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Molecular dynamics simulations have to be sufficiently long to draw reliable conclusions. However, no method exists to prove that
a simulation has converged. We suggest the method of “lagged RMSD-analysis” as a tool to judge if an MD simulation has not yet
run long enough. The analysis is based on RMSD values between pairs of configurations separated by variable time intervals Δt.
Unless RMSD(Δt) has reached a stationary shape, the simulation has not yet converged.

1. Introduction

Mathematical modeling and computational biology have
proved extremely successful in the efforts to understand the
mechanisms of immunologic reactions, for example, in mod-
eling the T-cell proliferation dynamics following hepatitis C,
HIV infection [1], or the growth of an immunogenic tumor
[2]. Methods of statistical mechanics may successfully be
applied in order to quantitatively understand the immune
system [3, 4], and different modeling approaches are ade-
quate for acquired immunity, as surveyed in a seminal paper
by Perelson and Weisbush [5]. Modeling and simulation
can be performed on different levels, starting at the top
level with agent-based models [6, 7] for the cooperation
of numerous large biomolecules in the formation of the
immune synapse [8–11] down to more detailed models of
antigen binding [12], recognition, and signaling [13–20].
T-cell proliferation modulated by interleukin 2 has been
simulated [21]. Applications aiming to predict the reaction
to epitopes [22] improved vaccine design [23], vaccination

against tumors [24], and for improved patient care have
been devised [25–27], also in personalized medicine [28].
In particular, the mechanisms how T-cell receptors (TCRs)
detect antigen peptides (p) presented by major histocom-
patibility complex (MHC) molecules can be investigated
by molecular dynamics (MD) on a molecular or even
atomic level [29–32]. However, TCRpMHC complexes are
huge protein complexes, which have to be studied in water,
which adds an even larger number of atoms to model and
simulate. For these reasons, sufficiently long simulations
are mandatory in order to obtain realistic results. This is
even more so since molecular recognition phenomena may
operate on rather long timescales as compared to the length
of usual MD trajectories. Hence, efforts to assess sampling
quality are mandatory in such simulations.

Given the trajectory of an actual MD simulation, it is
clear from first principles that no formal check whatsoever
can prove that complete sampling has been achieved. If
parts of the phase space have not been visited yet, there
is no possibility that this becomes evident from looking
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Figure 1: RMSD as a function of time for trajectory 1 (10 ns).
Black curve: RMSD between first configuration and all successive
ones. Blue curve: for a given configuration (t j), RMSD to each of
the other configurations of the same trajectory was computed and
averaged, yielding RMSD(t j). That value of t j for which RMSD(t j)
is maximum is then adopted as a reference (t1) to plot RMSD
values of the whole trajectory. Red curve: as blue curve, but for
minimum RMSD(t j). Note that the RMSD between the reference
configuration and itself is zero by definition.

only at data from those other parts that have been visited.
Zhang et al. [33] proposed a formal approach to decompose
the phase space into Voronoi polyhedra [34, 35].

At any rate, formal checks of sampling quality can
only draw on simulation data already produced and at
the most detect possible shortcomings of those trajecto-
ries. The situation is analogous to tests for the random-
ness of pseudorandom-number generators [36]. One can
never prove randomness as such. It is only possible to
detect specific deviations from randomness, such as serial
correlations—and any such detection works only with a
preselected error rate.

Likewise, MD trajectories may be investigated for specific
markers of nonrandomness, the most important type being
trends of energy and molecular deformations. This work
focuses on the latter, deviations in shape being quantified via
the root mean square deviation (RMSD) [37] at time t2 with
respect to a given reference structure at time t1:

RMSD(t1, t2) =
⎡
⎣ 1
N

N∑

i=1

‖xi(t2)− xi(t1)‖2

⎤
⎦

1/2

, (1)

where xi(t) is the position of atom i at time t and N is the
total number of atoms in the molecule.

