Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jan;79(2):400–402. doi: 10.1073/pnas.79.2.400

Giant circular dichroism of high molecular weight chlorophyllide-apomyoglobin complexes

Robert M Pearlstein 1, Robert C Davis 1, Susan L Ditson 1
PMCID: PMC345750  PMID: 16593144

Abstract

Chlorophyllide a and the apoprotein of myoglobin (Mb) spontaneously form three types of complex. The M (Mr ≈ 3 × 105) and H (Mr ≥ 4 × 106) complexes, but not the L (Mr ≈ 1.7 × 104), display a circular dichroism (CD) spectrum that is highly red-shifted, nonconservative, and very intense—characteristics shared by the CD spectra of reaction center complexes from purple photosynthetic bacteria. At its 710-nm peak, the H complex CD spectrum has a larger magnitude, 0.06 differential absorbance per unit total absorbance, than has been reported for chlorophyll in any medium.

Keywords: myoglobin, photosynthesis, protein complexes

Full text

PDF
400

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRESLOW E. CHANGES IN SIDE CHAIN REACTIVITY ACCOMPANYING THE BINDING OF HEME TO SPERM WHALE APOMYOGLOBIN. J Biol Chem. 1964 Feb;239:486–496. [PubMed] [Google Scholar]
  2. Dalgleish D. G., Peacocke A. R. The circular dichroism in the ultraviolet of aminoacridines and ethidium bromide bound to DNA. Biopolymers. 1971 Oct;10(10):1853–1863. doi: 10.1002/bip.360101008. [DOI] [PubMed] [Google Scholar]
  3. Edwards R. A., Woody R. W. Spectroscopic studies of Cibacron Blue and Congo Red bound to dehydrogenases and kinases. Evaluation of dyes as probes of the dinucleotide fold. Biochemistry. 1979 Nov 13;18(23):5197–5204. doi: 10.1021/bi00590a026. [DOI] [PubMed] [Google Scholar]
  4. HOLDEN M. The breakdown of chlorophyll by chlorophyllase. Biochem J. 1961 Feb;78:359–364. doi: 10.1042/bj0780359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hsu M. C., Woody R. W. The origin of the heme Cotton effects in myoglobin and hemoglobin. J Am Chem Soc. 1971 Jul 14;93(14):3515–3525. doi: 10.1021/ja00743a036. [DOI] [PubMed] [Google Scholar]
  6. Olson J. M., Ke B., Thompson K. H. Exciton interaction among chlorophyll molecules in bacteriochlorophyllaproteins and bacteriochlorophyllareaction center complexes from green bacteria. Biochim Biophys Acta. 1976 Jun 8;430(3):524–537. doi: 10.1016/0005-2728(76)90028-1. [DOI] [PubMed] [Google Scholar]
  7. Philipson K. D., Sauer K. Exciton interaction in a bacteriochlorophyll--protein from Chloropseudomonas ethylica. Absorption and circular dichroism at 77 degrees K. Biochemistry. 1972 May 9;11(10):1880–1885. doi: 10.1021/bi00760a024. [DOI] [PubMed] [Google Scholar]
  8. Philipson K. D., Sauer K. Light-scattering effects on the circular dichroism of chloroplasts. Biochemistry. 1973 Aug 28;12(18):3454–3458. doi: 10.1021/bi00742a015. [DOI] [PubMed] [Google Scholar]
  9. Reed D. W., Ke B. Spectral properties of reaction center preparations from Rhodopseudomonas spheroides. J Biol Chem. 1973 May 10;248(9):3041–3045. [PubMed] [Google Scholar]
  10. Schneider A. S. Analysis of optical activity spectra of turbid biological suspensions. Methods Enzymol. 1973;27:751–767. doi: 10.1016/s0076-6879(73)27032-5. [DOI] [PubMed] [Google Scholar]
  11. Scott B., Gregory R. P. Properties of protein-chlorophyll complexes from pea (Pisum sativum L.) leaves. The organization of chlorophyll. Biochem J. 1975 Aug;149(2):341–347. doi: 10.1042/bj1490341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Takano T. Structure of myoglobin refined at 2-0 A resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):537–568. doi: 10.1016/s0022-2836(77)80111-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES