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Wolbachia, a maternally transmitted endosymbiont of insects, is increasingly being seen as an effective biological control agent
that can interfere with transmission of pathogens, including dengue virus. However, the mechanism of antiviral protection is
not well understood. The density and distribution of Wolbachia in host tissues have been implicated as contributing factors by
previous studies with both mosquitoes and flies. Drosophila flies infected with five diverse strains of Wolbachia were screened
for the ability to mediate antiviral protection. The three protective Wolbachia strains were more closely related and occurred at a
higher density within whole flies than the two nonprotective Wolbachia strains. In this study, to further investigate the relation-
ship between whole-fly Wolbachia density and the ability to mediate antiviral protection, tetracycline was used to decrease the
abundance of the high-density, protective Wolbachia strain wAu prior to viral challenge. Antiviral protection was lost when the
density of the protective Wolbachia strain was decreased to an abundance similar to that of nonprotective Wolbachia strains. We
determined the Wolbachia density and distribution in tissues of the same five fly-Wolbachia combinations as used previously.
The Wolbachia density within the head, gut, and Malpighian tubules correlated with the ability to mediate antiviral protection.
These findings may facilitate the development of Wolbachia biological control strategies and help to predict host-Wolbachia
pairings that may interfere with virus-induced pathology.

Wolbachia, an intracellular endosymbiont of insects, is in-
creasingly being seen as an effective biological control agent

that can interfere with the transmission of pathogens that are vec-
tored by insects (7, 13, 14, 19, 23, 34, 38, 42, 43). Wolbachia is a
maternally transmitted bacterium which is predicted to infect up
to 70% of insect species (17, 24, 45). Wolbachia bacteria are best
known for their ability to manipulate host reproductive systems,
leading to an increase in their frequency within insect populations
over successive generations (20, 35, 40, 44). Wolbachia infection
can also reduce the ability of insects to transmit viruses such as
dengue and Chikungunya viruses and can protect the insect
against viral, bacterial, and protozoan parasites (2, 12, 15, 22, 26,
27, 34, 36, 39). However, the mechanism by which Wolbachia
protects against pathogens is not well understood. A better under-
standing of endosymbiont characteristics and antipathogen pro-
tection may facilitate the development of improved strategies for
use of Wolbachia as a biocontrol agent.

Wolbachia endosymbiosis has been well characterized within
the model organism Drosophila, in which protection against viral
challenge has been observed (15, 36, 39). Wolbachia-mediated an-
tiviral protection has been described to occur in Drosophila mela-
nogaster and Drosophila simulans, flies which exhibit delayed mor-
tality when challenged with RNA viruses, including Drosophila C
virus (DCV), cricket paralysis virus, Flock House virus, and Nora
virus (15, 36, 39). In some Wolbachia-host combinations, a delay
in the accumulation of viral particles was observed concurrently
with a delay in mortality (15, 36, 39). Interestingly, some Wolba-
chia-containing flies, such as the D. simulans CO line which con-
tains the Wolbachia strain wAu (CO-wAu), were better able to
tolerate high titers of virus than Wolbachia-free flies (36). It is not
yet understood how the presence of Wolbachia delays virus accu-
mulation or how it contributes to host tolerance of viral infection.
Furthermore, not all Wolbachia-fly pairings are protected against

virus-induced mortality (29, 36). When five D. simulans-Wolba-
chia combinations were screened for antiviral protection by viral
challenge, three combinations were protected (CO-wAu, Me29-
wMel, and DSR-wRi), whereas the other two were not (DSH-wHa
and N7NO-wNo) (36). Notably, when the same fly combinations
were challenged with mortality-inducing bacteria, including Er-
winia carotovora, none of the Wolbachia strains mediated antibac-
terial protection (47). The difference in response between antiviral
and antibacterial protection in the same fly-Wolbachia combina-
tion indicates that the Wolbachia-mediated mechanism of antivi-
ral protection differs from the mechanism of antibacterial protec-
tion (47).

There are a number of Wolbachia-virus, or Wolbachia-host-
virus, interactions that could result in antiviral protection. Exam-
ples of these mechanisms could include competition between
Wolbachia and virus for a shared resource, steric hindrance be-
tween Wolbachia and the virus within the internal cellular envi-
ronment, altered cell membrane characteristics, or altered cell be-
haviors such as viral uptake. Limited data are available on the
influence of Wolbachia on these factors. If these factors contribute
to host susceptibility to virus, the abundance of Wolbachia would
likely impact the ability to mediate antiviral protection. Wolbachia
density may be important at a cellular level, at the tissue level, or
within the whole host organism (10, 34, 36). For example, partic-
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ular tissues may play a role in the host’s viral response or be rele-
vant to viral pathogenesis. If viral pathogenesis relies on the infec-
tion of a particular cell or tissue type and Wolbachia can limit or
modulate viral infection within that tissue, the outcome of virus-
induced disease may be modified. Although the majority of
Wolbachia distribution studies have focused on the reproductive
organs, Wolbachia has also been identified in a number of somatic
tissues across insect species (4, 5, 8, 11, 32–34, 42). Previous stud-
ies used different Wolbachia strains, host backgrounds, and tech-
niques to identify Wolbachia in tissue types (2, 4, 5, 8, 34). Intrinsic
host and Wolbachia strain factors have been shown to alter Wolba-
chia distribution within tissues (8, 41). To our knowledge, no
study has yet compared Wolbachia tissue distribution and density
in natural host-Wolbachia combinations to identify tissues of po-
tential importance in Wolbachia-mediated antiviral protection.

Data from previous studies suggest that Wolbachia density and
distribution may be important for antiviral protection to occur
(10, 34, 36). When diverse strains of Wolbachia in D. simulans host
backgrounds were screened for the ability to mediate antiviral
protection, a correlation was identified between Wolbachia den-
sity in whole flies and the ability to mediate antiviral protection.
The Wolbachia strains that mediated antiviral protection (wAu,
wMe29, and wRi) occurred at a higher abundance within individ-
ual flies and were more closely related than the Wolbachia strains
that did not mediate antiviral protection (wHa and wNo) (36, 48).
The importance of Wolbachia density has also been implicated in
mosquito and mosquito cell line studies (10, 34). This study in-
vestigated the importance of Wolbachia density and distribution
within the host on the ability of the strain to mediate antiviral
protection across the five fly-Wolbachia combinations. Then the
abundance of the protective wAu strain was decreased and flies
were challenged with the mortality-inducing DCV to determine if
Wolbachia abundance is an important factor in antiviral protec-
tion.

MATERIALS AND METHODS
Drosophila and Wolbachia. Five D. simulans lines (CO, Me29, DSR,
N7NO, and DSH) were maintained at 25°C with a 12-h light-dark cycle,
on standard cornmeal agar media as previously described (36). For each
fly line, paired populations of flies were used that either contained a
Wolbachia strain (CO-wAu, Me29-wMel, DSR-wRi, N7NO-wNO, and
DSH-wHa) or had been previously cured of Wolbachia (CO-T, Me29-T,
DSR-T, N7NO-T, and DSH-T) by tetracycline treatment (21, 36). As tet-
racycline treatment may impact the fly gut microbiota, following tetracy-
cline treatment the flies were placed on food that had been exposed to
untreated male flies. With the exception of Me29-wMel, natural fly-
Wolbachia combinations were used (18, 21, 31, 35). Me29 had previously
been transinfected with the D. melanogaster Wolbachia strain wMel, by
microinjection of infected cytoplasm from D. melanogaster Wein 5 em-
bryos into Me29 NHaTC embryos (37).

Preparation of Drosophila histological sections. Wings and legs were
removed from 4- to 7-day-old male anesthetized flies, and insects were
preserved in 4% paraformaldehyde plus 0.5% Triton X-100 at 4°C for at
least 2 days. Flies were dehydrated in 50% ethanol for 3 h, then 70%
ethanol overnight, 90% ethanol for 1 h, and 95% ethanol for 1 h, and
rinsed twice in 100% ethanol for 30 min. A 15-min rinse in toluene,
followed by overnight storage in cedar wood oil and a 10-min rinse in 1:1
toluene-cedar wood oil, was used to improve wax infiltration. Samples
were submerged in paraffin wax (Paraplast-Xtra; McCormick Scientific)
at 60°C for 30 min and then twice for 15 min under vacuum, with 5 to 15
insects per wax mold. A rotary microtome was used to obtain 8-�m-thick
sections that were adhered to Super Frost Plus slides (Menzel-Gläser).

After a minimum of 24 h, slides were deparaffinated by three 3-min xylene
washes and hydrated with a series of ethanol washes: 100% ethanol twice
for 3 min, 90% ethanol for 3 min, 70% ethanol for 3 min, distilled water
for 5 min, and two dips in distilled water. Slides were air dried and stored
at room temperature until use.

