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Spatial Information Outflow from the Hippocampal Circuit:
Distributed Spatial Coding and Phase Precession in the
Subiculum

Steve M. Kim,* Surya Ganguli,* and Loren M. Frank
W.M. Keck Center for Integrative Neuroscience and Department of Physiology, University of California, San Francisco, San Francisco,
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Hippocampal place cells convey spatial information through a combination of spatially selective firing and theta phase precession. The
way in which this information influences regions like the subiculum that receive input from the hippocampus remains unclear. The
subiculum receives direct inputs from area CA1 of the hippocampus and sends divergent output projections to many other parts of
the brain, so we examined the firing patterns of rat subicular neurons. We found a substantial transformation in the subicular code for
space from sparse to dense firing rate representations along a proximal-distal anatomical gradient: neurons in the proximal subiculum
are more similar to canonical, sparsely firing hippocampal place cells, whereas neurons in the distal subiculum have higher firing rates
and more distributed spatial firing patterns. Using information theory, we found that the more distributed spatial representation in the
subiculum carries, on average, more information about spatial location and context than the sparse spatial representation in CA1.
Remarkably, despite the disparate firing rate properties of subicular neurons, we found that neurons at all proximal-distal locations
exhibit robust theta phase precession, with similar spiking oscillation frequencies as neurons in area CA1. Our findings suggest that the
subiculum is specialized to compress sparse hippocampal spatial codes into highly informative distributed codes suitable for efficient
communication to other brain regions. Moreover, despite this substantial compression, the subiculum maintains finer scale temporal
properties that may allow it to participate in oscillatory phase coding and spike timing-dependent plasticity in coordination with other
regions of the hippocampal circuit.

Introduction
Hippocampal place cells represent an animal’s location in the
world through a combination of rate and phase coding. These
neurons fire selectively in certain regions of an environment
(“place fields”) and are otherwise nearly silent. The resulting
sparse pattern of ensemble activity among hippocampal place
cells can be used to decode an animal’s path through an environ-
ment (Wilson and McNaughton, 1993; Brown et al., 1998;
Huxter et al., 2008) and distinguishes between different environ-
ments (Leutgeb et al., 2005; Karlsson and Frank, 2009). The phase
of firing relative to ongoing theta oscillations (5–10 Hz) in the
local field potential (LFP) also conveys spatial information. A
hippocampal place cell will fire at progressively earlier phases of

theta as the animal passes through its place field, a phenomenon
known as theta phase precession (O’Keefe and Recce, 1993;
Skaggs et al., 1996).

Hippocampal place cells are part of a larger circuit for spatial
representation that includes the entorhinal cortex (EC) and
subiculum (Sharp, 1999; Barry et al., 2006; Moser et al., 2008).
While recent investigations have characterized rate and phase
coding in the EC (Hafting et al., 2008; Mizuseki et al., 2009), the
subiculum has received relatively little scrutiny. The subiculum
receives exceptionally dense projections from area CA1 of the
hippocampus (Amaral et al., 1991; Cenquizca and Swanson,
2007; Jinno et al., 2007; Fuentealba et al., 2008), and like area
CA1, has topographically organized reciprocal connections with
the EC (Naber et al., 2001; Kloosterman et al., 2004). The subic-
ulum is also a major output structure of the hippocampal circuit,
sending projections to diverse targets including the prefrontal
cortex, amygdala, nucleus accumbens, and hypothalamus
(Witter, 2006).

Previous studies reported that neurons in the subiculum tend
to fire in multiple irregularly spaced firing fields and are less
spatially selective than neurons in the hippocampus (Barnes et
al., 1990; Sharp and Green, 1994). Some evidence suggests that
subicular neurons maintain invariant spatial firing fields across
distinct environments (Sharp, 2006), unlike hippocampal neu-
rons which tend to “remap” when the environment is changed
(Muller and Kubie, 1987; Best et al., 2001). Similarly, a recent
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study has proposed that some neurons in the subiculum are
“boundary-vector cells” that are insensitive to environmental
context (Lever et al., 2009). These findings suggest, quite surpris-
ingly, that the hippocampal representation of specific locations
and environments may not be well maintained in the subiculum,
just one synapse downstream from CA1 place cells.

We recorded spikes and LFPs in the subiculum of freely run-
ning rats to determine (1) whether the distributed spatial repre-
sentation in the subiculum might be advantageous for conveying
information about spatial location and environmental context
and (2) whether subicular neuronal activity exhibits a phase code
as well as a rate code. We discovered that neurons in the subicu-
lum exhibit robust theta phase precession and that the distrib-
uted code found in the subiculum is well suited to transmit
information about both the animal’s current spatial location and
environmental context using many fewer neurons than the up-
stream CA1 region.

Materials and Methods
Extracellular recordings in behaving rats. The data presented here come
from five adult (400 – 600 g) male Long–Evans rats. All procedures were
approved by the Institutional Animal Care and Use Committee at the
University of California, San Francisco. Rats were handled and trained to
run back and forth on a U-shaped elevated running track (6 cm wide, 350
cm long) for drops of saccharin-sweetened milk. During training and
later recording, food intake was restricted to maintain each rat at 85–90%
of its baseline free-feeding body mass. The daily training schedule con-
sisted of three 15 min task sessions on the U track, with intervening 15
min rest sessions in a nest enclosure. Rats were trained for at least 5 d
before undergoing surgery for electrode implantation. After recovery
from surgery, rats were retrained for at least five additional days to ensure
that the load on the head and the cable tether did not impair running.

Rats were implanted with microdrive arrays that bilaterally targeted
the intermediate subiculum (Table 1). In each hemisphere, six tetrodes
and one single-wire electrode made parallel penetrations into the brain
tissue, with �0.3 mm spacing between adjacent electrodes. The elec-
trodes were constructed from polyimide-insulated 12.5 �m nichrome
wire, and the recording tips were plated with gold to achieve impedance
in the range of 200 –250 k� at 1 kHz. The single-wire electrode in each
hemisphere was used to record a local reference signal in the white matter
overlying the subiculum. Spike waveforms (600 – 6000 Hz) were re-
corded relative to the local reference. Local field potentials (1– 400 Hz)
were recorded relative to a stainless steel screw in the skull over the
midline cerebellum which served as a common ground.

Recordings began on the last day of training on the familiar U-track
(“day 0”). On the next day of recording (“day 1”) and on all subsequent
days, the second 15 min run session took place in a geometrically iden-
tical U track with the same surface color and texture, located on the other
side of the room which the rat had never before visited. The two sides of
the room were separated by a tall barrier and contained different visual
landmarks. We refer to the training U track as “environment 1” and the
second, novel track as “environment 2.” The two environments were
separated by a wall so that they were not visible from each other. For one
rat, environment 1 and environment 2 were oriented anti-parallel to
each other; for the other four rats, the two environments were ori-
ented parallel to each other, so that the rat faced the same wall when

approaching the food wells. On each day after the conclusion of re-
cordings, tetrodes were adjusted to optimize recording yield for the
following day. Recordings continued for as many days as well isolated
single units could be recorded.

Details of data acquisition and off-line processing have been published
previously (Karlsson and Frank, 2008). Only well isolated putative single
units that had an absolute refractory period of at least 2 ms (1 ms for
fast-spiking neurons with high firing rates) were included in the final
analyses. For units that were cleanly isolated in only a subset of the
recording sessions (e.g., as a result of slow tetrode drift), we included
spike data from only those sessions, provided that the waveform clus-
ter was identifiable across all sessions without the possibility of con-
fusion with other units. We did not attempt to match putative single
units across days, so it is possible that the some of the same neurons
may have been recorded in multiple days. We included data from
“silent cells” that fired few spikes during the task sessions (Thompson
and Best, 1989), which we identified by their stable spike waveforms
across intervening rest sessions.

We recorded video of the rats’ running behavior in the two environ-
ments with an overhead video camera. To ensure visibility, infrared light-
emitting diodes were fixed on the animals’ heads. In off-line video
processing, we determined the pixel coordinates of the light-emitting
diodes in every video frame with a semiautomated object-tracking algo-
rithm. We then transformed these pixel coordinates to physical distances
along the length of the environment, using the known geometry of the
environment to calibrate image scale and camera distortion. Next, we
smoothed the linearized position data in two steps. In the first step, we
used robust locally weighted regression to suppress outliers and pixel
jitter (Cleveland and Loader, 1996). In the second step, we fitted a
smoothing spline with a data-adaptive roughness penalty (de Boor,
2001). The roughness penalty of the smoothing spline was based on the
third derivative of the fit, which guaranteed the smoothness of the first
derivative (running speed), and it was weighted in proportion to the local
mean squared relative acceleration (acceleration divided by speed) at
each time point. The adaptive weighting of the roughness penalty sup-
pressed spurious high-speed transients due to head-bobbing when the rat
was standing in place, while preserving veridical accelerations and decel-
erations that occurred when the rat was running. We estimated running
speed by analytical differentiation of the fitted smoothing spline.

Histological reconstruction of recording sites. At the end of the experi-
ment, each rat was anesthetized with isoflurane, and direct current (10
�A for 3 s) was passed through the electrodes to make small electrolytic
lesions at the recording tips. One day later, the rat was lethally overdosed
with pentobarbital and transcardially perfused with isotonic sucrose fol-
lowed by formaldehyde fixative. After perfusion, the brain was further
soaked in fixative for 24 h with the electrodes remaining in situ; this
postfixation step made the electrode penetration tracks stand out clearly
in the fixed tissue. The fixed brain was cryoprotected by infiltration in
20% glycerol/2% DMSO, cut in 50 �m coronal sections on a cryostat
microtome, and stained with cresyl violet. Cytoarchitectonic boundaries
of area CA1, subiculum, and presubiculum were resolved according to
established criteria (Witter and Amaral, 2004). We subdivided the subic-
ulum into longitudinal strips corresponding to proximal (closer to CA1),
middle, and distal (closer to presubiculum) thirds along the transverse
dimension. We also distinguished, separate from the subiculum proper,
a CA1/subiculum transition zone and a subiculum/presubiculum tran-
sition zone where the principal cell layers overlapped.

LFP theta oscillations. We recorded all LFPs relative to ground. To
estimate the instantaneous phase of theta oscillations, we bandpass fil-
tered the LFP and decomposed the filtered signal into amplitude and
phase components using the Hilbert transform (Harris et al., 2003; Siapas
et al., 2005). We used a phase-preserving acausal filter with a 5–10 Hz
bandpass; this bandpass was chosen to accommodate fluctuations in the
instantaneous frequency of theta (Montgomery et al., 2008). We defined
0° phase to be the positive peak of the theta oscillation.

Instantaneous theta phase could not of course be reliably estimated
whenever theta oscillations became indistinct. To ensure that we always
worked with a well defined theta phase, we restricted our phase-
dependent analyses to times when there was a clear spectral peak in the

Table 1. Stereotaxic coordinates of electrode implants

Subject

Stereotaxic coordinates in flat-skull position (mm)

Posterior from bregma Lateral from midline

Rat 1 6.6 4.1
Rat 2 7.0 4.1
Rat 3 6.8 3.8
Rat 4 6.8 3.8
Rat 5 6.9 3.8

Electrodes penetrated the brain vertically along the dorsoventral axis, normal to the flat-skull plane.
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5–10 Hz frequency band of the LFP power spectrum. We determined
when this peak was present by first prewhitening the LFP to compensate
for the 1/f shape of the power spectrum, so that our estimate of power in
the 5–10 Hz frequency band would not be overwhelmed by leakage of
background power from lower frequencies (Percival and Walden, 1993).
After prewhitening the LFP, we estimated the power spectrum in over-
lapping 2 s time windows using the multitaper method (K � 3 Slepian
tapers, W � 1 Hz; Mitra and Pesaran, 1999). The resulting whitened
power spectrum was approximately flat over the frequency intervals 1– 4
Hz and 18 – 400 Hz. We defined a “theta power ratio” to identify time
windows during which theta power was elevated against this flat back-
ground. The theta power ratio was computed as the integrated power of
the whitened spectrum over 5–10 Hz (theta), divided by the integrated
power over 10 –25 Hz (supratheta). We specifically avoided using the
delta frequency band in our calculation of the theta power ratio, because
low-frequency (�4 Hz) movement artifacts occurred when rats were
running. Contiguous overlapping time windows in which the theta
power ratio exceeded 5 dB were determined to be times when theta
oscillations were clearly present in the LFP. We checked that our results
were robust to reasonable changes in the choice of threshold, as well as
choice of parameters in the multitaper method.