Often, the first frame of a trajectory (t1) is used as a
reference, and values of RMSD(t1, t2) are computed for all
successive (t2 > t1) frames; see the black curve in Figure 1.
RMSD monitored this way shows large rapid fluctuations
on top of long-term variations and jumps. Generally, it is
difficult to identify such long-term variations, which may

relate to functional modes. A recent study [38] reflected the
insufficiency of visual RMSD inspection alone.

Extensive work has been published on using the RMSD
for the characterization of structural changes, drifts, and
trends; see [33] and the references cited therein. Grossfield
and Zuckerman [39] gives a seminal conceptual discussion
of ergodicity, absolute and relative convergence and proposes
checks for overall sampling quality. Block averaging was
proposed [40] to reduce short-term fluctuations and to
obtain more reliable indicators of long-term trends. How-
ever, averaging RMSD over all configurations within a block
involves many different time intervals Δt = t j − ti, thus
reducing the specificity of the resulting average for one
particular time interval.

For this reason we consider the RMSD between pairs
of configurations separated by a constant time lag Δt as
described in Section 2.2.1. In this way we obtain more stable
estimates (averages) which are nevertheless perfectly specific
for a given time interval Δt.

2. Materials and Methods

2.1. Molecular Dynamics Simulations

2.1.1. Employed Structures. We applied the proposed metho-
dology to a total of 6 MD simulations. For this purpose
we used 2 different TCRpMHC complexes: an immunogenic
wild-type peptide bound between TCR/MHC and the same
TCR/MHC with a less immunogenic mutant peptide. We
employed the crystal structure of the LC13 TCR bound
to HLA-B∗08 : 01 and the Epstein Barr Virus peptide
FLRGRAYGL. This structure is available from the Protein
Data Bank (PDB) [41] via PDB accession code 1mi5 [42]
and is referred to as wild-type. For the mutant complex we
substituted the side chain of tyrosine at position 7 of the
peptide to alanine (Y7A). This was performed using SCWRL
[43] since we could previously show that this tool is most
appropriate for mutations in pMHC complexes [44, 45].

The LC13 TCR in complex with the FLRGRAYGL peptide
and HLA-B∗08 : 01 is an ideal test set for molecular dynamics
simulations since this complex was crystallized and described
in its parts and as a whole. Initially Kjer-Nielsen et al.
crystallized the TCR [46] and the MHC [47] separately while
they published a structure of the whole TCRpMHC system
[42] afterwards. These available data give substantial insight
into the LC13/EBV/HLA-B∗08 : 01 system and led to the
choice of our wild-type and mutated system for this study.
The whole system is illustrated in Figure 2.

2.1.2. Molecular Dynamics Simulation Protocol. The wild-
type and the mutant complex were simulated in independent
runs for 10, 50, and 200 ns yielding a total of 6 simulations
(see Table 1). The following protocol for the simulations was
employed. First, we minimized the energy of the systems
using a steepest descent method. Then we immersed the
complexes in explicit SPC [48] artificial water baths allowing
for a minimal distance of 2 nm between the box boundary
and the protein. Next, we warmed the complex up to
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Table 1: Molecular dynamics simulation runs.

tmax (ns) Δtconfig (ps) Peptide n

Trajectory 1 10 3 FLRGRAYGL 3500

Trajectory 2 50 50 FLRGRAYGL 1000

Trajectory 3 200 50 FLRGRAYGL 4322

Trajectory 4 10 3 FLRGRAAGL 3500

Trajectory 5 50 50 FLRGRAAGL 1000

Trajectory 6 200 50 FLRGRAAGL 4322

Figure 2: Illustration of the LC13 TCR in complex with HLA-
B∗08 : 01. Blue: MHC, red: β2-microglobulin, gray: peptide, orange:
TCR alpha-chain, yellow: TCR beta-chain.

310 K using position restraints. Finally, we carried out the
simulations using GROMACS 4 [49] and the GROMOS96
force field [50]. All further parameters were set in accordance
with [51].

