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Abstract
In macromolecular X-ray crystallography, refinement R values measure the agreement between
observed and calculated data. Analogously, Rmerge values reporting on the agreement between
multiple measurements of a given reflection are used to assess data quality. We here show that
despite their widespread use, Rmerge values are poorly suited for determining the high resolution
limit, and that current standard protocols discard much useful data. We introduce a statistic that
estimates the correlation of an observed dataset with the underlying (not measurable) true signal;
this quantity, CC*, provides a single statistically-valid guide for deciding which data are useful.
CC* also can be used to assess model and data quality on the same scale and this reveals when
data quality is limiting model improvement.

Accurately determined protein structures provide insight into how biology functions at the
molecular level and also guide the development of new drugs and protein-based
nanomachines and technologies. The large majority of protein structures are determined by
X-ray crystallography, where measured diffraction data is used to derive a molecular model.
Surprisingly, despite decades of methodology development, the question of how to select the
resolution cutoff of a crystallographic dataset is still controversial and the link between the
quality of the data and the quality of the derived molecular model is poorly understood.
Here, we describe a statistical guide that allows assessment of the resolution limit that will
optimize model quality.

The measured data in X-ray crystallography are the intensities of reflections, and these yield
structure factor amplitudes each with unique h, k, l indices which define the lattice planes.
The standard indicator for assessing the agreement of a refined model with the data is the
crystallographic R value, defined as

(1)

with Fobs(hkl) and Fcalc(hkl) being the observed and calculated structure factor amplitudes,
respectively. R is 0.0 for perfect agreement with the data, and R is near 0.59 for a random
model (1) . Because R can be made arbitrarily low for models having sufficient parameters
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to overfit the data, Brünger (2) introduced Rfree as a cross-validated R based on a small
subset of reflections not used during refinement. The R for the larger “working” set of
reflections is then referred to as Rwork.

Crystallographic data quality is commonly assessed by an analogous indicator Rmerge
(originally [3] Rsym), which measures the spread of n independent measurements of the

intensity of a reflection, Ii(hkl), around their average, :

(2)

In 1997, it was discovered that because Ii(hkl) influence , the Rmerge definition must

be adjusted by a factor of  to give values that are independent of the multiplicity (4).
The multiplicity-corrected version, called Rmeas, reliably reports on the consistency of the
individual measurements. A further variant, Rpim (5), reports on the expected precision of

 and is lower by a factor of  factor compared to Rmeas. Because the strength of
diffraction decreases with resolution, a high-resolution cutoff is applied to discard data
considered so weak that their inclusion might degrade the quality of the resulting model.
Data are typically truncated at a resolution before the Rmerge (or Rmeas) value exceeds ~0.6 -

0.8 and before the empirical signal-to-noise ratio, , drops below ~2.0 (6) (Figure
S1). The uncertainty associated with these criteria is illustrated by a recent review that
concluded “an appropriate choice of resolution cutoff is difficult and sometimes seems to be
performed mainly to satisfy referees” (6).

That these criteria result in high resolution cutoffs that are too conservative is illustrated
here using an example dataset (EXP) collected for a cysteine-bound complex of cysteine
dioxygenase (CDO); the EXP data has about 15-fold weaker intensity than the data
originally used to determine the structure at 1.42 Å resolution (PDB 3ELN; Rwork/
Rfree=0.135/0.177) (7, 8). Standardized model refinements starting with a 1.5 Å resolution
unliganded CDO structure (PDB code 2B5H (9)) were carried out against the EXP data for a
series of high resolution cutoffs between 2.0 and 1.42 Å resolution (Table S1). As R value
comparisons are only meaningful if calculated at the same resolution, paired refinements
done with adjacent resolution limits were evaluated using Rwork and Rfree values calculated
at the poorer resolution limit. Improvement is indicated by drops in Rfree or increases in
Rwork at the same Rfree (meaning the model is less overfit). This analysis revealed that every
step of added data improved the resulting model (Figure 1). Consistent with this, difference
Fourier maps show a similar trend in signal versus resolution (Figure S2), and geometric
parameters of the resulting models improve with resolution (Table S2).

The proven value of the data out to 1.42 Å resolution contrasts strongly with the Rmeas and

 values at that resolution (> 4.0 and ~ 0.3, respectively; Figure 2), which are far
beyond the limits currently associated with useful data. Applying the typical standards
described above, this dataset would have been truncated at ~1.8 Å resolution, halving the
number of unique reflections in the dataset (Table S1) and yielding a worse model.
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It is striking to observe the different behavior at high resolution of the crystallographic
versus the data-quality R values, with the one remaining below 0.40 and the other diverging
toward infinity (Figure 2). Consideration of the Rmerge formula rationalizes this divergence,
as the denominator (the average net intensity) approaches zero at high resolution while the
numerator becomes dominated by background noise and is essentially constant. Thus,
despite their similar names and mathematical definitions, data-quality R values are not
comparable to R values from model refinement, and there is no valid basis for the
commonly applied criterion that data are not useful beyond a resolution where Rmeas (or

Rmerge or Rpim) rises above ~0.6. As suggested by Wang (10),  at a much lower
level than generally recommended could be used to define the cutoff, but this has the

problem that  values can be misestimated (6, 11).