We used circular statistics to measure the relationship between single-
unit spiking and the phase of ongoing theta oscillations in the LFP (Siapas
et al., 2005). We determined an instantaneous phase value for every spike
by interpolating the theta phase component of a reference LFP signal at
the spike times. In practice, we found that the choice of reference LFP
signal did not qualitatively alter any of our results, because LFPs were
highly coherent in the 5–10 Hz frequency band across all recording sites.
However, for the sake of definition, we referenced each neuron’s spikes to
the LFP signal recorded in the ipsilateral subiculum that showed the
largest-amplitude theta oscillations.

We tested the unimodality of each neuron’s spike phase distribution
with the Rayleigh test of circular uniformity. Because theta oscillations in
the LFP have a characteristic sawtooth asymmetry, the LFP theta phases
that we estimated using the Hilbert transform were slightly nonuni-
formly distributed. To adjust for this baseline nonuniformity, we trans-
formed the spike phases to circular ranks in the empirical distribution of
LFP theta phases, and then performed the Rayleigh test on these circular
ranks (Siapas et al., 2005). We also fit a von Mises distribution to the spike
phases via maximum likelihood. The estimated mean parameter of the
von Mises fit was taken as the neuron’s preferred phase of firing, and the
estimated concentration parameter was taken as a measure of phase lock-
ing to theta oscillations in the LFP. A larger value of the von Mises
concentration parameter indicates a smaller circular variance, i.e.,
greater selectivity for the preferred phase of theta.

Burst index. Previous work has suggested the presence of different
subicular cell types based on burstiness (Sharp and Green, 1994), so we
calculated a burst index to describe subicular neurons. A conventional
measure of burstiness is the proportion of interspike intervals that are
shorter than some threshold value, typically 6 –10 ms (Frank et al., 2001;
Harris et al., 2001; Anderson and O’Mara, 2003). This conventional mea-
sure is reasonable for comparing neurons that have low mean firing rates,
such as principal neurons in the hippocampus, but it gives misleadingly
inflated values for neurons with high mean firing rates. We observed a
wide range of mean firing rates among neurons in the subiculum, so we
needed a measure of burstiness that was not confounded by firing-rate
differences. We therefore defined a new “burst index” that was based on
a neuron’s spike autocorrelogram, rather than the distribution of inter-
spike intervals. This burst index was computed as the integrated power of
the spike autocorrelogram over 1– 6 ms, divided by the integrated power
over 1–20 ms. Larger values indicate more burstiness. Our burst index is
similar to the “first moment” of the (truncated) autocorrelogram
(Csicsvari et al., 1999), but unlike the first moment, it is selectively
weighted to measure bursts.

Firing-rate maps. To characterize rate and phase coding by neurons in
the subiculum and area CA1, we estimated each neuron’s instantaneous
firing rate as a function of the rat’s linearized position in the environment
and the phase of theta oscillations in the LFP (Mehta et al., 2002; Maurer
et al., 2006). Separate position-phase firing-rate maps were estimated for

the right-bound and left-bound directions of travel in each environment.
We required data from a minimum of five passes in a given environment/
direction to estimate a corresponding firing-rate map. We defined a pass
to be a single traversal of the environment from one food well to the other
food well. We excluded passes in which the rat backtracked or failed to
attain a mean running speed of at least 10 cm/s. We also excluded time
intervals when the theta power ratio fell below the minimum 5 dB crite-
rion, because theta phase was ill-defined in the absence of clear theta
oscillations in the LFP; furthermore, if these intervals of low theta power
comprised �10% of the duration of a pass, we excluded the entire pass.