2.1.3. RMSD Calculation. After the simulations were fin-
ished, we calculated the RMSD values for each configuration
in a given trajectory with respect to every other configuration
of the same trajectory using the standard g rms function of
GROMACS. This yields an n × n matrix of RMSD values
where n is the number of configurations in the trajectory.

2.2. RMSD between Configurations of Trajectories

2.2.1. Averaging and Modeling of Lagged RMSD. Given one
configuration x(ti) of an MD simulation as a reference, the
RMSD to some other configuration x (t j) may be considered
a “distance measure” along the time interval Δt = t j− ti. IfΔt
is short enough, it may be shifted along the whole trajectory
and RMSD values be sampled. The average RMSD(Δt)
is characteristic for the difference between configurations
separated by Δt in the particular simulation run considered.

Small values of Δt characterize configurations close
to each other in time. Increasing Δt means to compare
configurations more distant to each other in time, which

are—intuitively speaking—“less related” to each other. This
fact should be reflected in RMSD(Δt) for increasing values of
Δt.

As Δt increases, dependences should diminish and
approach the level of “unrelated” or “independent” config-
urations. In order to quantify such a saturation trend, we
applied the Hill equation [52]:

RMSD(Δt) = a · Δtγ
ty + Δtγ

, (2)

where the parameter a reflects the maximum value to which
the function is asymptotic (“plateau value” RMSD(Δt →
∞)), τ is the time lag Δt for which RMSD(Δt) = a/2 (i.e.,
the value of Δt for which half-saturation is achieved), and
the Hill coefficient γ is a parameter that determines the shape,
that is, the level of sigmoidicity, of the model functions. The
parameters were estimated by fitting the Hill equation (2)
to the measured values of RMSD(Δt) using the nlinfit fun-
ction as implemented in the Statistics Toolbox of MATLAB
(Mathworks, Natick, MA, USA). The maximum time lag Δt
was chosen half the total simulation time of the respective
trajectory.

2.2.2. Assessing the Influence of Initial Conditions. The initial
phase t ≤ toffset of each MD simulation strongly depends
on the starting configuration, usually a crystal structure,
which can by no means be representative for a configuration
obtained from a trajectory. This is even true after energy
minimization and warming up. Hence, if the initial phase of
an MD trajectory is included in RMSD(Δt), a bias will result.
This is not only true for individual values of RMSD(Δt) but
also for the parameters estimated from the fit. In particular,
the limiting plateau value a = RMSD(Δt = ∞) will also be
biased and depend on toffset: in fact, a = a(toffset). We modeled
this dependence as

a(toffset) = a0 + β · exp(−λ · toffset), (3)

where a0 is the limiting value, a0 = a(toffset = ∞), and β
and λ are scaling parameters. Note that a0 is an extrapolated
estimate for RMSD(Δt = ∞) and toffset = ∞, that is,
the estimate for an RMSD between two totally unrelated
configurations of a trajectory, independent of initial phase
effects.

Values for toffset were selected in the interval 0 ≤ toffset ≤
tmax/2, where tmax denotes the total simulation time of the
respective trajectory.

3. Results and Discussion

3.1. Convergence of RMSD with Increasing Time Lag. Each
panel of Figure 3 shows a representative plot (for reasons
of conciseness we display results in the figures only for
trajectory 1–3) of mean RMSD values (red circles, y-axis)
obtained between configurations of one MD trajectory (see
figure caption and Table 1), separated by respective time lags
Δt (x-axis). As the time-lag between configurations increases,
mean RMSD approaches a plateau.



4 Computational and Mathematical Methods in Medicine

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

ea
n

 R
M

SD
 (

n
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time-lag Δt (ns)

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n
 R

M
SD

 (
n

m
)

0 5 10 15 20 25

Time-lag Δt (ns)

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n
 R

M
SD

 (
n

m
)

0 10 20 30 40 50 60 70 9080 100

Time-lag Δt (ns)

(c)

Figure 3: Dependence of mean RMSD on the time lag Δt for toffset = 0. (a) 10 ns trajectory 1, (b) 50 ns trajectory 2, (c) 200 ns trajectory 3;
see Table 1. Note that due to the different total durations of the simulations, the maximum time lag considered (equal to half the simulation
length) varies. Vertical lines indicate the time interval τ, for which half-saturation is achieved; see also (2). The horizontal line indicates the
estimated plateau of the mean RMSD, corresponding to the parameter a in (2).

