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We present a simple computational model of measurement accuracy for single-copy sensitivity assays (SCA) of HIV RNA that
was developed from first principles. The model shows that the SCA is significantly right-skewed. Measured virus concentrations
of 1 and 10 virions/ml had overlapping 95% confidence intervals and were statistically indistinguishable.

Single-copy sensitivity assays (SCA) have revealed residual
HIV viremia below the standard limit of detection 50 viri-

ons/ml in almost every patient on successful antiviral therapy
(4). The quantitative accuracy of these assays is theoretically
limited by sampling variance and copy number-dependent log-
normal variance.

The number of particles in a plasma sample varies according to
a Poisson distribution. This can significantly contribute to the
measurement error when the expected number of particles is
small. The viral RNA is then isolated, and a reverse transcriptase
process creates a sample of viral DNA. These processes can result
in a net loss in copy number that follows a binomial distribution.
The DNA sample is then amplified using a standard real-time PCR
assay, with normal uncertainty in the PCR efficiency and thresh-
old time resulting in a log-normal uncertainty in the estimate of
the sample size. This uncertainty increases as the expected sample
size decreases, due to small-number effects on the approximately
exponential growth. These processes create theoretical lower
bounds on the uncertainty in the SCA measurement. We explored
the theoretical limits of measurement accuracy for SCA by using
probability theory and computation.

A low sampling volume means that the number of virus parti-
cles in a given sample will follow a Poisson distribution with a
probability mass function:

P�i�c� �
�c � v�i

i !
e��c � v� ,

where c is the virus concentration in the blood, v is the volume of
the sample, and i is the number of viruses present in the sample. If
i � 0, then the measured value will also be 0 (assuming no false
positives in the PCR process, i.e., from sample contamination),
but if i � 0, then the measured value will be the output of a
quantitative PCR growth process, which is known to exhibit log-
normal noise (1). If the presence of a virus particle in the PCR
process guarantees a nonzero measurement, then the sensitivity of
this measurement technique is given by the following equation:

S�c� � P�i � 0�c� � 1 � e��c � v�.

For a true concentration of 1 virus/ml and a sample size of at
least 3 ml, the sensitivity is �95%, consistent with the claims re-
ported in reference 4.

Given a particular number of viruses in a sample, the measured
virus concentration will have a cumulative density function
(CDF) given by the following equation:

P�m � m * |i� � ��� log10�m*� � log10� i

v�
��i� �

u�m*�, i � 0

, i � 0 (1)

where � is the normal CDF and u(*) is the unit step function. The
log-normal variance in the PCR results has been shown to vary
with the expected copy number, with low-concentration samples
showing more variation than high-concentration samples (5).
This has been shown to theoretically obey a linear relationship
between the log of the expected copy number and the log of the
log-normal variance (1). The intersample variance for the Cobas
TaqMan quantitative PCR assay was analyzed in reference 5 in a
three-site trial with six replicate measurements for each of a stan-
dard eight-member HIV RNA panel, with concentrations from
1.5 log10 to 6.7 log10, showing a log-normal standard deviation of
0.07 log10 at the virus concentration 104 virions/ml, increasing to
0.11 log10 at 103 virions/ml, 0.20 log10 at 102 virions/ml, and 0.25
log

10
at 50 virions/ml. For concentrations above 104 virions/ml, the

standard deviation increases due to cycle number uncertainty,
which is not modeled here. The average coefficient of variation as
reported in reference 4 for the internal virion standard corre-
sponds to a log-normal standard deviation of 0.08 log10 at virus
concentrations of approximately 4.4 log10, which corresponds ex-
actly with the experimental results reported in reference 5, indi-
cating that the process was similar between the experiments. Fit-
ting the data from reference 5 for measured concentrations
between 1.5 log10 and 4 log10 to the log-log linear model from
reference 1, we arrived at the following equation for the log-nor-
mal standard deviation as a function of viral concentration:

��i� � 10��0.21��0.24 � log10�i�	�

This equation fits the data from reference 5, with an R2 value of
0.99928, as shown in Fig. 1. This would imply a � of 0.38 log10 for
a measured value of 1 virion/ml, given a 7-ml sample size. The
probability density function of a measured virus concentration,
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m, given a blood concentration of c, is given by the following
composite function:

P�m�c� � 	�m�e�c � v


 

i�1

� 1

m�
�� ln�m� � ln� i

v�
��i� � �

�c � v�i

i !
e��c � v� (2)

where � is the normal PDF and �(*) is the Dirac delta function. If
we assume no prior knowledge of the a priori likelihood of the
virus concentration in the blood, then the probability of a blood
concentration given a measured concentration is given by the
equation

P�c � c * |m � m*� �
P�m * �c*�

�c�0

�
P�m * �c*�dc

,

following Bayes’ theorem. Although this equation has no closed-
form solution, it is possible to compute this distribution numeri-
cally and obtain marginal probability densities and confidence
intervals (CI) for true blood measurements given a particular
measured virus concentration. The contribution of Poisson vari-
ance to this uncertainty is fixed by the size of the blood sample,
described as 7 ml in reference 4.

The posterior distributions for measured virus loads between 1
and 50 virions/ml were computed using MATLAB and are shown
in Fig. 2 for a sample size of 7 ml. The 95% CI, maximum likeli-
hood estimate (MLE), and posterior median (PM) results were as
follows for the 1-, 5-, and 10-virions/ml viral loads, respectively: at
1 virion/ml, MLE of 1.2, PM of 1.7, and 95% CI of 0.3 to 4.9; at 5
virions/ml, MLE of 5.4, PM of 6.5, and 95% CI of 1.6 to 15.2; for 10
virions/ml, MLE of 10.8, PM of 12.1, and 95% CI of 4.0 to 25.9.

The 95% confidence intervals of measured values for the re-
sults for 1, 5, and 10 virions/ml overlapped, and a measured value
of 1 virion/ml can be said to be indistinguishable from a measured
value of 10 virions/ml. The distributions are right-skewed, with
maximum likelihood and median estimates of viral load that are
considerably larger than the measured values. We neglected the
binomial loss during the reverse transcription; including this ef-
fect would increase the right skew and the total measurement un-
certainty.

An understanding of the persistence of HIV at levels below the
standard limit of detection is of critical importance, and single-
copy assays have provided significant insight (2). However, the

limitations of the assay must be understood. As a detection assay,
SCA is sensitive and reliable. As a quantification assay, SCA is
subject to large uncertainties and biases, due to the processes de-
scribed here. Precise estimates of viral loads in the 1- to 50-viri-
ons/ml range would require a large number of replicate samples. If
this is infeasible, then Bayesian regression techniques (such as
those employed in the studies described in references 3 and 6) that
can explicitly account for the uncertainty in the SCA should be
used, to avoid overinterpreting the experimental results.
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FIG 1 Standard deviation versus nominal copy number model fit (R2 �
0.9928).

FIG 2 Actual versus measured virus concentrations for SCA, assuming a 7-ml
sample size.
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