Fluorescent in situ hybridization (FISH). Histological slides of flies
with and without Wolbachia were treated with hybridization buffer which
contained a final concentration of 4� SSC (1� SSC is 0.15 M NaCl plus
0.015 M sodium citrate), 50% (vol/vol) deionized formamide, 0.2 g/ml
dextran sulfate, 0.25 mg/ml salmon sperm DNA, 0.25 mg/ml poly(A),
0.25 mg/ml tRNA, 0.1 M dithiothreitol (DTT), and 0.5� Denhardt’s so-
lution. Two oligonucleotide probes labeled at the 3= end with rhodamine
were used to target the 16S rRNA region of the Wolbachia species (34).
BLAST (NCBI) alignment on the five Wolbachia strains indicated that
both probes (5=-CTTCTGTGAGTACCGTCATTATC-3= and 5=-AACCG
ACCCTATCCCTTCGAATA-3=) were 100% homologous to all the
strains used in this study. Slides were treated with 200 �l of hybridization
solution containing a final concentration of 15 nM for both probes and
incubated overnight at 37°C. Slides were washed once in 1� SSC and 10
mM DTT for 10 min, twice in 1� SSC and 10 mM DTT at 55°C for 15 min,
twice in 0.5� SSC and 10 mM DTT at 55°C for 15 min, once in 0.5� SSC
and 10 mM DTT containing 1 pg/ml 4=,6-diamidino-2-phenylindole
(DAPI) for 10 min, and then in 0.5� SSC and 10 mM DTT for 10 min.
Slides were rinsed in water, allowed to air dry, and mounted with 50 �l of
the antifade reagent ProLong (Invitrogen).

Fluorescent labels were visualized using an epifluorescence micro-
scope (Zeiss Axio Imager A.1) and stimulated by a 100-W high-pressure
mercury lamp (HBO100) (Zeiss). Red and blue filters (Zeiss) were used to
differentiate between DAPI fluorescence (emission, 461 nm) and rhoda-
mine fluorescence (emission, 603 nm). The software program Axio-
Vision, release 4.6.3, was used to record images. By necessity, the length of
image exposure differs across tissue sets due to the amount of autofluo-
rescence in different tissues and the magnification used. Exposure and all
other microscope settings were kept constant between images of control
and Wolbachia-containing flies. As a consequence, images can be com-
pared only within the control-test set and not directly across different
tissues or across different fly lines. Autofluorescence of fly tissues was
observed in the Wolbachia-free negative-control flies and differed be-
tween tissues types. Fluorescence was attributed to Wolbachia presence
when surplus to the amount of background fluorescence observed in
Wolbachia-free negative-control flies. Both punctate and diffuse fluores-
cence was interpreted as evidence of Wolbachia, as punctate staining be-
came diffuse when the focal plane was adjusted throughout tissue sections
(data not shown). Each image presented is representative of results ob-
served in multiple sections of at least four individual flies.

Tissue dissection. To dissect tissues, male adult 4- to 7-day-old flies
were anesthetized using CO2, chilled, and beheaded to enable dissection.
To assist with tissue isolation and to minimize potential contamination
between tissues or by hemolymph, flies were dissected submerged in
phosphate-buffered saline (PBS) and visually inspected for purity of tis-
sue. Forceps were used to isolate fly heads and gut (including crop), Mal-
pighian tubules, testes, thoracic ganglia, accessory glands, fat body, or
muscle tissue. To increase the amount of starting material, isolated tissues
were pooled from five individuals for DNA extraction and immediately
snap-frozen in a dry ice and ethanol bath. This was repeated across three
separate biological cohorts. DNA was extracted from all tissues on the
same day as dissection as described below. Wolbachia-free flies were used
for negative controls.

DNA extraction. To extract DNA from dissected tissues, samples
were homogenized in 150 �l of chilled PBS for 90 to 180 s, using two
3-mm glass beads (Sigma-Aldrich) and a Mini Beadbeater-96 (Biospec
Products). The QIAamp Viral RNA minikit (Qiagen) was used to ex-
tract DNA as per the manufacturer’s protocol, with the following ad-
justments. A centrifuge speed of 14,000 rpm was used at each centri-
fuge step, and samples were eluted and stored in DNase-free water. As
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the extraction protocol involves the use of carrier RNA, quantitation
of DNA was not performed. Quantitative PCR (qPCR) was used to
determine the abundance of the Wolbachia surface protein gene (wsp)
(NC_0124161.1) relative to the D. simulans reference gene, Actin 5C
(NC_004354.3) (36).