Fits of the model (2) to the values of RMSD(Δt) are
displayed as solid lines. Parameters obtained from the fits
can readily be interpreted as follows. The estimate for
parameter a in (2) represents the limiting value of RMSD(Δt)
and is indicated by the horizontal line. The estimate of
the parameter τ corresponds to a “characteristic” (“half-
saturation”) time interval Δt and is shown as a vertical line
in the plots.

Note that the initial phase of each trajectory strongly
determines the shape of RMSD(Δt) which should be
properly represented by the fitted model. In contrast, the
remainder of each trajectory is characteristic for the long-
term trend of RMSD(Δt). Although it shows much smaller
changes in RMSD, the remainder contains naturally by far
more data points as compared to the initial phase. To achieve
an appropriate balance, we increased the lag length in small
steps during an initial phase (cf. the initially dense succession

of red circles in Figure 3) and in larger steps (more loose
succession of circles) later on. This procedure puts increased
weight on the data points for the initial phase.

3.2. Influence of the Offset. Applying different temporal off-
sets toffset before starting to analyze the respective trajectories
changes the dependence of RMSD(Δt) as a function of the
time lag Δt; see the typical results displayed in Figure 4.

The larger the offset toffset from the start configuration,
the smaller the time lag Δt necessary for the system to
level off to its RMSD plateau. The exemplary display of
the dependence of fitted parameters on toffset, as shown
previously, is systematically analyzed as follows; see Figure 5.
With increasing toffset both the plateau value a and the
half-saturation parameter t decrease, whereas the shape
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Figure 4: Dependence of mean RMSD on toffset for trajectory 1 (10 ns). (a): toffset = 0 ps, (b): toffset = 200 ps. Vertical lines indicate the time lag
τ, for which half-saturation is achieved; see also (2). The horizontal line indicates the estimated plateau of the mean RMSD, corresponding
to the parameter a in (2).

parameter γ is fairly constant and almost independent of
toffset.

In a next step the systematic dependence of the extrap-
olated plateau on toffset was fitted via (3); see Figure 6. The
monoexponential decay model of (3) represents the most
parsimonious choice, given the shape of the simulation
results as displayed in Figure 6.

Figures 6(a)–6(c) illustrates the influence of the offset
toffset from the start configuration on the respective RMSD
plateau values as estimated from the parameter a of the
model (2). RMSD plateau values tend to decrease with
increasing toffset.

4. Conclusions

For molecular dynamics simulations of proteins, questions of
“convergence” and sampling are important issues if sensible
conclusions are to be drawn from such simulations. Since
convergence of a particular simulation (in the sense that
statistical sampling of the phase space is complete enough
with respect to the specific phenomena studied) cannot be
judged in advance [39], various techniques have been advised
to demonstrate that a simulation has not yet converged
[37, 53–56].

Here, we propose a method to assess if a simulation
has not yet run long enough, based on RMSD analysis
of successive configurations of a given MD trajectory,
separated by time lags Δt of varying length (up to half
the total simulation time). As long as a simulation has not
yet converged, the shape of the function RMSD(Δt) still
considerably depends on toffset, that is, the time point along
the trajectory, where the analysis interval Δt starts. As toffset is
large enough, the shape of RMSD(Δt) becomes stationary;
that is, in Figure 4 the shape of the mean RMSD curve is
different in the left and right panel, but further increasing

toffset would not further change its overall appearance. This is
also reflected in the respective model parameters, converging
to constant values for large values of toffset; see Figure 5.