To accurately estimate position-phase firing-rate maps, we needed a
statistically efficient estimator that could cope well with noisy and un-
dersampled data. Because the rats behaved freely in our experiments, the
number of passes in any given environment/direction was modest and
there was pass-by-pass variability in the sampling of linearized positions
and LFP theta phases; consequently, the position-phase space (that is, the
set of all possible combinations of position and phase) was unevenly and
sparsely sampled. To overcome this sampling variability and the intrinsic
spiking variability of neurons, we used local polynomial kernel regression
(Fan et al., 1995) to smooth the data, under the natural assumption that
a neuron’s instantaneous firing rate should be a smooth function of
linearized position and theta phase. This smoothness assumption reflects
our prior knowledge about the shapes and sizes of the neurons’ firing
fields (Barnes et al., 1990; Sharp and Green, 1994). Details of the statis-
tical estimation process and how it makes use of finite amounts of data
without overfitting rate maps, are given in a section at the end of these
methods.

Spatial activity fraction. We quantified the sparseness of spatial coding
in the hippocampus and subiculum by the spatial activity fraction, which
can be interpreted as the proportion of the environment over which a
neuron fires (Rolls et al., 1998; Battaglia et al., 2004; see also Olypher et
al., 2003; Ego-Stengel and Wilson, 2007; Wilent and Nitz, 2007 for infor-
mation theoretic approaches). This measure is identical to standard mea-
sures of spatial sparseness (Skaggs et al., 1996) adapted to be appropriate
for the continuous theta phase variable.

Given a position-phase firing-rate map f(x,�), where x is linearized
position on the track and � is the instantaneous phase of the LFP theta
oscillation, the spatial activity fraction was computed as follows:

fraction� f � �

��f��x�dx�2

�f��x�2dx

,

where

f�� x� �
1

2�
�f� x,��d�

is the spatial firing-rate profile averaged over all theta phases. The spatial
activity fraction ranges between zero and one. A value close to zero indi-
cates that the neuron fires in only a small region of the environment and
is silent everywhere else, whereas a value close to unity indicates that the
neuron fires uniformly at all locations throughout the environment.

Comparison of firing-rate maps across environments. We used two com-
plementary measures to quantify the similarity between the firing-rate
maps of a given neuron in environment 1 versus environment 2. The first
measure, which we call cosine similarity, was computed as follows:

similarity � f1,f2� �
1

2�
�

�f1�x,�� f2�x,��dx

���f1�x,��2dx���fx�x,��2dx� d�.

Here, f1 and f2 are the neuron’s position-phase firing-rate maps in the two
environments. The cosine similarity is the mean, taken over all theta
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phases, of the normalized dot product between spatial firing-rate profiles
conditioned on theta phase. Because firing rates are strictly positive, this
measure can assume values between zero and one; a value of unity indi-
cates that the two firing-rate maps are identical up to a proportionality
constant. The second measure, which we call normalized overlap, was
computed as follows:

overlap� f1,f2� �
1

2�
�

2�min� f̃1�x,��, f̃2�x,���dx

�� f̃1�x,�� � f̃2�x,���dx

d�,

where

f̃ i� x,�� �
fi� x,��

� fi� x�,��dx�

is the firing-rate map normalized at each theta phase. The normalized
overlap is a generalization of place-field overlap (Battaglia et al., 2004) to
account for LFP theta phase. This measure also ranges between zero and
one. For the purposes of computing cosine similarity and normalized
overlap, we concatenated firing-rate maps for the right-bound and left-
bound directions of travel in each environment.

Mutual information. Using the experimentally derived firing-rate
maps of the neurons that we recorded, we constructed model popula-
tions of neurons and simulated their ensemble spiking responses. From
these simulations, we estimated how much spatial information is carried
by neurons in the subiculum and in area CA1, while making as few
assumptions as possible about how this information might be decoded by
downstream circuits. Our combined use of experimental data, modeling,
and information theory is similar to the approach used by Osborne et al.
(2008). The inferences that we derived are valid to the extent that the
firing-rate maps of the neurons in our dataset were representative of the
true coding statistics in the larger neuronal populations.