Quantitative PCR. Quantitative PCR was used to determine the abun-
dance of Wolbachia in a selection of fly tissues. Platinum SYBR green
qPCR SuperMix-UDG (Invitrogen) was used as per the manufacturer’s
protocol, at halved quantities that resulted in 10-�l reaction mixtures that
contained 2 �l of DNA for relative Wolbachia quantitation. Two technical
replicates were performed for each sample. If the standard deviation be-
tween technical replicate takeoff values was greater than 0.5, the samples
were retested. Primer sequences correspond to regions of the D. simulans
reference gene Actin 5C and the Wolbachia wsp gene (36). The Actin 5C
primer sequences used were 5=-GACGAAGAAGTTGCTGCTCTGGTT
G-3= and 5=-TGAGGATACCACGCTTGCTCTGC-3=, while the wsp
primer sequences used were 5=-GCATTTGGTTAYAAAATGGACGA-3=
and 5=-GGAGTGATAGGCATATCTTCAAT-3= (36). Negative controls
included template-free qPCRs and the processing of Wolbachia-free flies.
Positive controls for the reference gene and Wolbachia were included in
each qPCR run. The Rotor-Gene 6000 thermal cycler (Corbett Life Sci-
ences, Qiagen) was used with the following profile: 95°C for 2 min, 50°C
for 2 min, and 40 cyclic repeats of 95°C for 10 s, 52°C for 10 s, and 72°C for
20 s. This was followed by a standard melt analysis to confirm that only the
expected product had been amplified. The abundance of Wolbachia rela-
tive to the host reference gene was determined using qGENE software. To
determine if a correlation existed between Wolbachia density and the abil-
ity of the strain to mediate protection, a fit model analysis was performed.
This was done using the statistical software JMP 8.0.2.2 (SAS), with pro-
tection as a fixed variable and strains with protection as a nested variable.
A P value of �0.01 was interpreted as statistically significant. Graphical
representation was performed using GraphPadPrism 5.0a, and standard
error is shown.

Tetracycline treatment to decrease wAu density. The highly abun-
dant, protective Wolbachia strain wAu was selectively decreased in CO
flies by treatment with tetracycline. Flies were allowed to lay eggs on nor-
mal fly media which contained tetracycline at 0.3 �g/ml, 3 �g/ml, 9 �g/
ml, 27 �g/ml, 81 �g/ml, or 300 �g/ml or no tetracycline (21). Hatched
larvae fed on the tetracycline-treated media were removed onto fresh
tetracycline-free fly medium as 0- to 3-day-old adults. Individual male
flies were collected as 4- to 7-day-olds, and DNA was extracted as per the
above protocol before qPCR was used to determine Wolbachia abundance
in individual flies.

Survival assays. After the flies were treated with tetracycline to de-
crease Wolbachia organisms to desired densities, they were challenged
with virus and survival was monitored. Treatment and viral challenge of
Wolbachia-free CO flies with 3 �g/ml, 27 �g/ml, and 300 �g/ml or with-
out tetracycline was performed to confirm that antibiotic treatment did
not alter survival following viral challenge. Purified DCV isolate EB sus-
pended in Tris (pH 7.4) (16, 25) was maintained at �20°C in aliquots
which were used once and then discarded to prevent loss of virus through
repeated freeze-thawing. Virus titer was determined by 50% tissue culture
infectious dose (TCID50) assay (16). Flies were infected by injection as
previously described (36). Briefly, 5 � 103 infectious units of DCV in 50.6
nl was injected into the hemocoels of 4- to 7-day-old male flies. Negative-
control flies were injected with 50.6 nl of PBS. Injections were performed
using needles pulled from glass capillaries (Drummond Scientific) and a
Nanoject II microinjector (Drummond Scientific). Fly survival was mon-
itored daily, deaths within the first day were discounted as needlestick
injury, and the data were normalized accordingly. The challenge assay was
replicated using independent fly cohorts. Virus-induced mortality across
cohorts is representative where similar Wolbachia densities had similar
survival outcomes.

RESULTS
Wolbachia distribution in fly tissues. Fluorescent in situ hybrid-
ization was used to qualitatively determine the presence or ab-
sence of Wolbachia in fly tissues across the five fly-Wolbachia pair-
ings. Wolbachia was observed in many of the tissues studied,
including the head, gut, Malpighian tubules, thoracic ganglion, fat
body, and muscle. The Wolbachia distribution differed between
the fly-Wolbachia pairings, and Wolbachia was not detected in the
tissues of some fly lines (Table 1; see also Fig. S1 to S5 in the
supplemental material). In the nonprotective N7NO flies, which
have previously been shown to contain the lowest Wolbachia den-
sity of the flies studied (36), wNO was not identified by fluores-
cence microscopy in the fat body or muscle of the individual
N7NO flies used in this study (Fig. S5). Wolbachia was observed in
40% of gut tissue and 20% of Malpighian tubules in the N7NO
individuals studied (n � 5), indicating that variation in the distri-
bution of detectable Wolbachia exists between individuals. Varia-
tion between individuals was also observed in DSR flies, in which
Wolbachia was identified in the fat body of only 20% of the indi-
viduals studied (n � 5). Despite this, Wolbachia was consistently
observed in the head and thoracic ganglion of N7NO flies and in
the head, gut, thoracic ganglion, Malpighian tubules, and muscle
of DSR flies. Wolbachia was consistently identified in each targeted
tissue of the CO, Me29, and DSH flies in this study but was not
homogenously distributed through different tissue types (Table 1
and Fig. S1 to S3).

