against discrete STAPLE 

shows that this is not always true and might introduce a systematic deviation. Also 

in our experiments with the real brain label centroid dataset, we have observed that 

the same rater (registered atlas) has different biases at different label points. 

Therefore we modified the algorithm to consider spatially-varying bias by 

assuming different biases at different points, i.e., mathematically, change μm to . 

And the new EM iteration equations are

E-Step:

(7)

M-Step:

(8)

Note that the new bias updating equation avoids the averaging through all the points and 

now treat each point differently with a specific bias, even for the same rater. Using symbols 

from previous steps, for any target atlas t, we substitute decision  and bias prior 

Xing et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2012 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mean  Also for bias prior variance  we use the scalar variance of 

 over all targets n. After equations (7) and (8) converge[11], the estimated fusion 

tj(∞) can be used as seed for label point j.

3. RESULTS

The dataset of 148 complete 3D real brain atlases were evaluated in the experiment. On each 

atlas, 38 labels were identified and validated which segmented the entire brain volume. In 

correspondence with our model, for any target atlas, the total number of points J was 38. 

First, 147 of the atlases were used as training dataset to get the bias prior for raters in order 

to evaluate the one rest subject atlas. We explored the fusion of different rater numbers from 

1 to 147. For any fixed rater number, the raters were randomly drawn from the training 

dataset to be used to calculate the fusion. Every one of the atlases was regarded as the 

subject atlas with the rest as training. The entire setup was repeated in 50 Monte-Carlos with 

random raters and random subject atlas. We then computed the mean squared error (MSE) 

of fusion from the truth for every subject atlas, and got an average MSE of 1.9613±1.0565 

voxel2. At the same time, we also did the evaluation on each of the same dataset with the 

fusion technique replaced with normal averaging and MAP-CSTAPLE with zero prior, and 

got an average MSE of 2.2881±1.0230 voxel2 and 2.3126±1.1153 voxel2 respectively. The 

MSE of one subject atlas is shown in Figure 2(d).

We also used 50 of the atlases as training data and the remaining 98 atlases as testing data. 

50 Monte-Carlos were performed with the same setup as in previous experiment. For fixed 

training and testing datasets, the fusion on every single subject atlas was also evaluated with 

MAP-CSTAPLE and normal averaging. The average MSE was 1.6734±1.3962 voxel2 for 

MAP-CSTAPLE and 2.0130±1.4050 voxel2 for averaging. Figure 2(c) shows the number of 

fusion points with respect to distance from the truth. Generally speaking, at a certain 

distance from the truth (a ball centered at truth with certain radius), MAP-CSTAPLE is more 

likely to capture points than normal averaging technique.

4. CONCLUSION AND DISCUSSION

In this work we described a new approach to automatically determine seed locations for 

segmentation algorithms that require initial seeds. The approach was based on the STAPLE 

framework used for fusion approximation. We designed our model based on a previously 

proposed method – MAP-CSTAPLE – for continuous vector fusion problems and modified 

the equations and assumptions to fit the real brain atlas data we are evaluating, i.e., 

augmented the algorithm to handle the spatially bias-varying case. Experiment results 

demonstrated improved performance as compared to simple averaging. By using this 

approach, semi-automatic segmentation algorithms can become fully automatic, and this 

provides an alternative multi-atlas approach to image labeling over the conventional label 

fusion approaches.

By directly modifying the bias parameters to spatially vary at different label points, we may 

have introduced another problem of insufficiency. In particular, since each rater performs 

only once at each label point, it is difficult to reliably estimate a spatially-varying bias for 
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the rater at that point. In the future, therefore, we will develop and investigate a model that 

incorporates measurement repetitions.

ACKNOWLEDGEMENTS

This project was supported by NIH/NINDS 1R01NS056307 and NIH/NINDS 1R21NS064534.

REFERENCES

1. Grady L. Random walks for image segmentation. IEEE Transactions on Pattern Analysis and 
Machine Intelligence. 2006; 28(no. 11):1768–1783. [PubMed: 17063682] 

2. Freedman D, Zhang T. Interactive graph cut based segmentation with shape priors. Computer Vision 
and Pattern Recognition 2005. 2005; Vol 1:755–762.

3. Warfield SK, Zou KH, Wells WM. Simultaneous truth and performance level estimation 
(STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging. 2004; 
23(7):903–921. [PubMed: 15250643] 

4. Warfield S, Zou K, Wells W. Validation of image segmentation by estimating rater bias and 
variance. Medical Image Computing and Computer-Assisted Intervention. 2006; 4190:839–847. 
[PubMed: 17354851] 

5. Commowick O, Warfield SK. A Continuous STAPLE for Scalar, Vector, and Tensor Images: An 
Application to DTI Analysis. IEEE Trans Med Imaging. 2009; 28(6):838–846. [PubMed: 
19272988] 

6. Xing F, Soleimanifarda S, Prince JL, Landman BA. Statistical Fusion of Continuous Labels: 
Identification of Cardiac Landmarks. Proceedings of SPIE. 2011; Vol. 7962 796206. 

7. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson 
M, Smith SM. Bayesian analysis of neuroimaging data in FSL. NeuroImage. 2009; 45:S173–S186. 
[PubMed: 19059349] 

8. Gauvain JL, Lee CH. Maximum a posteriori estimation for multivariate Gaussian mixture 
observations of Markov chains. IEEE Transactions on Speech and Audio Processing. 1994; 2:291–
298.

9. McLachlan, GJ.; Krishnan, T. The EM algorithm and extensions. New York: John Wiley and Sons 
Ltd; 1997. 

10. Rohlfing, T.; Russakoff, DB.; Maurer, CR. Expectation maximization strategies for multi-atlas 
multi-label segmentation; Proc. Int. Conf. Information Processing in Medical Imaging; 2003. p. 
210-221.

11. Wu CFJ. On the convergence properties of the EM algorithm. The Annals of Statistics. 1983; 
11(1):95–103.

Xing et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2012 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
A flowchart for the proposed seed identification technique.
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Figure 2. 
(a) The bias model of one training atlas that has a symmetrical spatial pattern. (b) The MSE 

of every fusion point from the truth, which demonstrates MAP-CSTAPLE has an ability to 

reduce the fusion errors with the bias prior model. (c) The number of fusion points close to 

the truth. (d) The MSE of the fusion of one subject with respect to rater numbers. Training 

data has 147 atlases.
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