We had three reasons to rely on an experimentally derived model
instead of estimating information-theoretic quantities directly from the
experimental data. First, estimates of mutual information from limited
samples are biased, and corrections for this sampling bias require con-
siderable effort (Panzeri et al., 2007). By using a model, we could perform
exact calculations that were equivalent to simulating infinite amounts of
data. Second, estimates of mutual information depend on both the neu-
ral response and the stimulus distribution (in this case, the occupancy
distribution over spatial locations and environments). In our model, we
fixed the stimulus distribution to be exactly the same for all neurons, so
that we could fairly compare mutual information between different neu-
rons and regions without having to worry about confounding differences
in spatial behavior. Third, the model allowed us to assess combinatorial
coding by diverse ensembles of neurons. In our experiments, we were
never able to simultaneously record more than a few well isolated single
units, so it was necessary to model pseudo-simultaneous ensemble re-
sponses from data recorded over multiple days in multiple animals.

While our model-based information-theoretic approach has a
number of advantages, correct interpretation of the results requires
an understanding of its assumptions and limitations. In our model,
we assumed that each neuron’s spike train could be described as a
conditionally independent inhomogeneous Poisson process, given
the rat’s current position and the instantaneous phase of theta oscil-
lations. In other words, we did not model bursting or other history
dependence in the spike trains, nor did we model “excess” correla-
tions between neurons that might be present in the data. Thus, the
number of bits of information that we calculated cannot be inter-
preted literally. That said, our approach does provide a principled way
to compare the information content of different firing-rate maps, and
that is how the results should be understood.

We constructed populations of model neurons for each of the follow-
ing anatomical subregions: distal subiculum, middle subiculum, proxi-

mal subiculum, and distal area CA1 (including the CA1/subiculum
transition zone). The responses of each model neuron were completely
described by position-phase firing-rate maps of a corresponding real
neuron in our dataset. For simplicity, we ignored directionality in our
model; that is, the virtual rat ran in the same direction on every pass. This
unidirectionality allowed us to duplicate each real neuron in our model,
by mirror-reflecting the estimated firing-rate map in one of the two
directions and treating this as an additional model neuron. We always
coupled the same real neuron’s firing-rate maps in environment 1 and
environment 2, so that the corresponding model neurons properly re-
flected the observed degree of similarity/remapping between the two
environments.

From these model populations, we drew ensembles of K neurons at a
time, for K � 1,. . . ,7. Because it was computationally intractable to
simulate every possible combination of neurons for K � 2, we randomly
sampled at most 500 unique ensembles from each population for each
value of K. We simulated the responses of these K neurons, indexed by
k � 1,. . . ,K, using the experimentally derived position-phase firing-rate
maps, fk(x,�,e). x is the linearized position of a (virtual) rat, � is the phase
of theta oscillations in the LFP, and e �{1,2} is a variable that indicates
whether the rat is running in environment 1 or environment 2. We
simulated realistic distributions of x and � by randomly selecting 100
passes from our dataset in which the animal’s mean running speed ex-
ceeded 10 cm/s and the theta power ratio was above the minimum 5 dB
criterion for at least 90% of the pass duration. These passes were identi-
cally replicated in both environment 1 and environment 2 to simplify our
calculations and to enable us to estimate how much information was
conveyed about the identity of the environment.

We divided each pass into short (but not infinitesimally small) non-
overlapping time bins of duration 	t. We assumed that information was
conveyed in the patterns of simultaneous spiking and silence among the
ensemble of neurons within each time bin. For simplicity, each neuron’s
response in a single time bin was denoted as either “0” (silence) or “1”
(one or more spikes). With an ensemble of K neurons, 2K possible binary
ensemble responses (“words”) were possible. Patterns of spiking across
time were not considered. We set the bin size 	t to be 20 ms, because this
is consistent with the known temporal resolution of spiking in the hip-
pocampus (Harris et al., 2003; Lisman, 2005). However, we obtained
qualitatively similar results with 10 and 30 ms bins.

The neurons in our model fired Poisson spike trains and were condi-
tionally independent given their respective firing-rate maps. For a single
neuron, the probability of spiking/silence in a given time bin was calcu-
lated as follows:

P�nk � 0 � in 
t,t � 	t�� � exp�� �
t

t�	t

fk�x�t��,��t��,e�dt��
P�nk � 1 in 
t,t � 	t�� � 1 � P�nk � 0 in 
t,t � 	t��,

where nk is the spike response of the neuron and fk(x,�,e) is the neuron’s
firing-rate map. The time-varying continuous variables x(t) and �(t)
were taken directly from experimental data, and the environment e was
imposed by simulation. Assuming conditional independence among K
neurons in an ensemble, the probability of the ensemble word

nB	 
n1, …, nk� was then simply

P�nB � x,e� � 

k�1

k

P�nk � x,e�.