Although Wolbachia distribution was not ubiquitous across
the five fly-Wolbachia combinations, the presence or absence of
Wolbachia from a particular tissue did not correlate with the abil-
ity to mediate antiviral protection (Table 1). This was evident as
Wolbachia distribution was observed within the same tissues in
two protective (CO-wAu and Me29-wMel) and one nonprotec-
tive (DSH-wHa) fly-Wolbachia pairing. In these fly lines, Wolba-
chia was consistently identified in each of the tissues (the head,
gut, Malpighian tubules, thoracic ganglion, fat body, and muscle)
of each individual in the study (Table 1). This suggests that the
presence or absence of Wolbachia in fly tissues is not sufficient to
mediate antiviral protection.

Wolbachia density in fly tissues. Although Wolbachia tissue
distribution did not correlate with antiviral protection, a differ-

TABLE 1 Summary of Wolbachia distribution within fly tissues, across
fly-Wolbachia combinations that do or do not mediate antiviral
protection

Tissue

% of flies in which Wolbachia was detected for indicated fly-
Wolbachia combinationa

Protective Nonprotective

CO-wAu Me29-wMel DSR-wRi DSH-wHa N7NO-wNo

Head 100 (4) 100 (5) 100 (6) 100 (5) 100 (5)
Gut 100 (4) 100 (6) 100 (6) 100 (5) 40 (5)
Malpighian

tubules
100 (4) 100 (5) 100 (6) 100 (5) 20 (5)

Thoracic ganglia 100 (4) 100 (4) 100 (5) 100 (5) 100 (5)
Fat body 100 (4) 100 (6) 20 (5) 100 (5) 0 (5)
Muscle 100 (4) 100 (5) 100 (5) 100 (5) 0 (5)
a If all individual flies were observed to contain Wolbachia within the tissue of interest, a
score of 100% was recorded. Where only some individual flies contained Wolbachia
within the tissue of interest, the percentage of flies that contained Wolbachia was
recorded. Numbers in parentheses indicate how many individual flies were observed.
Percentages do not reflect the Wolbachia quantity observed within tissues.
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ence in intensity of fluorescence between fly lines was observed.
Quantitative PCR was used to determine Wolbachia density in the
head, gut, Malpighian tubules, testes, thoracic ganglion, accessory
glands, fat body, and muscle dissected from protective and non-
protective fly lines. A correlation was identified between the
Wolbachia density and the ability to mediate antiviral protection
in three of the tissues studied.

The tissue Wolbachia density across the five strains indicated
that Wolbachia tropism differs between the fly-Wolbachia pairings
(Fig. 1). For example, in the tissues of CO flies, the greatest mean
abundance of Wolbachia (wAu) was identified in the fat tissue,
followed by the Malpighian tubules, muscle, and testes, while
lower levels of wAu were identified in other tissues. By compari-
son, DSR contained the most Wolbachia organisms (wRi) in the
testes, and similar amounts of wRi organisms were found in the
muscle, fat body, Malpighian tubules, thoracic ganglia, and acces-
sory glands, with lower abundances observed in the remaining
tissues. The trend of Wolbachia abundance that is seen in whole
flies (with highest density in CO, then Me29, DSR, and DSH, and
the lowest density in N7NO) was reflected in the head, gut, Mal-
pighian tubules, testes, and muscle, but not in the thoracic ganglia,
accessory glands, or fat bodies (Fig. 1).

The Wolbachia density in tissues across the five fly-Wolbachia
pairings was correlated with the ability of the strains to mediate
antiviral protection. Using a fit model of analysis, with protection
as a fixed variable and fly strain with protection as a nested vari-
able, a statistically significant correlation was identified between
the Wolbachia density and the ability of the strain to mediate an-
tiviral protection in the head (P � 0.0052), gut (P � 0.0001), and
Malpighian tubules (P � 0.0001). Of these, the Malpighian tu-
bules appeared to have the largest biological difference between
the abundance of Wolbachia organisms in strains that do and do
not protect, followed by the gut and then the head. Although the
testes and the thoracic ganglia (P � 0.043 and 0.012) could have
been interpreted as significant if a less stringent test was used, the
Wolbachia abundance varied greatly in each of these tissues. High
biological variations were also observed in the tissues of some, but
not all, fly lines. For example, there was high variation in the ab-
solute Wolbachia abundance within the testes of CO flies but not
within the testes of N7NO flies. When flies are challenged with
DCV, the resulting response to viral challenge is very robust, with
little variation between individuals. This suggests that tissues
which exhibit high variability of Wolbachia tropism are not likely
to be relevant in Wolbachia-mediated antiviral protection. Like-
wise, high levels of variation in Wolbachia abundance were seen in
tissues that did not correlate with the ability to mediate antiviral
protection (Fig. 1). The data from this study suggest that Wolba-
chia abundance within the head, gut, and Malpighian tubules may
be relevant for antiviral protection.