To describe this Δt dependence of the mean RMSD
values, RMSD(Δt), for a given toffset, the Hill function was
used. This function type is frequently applied in enzyme
kinetics to model saturation phenomena together with the
number of reactive sites on an enzyme. In the present
work, the Hill function proved flexible enough to model
the functional form of RMSD(Δt) and to identify the
respective parameters (plateau value, shape parameter, and
half-saturation time). Contrary to a simple exponential
saturation function, the Hill function is able to model
different levels of sigmoidicity.

In order to quantify the influence of the initial conditions
and the equilibration phase on RMSD(Δt), we systematically
increased the time toffset before starting to analyze each
trajectory. With the exception of the shape parameter γ all the
other parameters of the Hill function describing RMSD(Δt)
exhibit a distinctive dependence on the initial phase of the
trajectories and thus indicate that biased estimates would
result if the initial phase would be included in the analysis.

As pointed out in the introduction, the method proposed
here combines the smoothing effect of averaging, while
retaining the specificity of a precise time interval between
configurations being compared. For example, the height
of the extrapolated RMSD plateau a0 (see Figure 6) may
be interpreted as “configurational distance” between two
arbitrarily selected, totally unrelated configurations of the
particular part of phase space currently visited. If one
chooses an arbitrary configuration out of it as the reference,
all others visited by the trajectory will have an average
distance a0. In contrast, Figure 1 shows two limiting cases
of reference configurations: (i) the configuration with maxi-
mum average distance (i.e., RMSD) to all others (blue curve),
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Figure 5: Increasing toffset changes fitted parameters of RMSD(Δt), (2). (a) 10 ns trajectory, (b) 50 ns trajectory, (c) 200 ns trajectory; see
Table 1.

which represents the “maximum outlier” ever seen in this
trajectory and (ii) the configuration with minimum average
distance (i.e., RMSD) to all others (red curve), which is “most
central” within the trajectory.

Note that extrapolated plateau values are significantly
larger than the RMSD(Δt) actually reached in the trajec-
tories (see Figure 3). Only if we consider the extrapolated
plateau as a function of toffset, we obtain realistic (i.e.,
lower) estimates (see Figure 6) to aim at during actual
simulations. In this sense, we may attribute the proposed
fitting procedure some forecast capability regarding the level
of RMSD to be finally expected if the trajectory were carried
on. This extrapolated mean RMSD corresponds to pairs
of configurations separated by time intervals large enough
to consider such configurations approximately uncorrelated,

independent representatives of the configuration space of the
respective molecule.

Likewise, the “half-saturation time” τ obtained from the
fit decreases with increasing toffset. Thus, taking configura-
tions with large enough toffset as a reference, it takes only
a short time to get close to the RMSD plateau a0. In each
panel of Figure 5, the parameter τ approaches an almost
constant level at about half the maximum toffset considered
(i.e., 25% of the total simulation time). This might suggest
that—regardless of the total simulation length—the fraction
of usable (independent) configurations remains the same
(final 75% of the trajectory). As the length of the simulation
run increases, the criterion derived from the run itself gets
increasingly more stringent. From the 200 ns run the first
50 ns should be discarded, which is more than 5 times the
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Figure 6: Fit and extrapolation of RMSD plateau values for increasing toffset. (a) 10 ns trajectory 1, (b) 50 ns trajectory 2, (c) 200 ns trajectory
3; see Table 1. Red circles represent plateau values a(toffset) the error bars denote their asymptotic standard errors. The solid blue curve shows
a nonlinear least-squares fit of (3) to the plateau values a(toffset). From the latter fit the limiting plateau value a0 = a(toffset = ∞) was extracted
and is shown as a solid horizontal line together with its asymptotic standard error as obtained from the fit of (3).

total length of the 10 ns trajectory. If using the latter as a basis
of estimate, however, the last 7.5 ns seem to be trustable.

Although the analysis reported in the present work is
specific to TCRpMHC complexes, we expect the method of
lagged RMSD analysis to be applicable to similar molecular
systems, such as membrane proteins comparable in size
and structure. The approach presented here is designed to
assess the degree of convergence of MD simulations and
hence the statistical quality of conclusions drawn from such
simulations.
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