Because the virtual rat performed identical passes in the two environ-
ments, we had the following simple marginal probabilities:

P� x� � P� x � e � 1� � P� x � e � 2�
P�e � 1� � P�e � 2� � 0.5.

Note that p(x) was not uniform because rats sped up and slowed down in
a stereotyped manner over the environment across the multiple passes.

The mutual information between the ensemble responses nB and the spa-
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tial variables (x,e) is defined to be the difference between the total entropy
of spike responses and the noise entropy of the spike responses:

I�nB; x,e� � ��
n
B

P�nB�log2P�nB�

� �
e

P�e��
x

P�x��
n
B

P�nB � x,e�log2P�nB � x,e�.

The first term is the total entropy of the response, and the second term is
the noise entropy, wherein we average the conditional distribution of
response over all linearized positions and both environments. Notice
that although the LFP theta phase � contributes to the spiking probabil-
ities, it does not appear directly in the mutual information. � is effectively
a nuisance variable, which we included to realistically model theta mod-
ulation and phase precession. The simulated passes by the virtual rat
contained enough random variation that � was uncorrelated with x.

We also estimated the mutual information between ensemble re-

sponses sB and the environment e, conditioned on the current linearized
position x:

I�nB;e � x� � �
x

p� x�� ��
n
B

P�nB � x�log2P�nB � x�

� �
e

P�e��
n
B

P�nB,x,e�log2P�nB � x,e��.

This conditional mutual information quantifies how much information
the neurons convey to distinguish between locations in environment 1
versus environment 2. We used this measure to quantify the remapping
of spatial representations between the two environments.

We then performed additional simulations to determine whether theta
phase precession was essential for conveying spatial information. We
modified the position-phase firing-rate maps of the model neurons to
remove theta phase precession while preserving spatial modulations of
firing rate. For each experimentally derived firing-rate map fexperiment, we
computed a rank-1 approximation fapprox, using the singular value de-
composition (Linden et al., 2003). The rank-1 approximation fapprox is
separable, meaning that it can be factored as the product of a position-
only component and a phase-only component:

fapprox�x,�� 	 f�position�x� � f�phase���.

Thus, by construction, a model neuron whose firing-rate map is given by
fapprox will not exhibit theta phase precession. fapprox is an optimal ap-
proximation to the experimentally derived firing-rate map fexperiment in
the following sense:

f�position�x� �
1

2�
� fexperiment�x,��d�

f�phase��� �
1

xmax � xmin
�fexperiment�x,��dx.

That is, the spatial profile of the firing-rate map and the phase profile
match the original as closely as possible, subject to the separability
condition.

Our estimate of mutual information is related, but not identical, to the
“spatial information rate” that has been widely used to characterize hip-
pocampal spatial representations (Skaggs et al., 1993; see also Olypher et
al., 2003; Ego-Stengel and Wilson, 2007 for alternative measures of spa-
tial information). The spatial information rate is also a model-based
estimate of mutual information. However, it is limited to a single neu-
ron’s spiking response, and it is computed from the neuron’s firing rate
as a function of position alone without considering theta modulation. In
contrast, we modeled the dependence of firing rate on LFP theta oscilla-
tions to simulate realistic spiking responses, and we enumerated ensem-
ble patterns of spiking and silence to account for combinatorial coding
synergies, which cannot be captured by simply summing the spatial in-
formation rates of individual neurons.

Phase precession in unitary place fields. Theta phase precession is con-
ventionally quantified by computing the correlation between position
and the preferred theta phase of spiking within a neuron’s place field
(Mehta et al., 2002; Huxter et al., 2003). If a neuron has multiple place
fields in an environment, these unitary place fields are segmented and a
separate correlation is computed for each field. Previous investigators
simply segmented place fields by the local minima and maxima of spatial
firing rate as a function of linearized position alone, without considering
theta phase (Hafting et al., 2008; Mizuseki et al., 2009). However, seg-
mentation in the position dimension alone is prone to error, because two
adjacent place fields can be partially overlapping in position but clearly
separated in theta phase (Maurer et al., 2006). We therefore developed a
new approach using morphological grayscale algorithms (Vincent, 1993)
to segment unitary place fields in position-phase firing-rate maps. Our
procedure is fully automated, objective, and involves only two parame-
ters: a minimum peak firing rate ( fmin), and a parameter (�) that specifies
the contrast of the segmented place field against the “background”
bumpiness of the firing-rate map.