Reduction of wAu density in CO flies leads to loss of antiviral
protection. When CO flies containing the protective wAu strain
were treated with increasing doses of tetracycline, the Wolbachia
density in individual flies was decreased in a dose-dependent
manner (nonlinear regression, R2 � 0.8525, correlation, P �
0.0014) (Fig. 2A). Results were consistent between biological rep-
licates of three fly cohorts, and little variation was observed be-
tween individual flies. This indicated that Wolbachia could be re-
producibly decreased in individual flies. The unaltered density of
Wolbachia was also determined in all of the protective (CO-wAu,
Me29-wMel, DSR-wRi) and nonprotective (DSH-wHa and

N7NO-wNo) fly-Wolbachia combinations using qPCR. Wolba-
chia was most abundant in CO, followed by Me29, DSR, DSH, and
then N7NO (Fig. 2B).

To determine if the abundance of Wolbachia in whole flies was
an important factor in antiviral protection, CO flies containing
altered levels of the protective wAu were challenged with mortal-
ity-inducing DCV (Fig. 3). Wolbachia-free CO flies were used as
Wolbachia-negative controls and injected with DCV or PBS. Flies

FIG 1 Relative Wolbachia abundance in tissues isolated from D. simulans flies.
The graphs show the Wolbachia abundance relative to a host reference gene
(Actin 5C) in dissected tissues as determined by qPCR. Tissues are the head
(A), gut (B), Malpighian tubules (C), testes (D), thoracic ganglion (E), acces-
sory glands (F), fat body (G), and muscle (H). Dissected tissues were pooled
from five individual flies, and the experiment was repeated across three inde-
pendent fly cohorts. The error bars represent standard errors. P values were
interpreted as significant when �0.01. A correlation between the Wolbachia
density within a tissue and the mediation of antiviral protection was observed
with the head (P � 0.0052), gut (P � 0.0001), and Malpighian tubules (P �
0.0001) but not in the testes (P � 0.0430), thoracic ganglia (P � 0.0117),
accessory glands (P � 0.2279), fat body (P � 0.1005), or muscle (P � 0.1055).
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that contained Wolbachia were treated with tetracycline to obtain
mean densities of wAu that were equivalent to 3, 5, 6, 30, 39, and
48 copies of wsp relative to the host reference gene, Actin 5C.
Wolbachia-containing control flies that were not treated with tet-
racycline had a Wolbachia density that was equivalent to 118 cop-
ies of wsp relative to host Actin 5C. Wolbachia-free positive-DCV
control flies injected with virus reached 100% mortality 7 days
following DCV challenge, which was similar across all biological
replicates. Wolbachia-containing flies not treated with tetracycline
had less than 40% mortality across the duration of the experiment,
similar to the virus-free PBS-injected control flies, and similar
survival rates were observed with CO-wAu flies that contained 48
and 39 relative units of Wolbachia. A moderate delay in virus-
induced mortality was observed in CO-wAu flies that contained
30 relative units of Wolbachia. CO-wAu flies with 3 to 6 relative
units of Wolbachia were not protected against viral challenge, as
virus-induced mortality was similar to that of Wolbachia-free CO
flies. Thus, when the abundance of the protective Wolbachia strain
wAu was decreased to levels seen in nonprotective fly lines, Wolba-
chia-mediated antiviral protection was lost.

To determine that tetracycline treatment did not alter viral
susceptibility, Wolbachia-free flies treated with 300 �g/ml, 27 �g/
ml, 3 �g/ml, or no tetracycline were challenged with DCV. Small
differences in mortality were observed between Wolbachia-free
DCV-injected flies in different treatments. As the onset of mortal-
ity did not reflect the concentration of tetracycline doses, and the
magnitude of the differences was small and not repeatable across
fly cohorts, we concluded that tetracycline treatment does not
alter the survival of flies under the conditions of the viral challenge
assay. The survival data show that the ability of Wolbachia to me-
diate antiviral protection was lost when the level of the protective
Wolbachia strain wAu was decreased (Fig. 3).