With current standards not serving as reliable guides for selecting a high resolution cutoff,
we investigated the use of the Pearson correlation coefficient (CC) (12) as a parameter that
could potentially assess both data accuracy and the agreement of model and data on a
common scale. Pearson’s CC is already used in crystallography, in that a CC value of 0.3
between independent measurements of anomalous signals has become the recommended
criterion for selecting the high-resolution cutoff of the data to be used for defining the
locations of the anomalous scatterers (13). Following a procedure suggested earlier (4), we
divided the unmerged EXP data into two parts, each containing a random half of the
measurements of each unique reflection. Then, the CC was calculated between the average
intensities of each subset. This quantity, denoted CC1/2, is near 1.0 at low resolution and
drops to near 0.1 at high resolution (Figure 3). According to the Student’s t-test (12), the
CC1/2 of 0.09 for the ~2100 reflection pairs in the highest resolution bin is significantly
different from zero (P = 2*10−5).

This high significance occurs even though CC1/2 should be expected to underestimate the
information content of the data. This is because for weak data, CC1/2 measures the
correlation of one noisy dataset (the first half-dataset) with another noisy dataset (the other
half-dataset), whereas the true level of signal would be measured by what could be called
CCtrue, the correlation of the averaged dataset (less noisy due to the extra averaging) with
the noise-free true signal. Although the true signal would normally not be known, for the
EXP test case, the 3ELN data provides a reference that has much lower noise and should be
much closer to the underlying true data. The CC calculated between the EXP and 3ELN
datasets is indeed uniformly higher than CC1/2 (Figure 3), dropping only to 0.31 in the
highest resolution bin (Student’s t-test P = 10−64).

We next sought an analytical relationship between CC1/2 and CCtrue . Using only the
assumption that errors in the two half-datasets are random and, on average, of similar size
(see Supplementary Text), we derived the relationship

(3)

where CC* estimates the value of CCtrue, based on a finite size sample. Eqn 3 has been used
in electron microscopy studies for a similar purpose (14), and is also related to the
Spearman-Brown prophecy formula used in psychometrics to predict what test length is
required to achieve a certain level of reliability (15). CC*, when computed with eqn 3,
agrees reasonably well with the CC for the EXP data compared with the 3ELN reference
data, showing that systematic factors influencing a real dataset are not large enough to
greatly perturb this relationship (Figure 4A). CC* provides a statistic that not only assesses
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data quality, but also allows direct comparison of crystallographic model quality and data
quality on the same scale. In particular, CCwork and CCfree – the standard and cross-
validated correlations of the experimental intensities with the intensities calculated from the
refined molecular model – can be directly compared with CC* (Figure 4B). A CCwork larger
than CC* implies overfitting, since in that case the model agrees better with the
experimental data than the true signal does. A CCfree smaller than CC* (such as is seen at
low resolution) indicates that the model does not account for all of the signal in the data. A
CCfree closely matching CC*, such as at high resolution in Figure 4B, implies that data
quality is limiting model improvement. In this region the model, which was refined against
EXP, correlates much better with the more accurate 3ELN than with the EXP data (Figure
4B), showing that as is common for parsimonious models (16), the constructed molecular
model is a better predictor of the true signal than is the experimental data from which it was
derived. On a related point, because current estimates of a model’s coordinate error do not
take the data errors into account (17-19), the model accuracy is actually better than these
methods indicate.

We verified, using a simulated dataset (20), that these findings are not specific to the EXP
data (Tables S3, S4 and S5, and Figure S3). Thus, CC* (or CC1/2) is a robust, statistically
informative quantity useful for defining the high-resolution cutoff in crystallography. These
examples show that with current data reduction and refinement protocols, it is justified to
include data out to well beyond currently employed cutoff criteria (Figure S4), because the
data at these lower signal levels do not degrade the model, but actually improve it. Advances
in data processing and refinement procedures, which until now have not been optimized for
handling such weak data, may lead to further improvements in model accuracy. Finally, we
emphasize that the analytical relation (eqn 3) between CC1/2 and CC* is general and thus
CC* may have similar applications for data and model quality assessment in other fields of
science involving multiply measured data.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Higher resolution data, even if weak, improves refinement behaviour. For each incremental
step of resolution from X->Y (top legend), the pair of bars gives the changes in overall
Rwork (blue) and Rfree (red) for the model refined at resolution Y with respect to those for
the model refined at resolution X, with both R values calculated at resolution X. The first
pair of bars shows that Rwork and Rfree dropped 0.38 and 0.34% upon isotropic refinement,
respectively, when the refinement resolution limit was extended from 2.0 to 1.9 Å; the other
pairs of bars show the improvement upon anisotropic refinement.
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Figure 2.
Data quality R values behave differently than those from crystallographic refinement, and
useful data extend well beyond what standard cutoff criteria would suggest. Rmeas (squares)
and Rpim (circles) are compared with Rwork (blue) and Rfree (red) from 1.42 Å resolution

refinements against the EXP dataset.  (grey X) is also plotted. Inset is a close-up
of the plot beyond 2 Å resolution.
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Figure 3.
Signal as a function of resolution as measured by correlation coefficients. Plotted as a
function of resolution for the EXP data is CC1/2 (diamonds) and the CC for a comparison

with the 3ELN reference dataset (triangles).  (grey) is also shown. All
determined CC1/2 values shown have expected standard errors of <0.025 (21, 22).
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Figure 4.
The CC1/2 / CC* relationship and the utility of comparing CC* with CCwork and CCfree
from a refined model. (A) Plotted is the analytical relationship (eqn. 3) between CC1/2 and
CC* (black curve). Also roughly following the CC* curve are the CC values for the EXP
data compared with 3ELN (triangles) as a function of CC1/2. (B) Plotted as a function of
resolution are CC* (black solid) for the EXP dataset as well as CCwork (blue dashed) and
CCfree (red dashed) calculated on intensities from the 1.42 Å refined model. Also shown are
CCwork (blue dotted) and CCfree (red dotted) between the 1.42 Å refined model and the
3ELN dataset.
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