DISCUSSION

Wolbachia-mediated antiviral protection in insects is an intrigu-
ing phenomenon, the mechanism of which is not yet understood.
The data from this study show that reducing the density of a pro-
tective Wolbachia strain results in the loss of Wolbachia-mediated

antiviral protection. The Wolbachia strain wAu normally occurs at
a high density within the host insect and protects flies against
virus-induced mortality (36). When the density of wAu in indi-
vidual CO flies is reduced by antibiotic treatment, the degree of
Wolbachia-mediated antiviral protection is also reduced or lost
completely. This suggests that the Wolbachia density in the host is
an important factor in the mediation of antiviral protection.

Using five fly-Wolbachia combinations, it has previously been
shown that there is a correlation between Wolbachia density in
whole flies and antiviral protection (36). However, the five Wolba-
chia strains are genetically diverse and associated with different D.
simulans hosts. Thus, in this study, the density of the abundant
wAu strain was decreased to achieve abundances similar to those
of other protective or nonprotective Wolbachia strains (36).
Wolbachia abundance in host insects varies with host-Wolbachia
combination, larval crowding conditions, environmental condi-
tions, and the age of the insect host (3, 6, 8, 9, 18, 46). Determining
Wolbachia density under the same conditions as standard viral
challenge assays confirms that observations of density correspond
with levels of antiviral protection. Interestingly, when the abun-
dance of wAu organisms was decreased to an abundance similar to
that of the protective wMel in Me29 and wRi in DSR, wAu con-
tinued to mediate antiviral protection. When wAu was decreased
to an abundance that was similar to those of the nonprotective
DSH-wHa and N7NO-wNo combinations, the mortality rate of
flies was similar to that of Wolbachia-free CO flies. Although the
influence of other factors, including phylogenetic differences in
strains, remains to be determined, the data from this study suggest
that the density of organisms of a Wolbachia strain may be impor-
tant in the ability of the strain to mediate antiviral protection.

Although more work is needed to determine how Wolbachia
induces the mechanism of antiviral protection, the data from this
paper and from the existing literature suggest that a density-re-
lated mechanism of antiviral protection is involved (10, 34, 36).
Frentiu et al. (10) have shown increased dengue virus inhibition in
cell lines that contain greater Wolbachia abundances than in those
with lower Wolbachia abundances, which suggests that Wolbachia
density is relevant to viral infection in cell culture. In the whole

FIG 2 Wolbachia abundance in whole flies. Relative Wolbachia abundance as determined by qPCR is shown for a high-density, protective Wolbachia strain
(wAu) following treatment with different concentrations of tetracycline (A). Treatment with tetracycline was used to decrease Wolbachia abundance in flies and
is compiled from three fly cohorts (n � 10 to 12). Error bars show standard errors. Tetracycline treatment decreases Wolbachia abundance in a concentration-
dependent manner (nonlinear regression, R2 � 0.8525; correlation, P � 0.0014). (B) Wolbachia in three protective (CO-wAu, Me29-wMel, and DSR-wRi) and
two nonprotective (DSH-wHa and N7NO-wNo) fly line-Wolbachia strain pairings. Male 4- to 7-day-old flies were pooled in groups of five and repeated across
three individual cohorts. The density of Wolbachia within fly lines correlates with the ability to mediate antiviral protection (P � 0.0005). Error bars show
standard errors.
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organism, there is likely to be greater variation in both the pres-
ence and absence of Wolbachia within cell types and the number of
Wolbachia organisms within particular cells. Despite this varia-
tion, the data indicate that the Wolbachia density is still important
for antiviral protection at a whole-organism level. Moreira et al.
(34) have shown in mosquitoes that when Wolbachia exhibits a
tropism for a particular cell type such as cells in the fat body,
dengue virus is limited in the Wolbachia-dense tissue. In addition,
there is a correlation between Wolbachia density across five D.
simulans lines and antiviral protection (36). Taken together with
the data from the current study, this suggests that the density of
Wolbachia in whole flies is important, possibly as it reflects the
Wolbachia density within different host tissue types.

The Wolbachia distribution of across a variety of somatic tis-
sues in this study shows that the Wolbachia strains used here are
capable of infecting a wide variety of specialized tissue types.
Other studies have identified Wolbachia within either numerous

or limited somatic tissues and have reported that tissue distribu-
tion varies between the host-Wolbachia combinations studied,
and that Wolbachia distribution and density can change when the
bacterium is introduced into a novel host (2, 4, 5, 8, 28, 30). As in
this study, Dobson et al. (8) have investigated the qualitative dis-
tribution of wRi in DSR and identified Wolbachia in the head,
midgut, Malpighian tubules, ovaries, testes, and muscle using
Western blotting against the Wsp protein. Those findings agreed
with the data from this study, which identified Wolbachia distri-
bution using Wolbachia-specific oligonucleotides. As this study
identified Wolbachia in the same tissues in individuals of two pro-
tective (CO and Me29) and one nonprotective (DSH) fly line, the
simple presence or absence of detectable Wolbachia within the
tissues studied is not sufficient to mediate antiviral protection.
Interestingly, the protective Wolbachia strain wRi was only iden-
tified in the fat body of one individual (n � 5) and at a density
similar to that in nonprotective pairing DSH-wHa. This indicates
that the presence of Wolbachia in the fat body is unlikely to be
required for the mediation of antiviral protection. In mosquitoes,
Moreira et al. (34) found that high levels of wMelPop-CLA in the
fat body greatly reduced dengue virus within this tissue. However,
wMelPop and wMelPop-CLA occur at a high abundance within
many tissues in comparison to other strains, and it is not known if
the Wolbachia abundance in this or other tissues is correlated with
protection (33, 34).

As Wolbachia density in whole flies is important for antiviral
protection, this study investigated the Wolbachia density within
tissues dissected from the five protective or nonprotective host-
Wolbachia combinations. Using qPCR, low Wolbachia levels were
detected in tissues where Wolbachia was not observed using the
FISH technique. This is most likely due to differences in sensitivity
of the assays and the use of pooled rather than individual samples.
The Wolbachia density in the head, gut, and Malpighian tubules
correlated with the ability of the strains to mediate antiviral pro-
tection, suggesting that the Wolbachia density at these sites may
play a tissue specific role in Wolbachia-mediated antiviral protec-
tion. Although tissue tropism varied between fly-Wolbachia pair-
ings, it was interesting to note that these three tissues did not
contain the highest relative Wolbachia abundances within individ-
ual flies. In fact, across each of the fly lines, the relative Wolbachia
abundance observed in the head and gut was less than the relative
abundance observed in several other tissues.

Specific tissues may have functions that are involved in the
response of the host to viral challenge which are altered by high
Wolbachia densities. The gut forms part of the epithelial barrier
and therefore is one of the main sites of microbe entry and initial
infection. The Malpighian tubules are involved in the regulation
of ions and the excretion of waste, much like the mammalian
kidney (reviewed in reference 1). Malpighian tubules have been
shown to upregulate the production of nitric oxide synthase and
potentially regulate the immune response (reviewed in reference
1). It seems plausible that an abundance of Wolbachia organisms
in these tissues may alter the host response so that flies with
Wolbachia are better able to defend against or survive viral chal-
lenge. Furthermore, although an altered response could induce a
more effective antiviral response, potentially decreasing the pro-
duction of self-damaging host responses could also result in an
overall improved pathology outcome for the host. Further re-
search is needed to determine what role these tissues may play in
the Wolbachia-host-virus interaction or following viral challenge.

FIG 3 Survival of CO flies containing altered abundances of wAu following
viral challenge. The abundant, protective Wolbachia strain wAu was decreased
in individual CO flies by antibiotic treatment, and then 4- to 7-day-old flies
were injected with PBS (negative control) (A) or DCV (B). The graphs show
the survival of CO flies which have been treated with tetracycline to decrease
the protective Wolbachia strain wAu to densities equivalent to 3, 5, 6, 30, 39,
and 48 copies of Wolbachia per host genome (wol) or mock treated (118 wol).
Survival of flies is shown from 3 replicates of 15 flies for DCV-injected flies or
2 replicates of 15 flies for PBS controls. CO flies that had previously been
cleared of Wolbachia (0 wol) were included as Wolbachia-negative controls.
Data shown are representative of independent survival assays, where compa-
rable densities of wAu resulted in similar survival outcomes.
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Wolbachia is emerging as a useful biocontrol agent to decrease
transmission of insect-borne viruses such as dengue virus (7, 13,
14, 19, 23, 34, 38, 42, 43). A better understanding of Wolbachia
characteristics required for antiviral protection could be useful for
predicting Wolbachia strains that are likely to mediate strong an-
tiviral protection, either in mosquitoes or in other pathogen-car-
rying insect species of medical or agricultural significance. The
data from this study provide strong evidence that Wolbachia den-
sity is an important factor required for antiviral protection, al-
though further characterization using different host-Wolbachia
combinations, Wolbachia genetic backgrounds, and viral chal-
lenge systems should also be investigated. This study has also
shown that Wolbachia density within specific tissues (the head,
gut, and Malpighian tubules) correlates with the ability to mediate
antiviral protection across five diverse Wolbachia strains within D.
simulans.
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