Given a position-phase firing-rate map f(x,�), we first identified all
peaks (local maxima) that exceeded fmin. We set fmin to be 10 spikes/s,
although qualitatively similar results were obtained with a more stringent
threshold of 15 spikes/s or a more permissive threshold of 5 spikes/s. All
identified peaks were checked sequentially in decreasing order of firing
rate. Given a peak with firing rate fpeak � fmin, we applied the H-maxima
transform to suppress all local maxima in the firing-rate map whose
height was smaller than � � fpeak. This smoothing step was necessary to
make the procedure robust to noisy bumps in the firing-rate map. We set
� to be 0.3 (30%). Next, we used a flood-fill algorithm to trace the � � fpeak

contour that surrounded the base of the firing-rate peak, and we also
used a watershed algorithm to identify watershed lines between neigh-
boring convex domes in the firing-rate map. The traced contour was
accepted as a valid place-field segmentation only if it did not intersect the
contours of any other place fields that had already been segmented, did
not intersect any watershed lines, did not intersect itself, and did not
extend to the minimum or maximum linearized position of the firing-
rate map. These criteria distinguished well isolated, unimodal, com-
pletely segmented fields from multiple overlapping fields or truncated
fields. The contrast parameter � tunes the algorithm’s tolerance for de-
partures from strict unimodality. Setting � to a more stringent value of
0.2 made the algorithm too sensitive to small bumps in the firing-rate
map and excluded many place fields that appeared to be effectively uni-
modal by visual inspection, such as fields with closely spaced twin peaks
or small side lobes on their flanks. It should be noted that our morpho-
logical segmentation procedure is completely symmetric and invariant
with respect to periodic theta phase; we did not impose any prior bounds
on the peak phase of the segmented place field or its orientation in
position-phase space.

After segmenting the unitary place fields, we then identified their prin-
cipal axes. Place fields that exhibit phase precession have a characteristic
oblique orientation in position-phase space. To capture this orientation,
we fit a two-dimensional Gaussian function to the firing-rate surface
within the segmented baseline contour of each place field. We did not
impose any prior bounds on this Gaussian fit; “backwards” place fields
with positive-valued phase/position slopes could be fit just as well as
place fields with negative slopes. From the covariance matrix of the
Gaussian fit, we computed the slope (in degrees/cm) and the Pearson
correlation coefficient between linearized position and LFP theta phase.
We repeated the Gaussian fitting procedure over all jackknife estimates of
the firing-rate map to estimate a Studentized confidence interval on the
Fisher-transformed correlation coefficient. We excluded place fields
whose correlation coefficients were not significantly different from zero,
because the phase/position slope of a field is ill-defined in the absence of
correlation.

Spike phase spectra. The preceding analysis of theta phase precession
on a per-field basis was limited to place fields that could be automatically
segmented. To confirm the generality of our results, we performed an
alternative analysis that did not rely on segmentation of unitary place
fields. We measured theta phase precession by estimating the peak of the
spike phase spectrum (Mizuseki et al., 2009; Geisler et al., 2010). The
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spike phase spectrum is the power spectral density of a spike train after it
has been transformed from a sequence of spike times to a sequence of
instantaneous spike phases relative to the ongoing LFP theta oscillation.
The frequency domain of the spike phase spectrum has units of relative
frequency, where the instantaneous frequency of theta oscillations in the
LFP is defined to be 1 cycle 
1. A neuron that exhibits theta phase pre-
cession has a peak in its spike phase spectrum at a frequency greater than
unity. A higher peak frequency indicates a faster rate of phase precession.

We introduced three methodological improvements to the estimation
and interpretation of the spike phase spectrum. First, we estimated the
spike phase spectrum using only data from valid running passes when
LFP theta power was high, deliberately excluding times when rats were
stopped at the food wells. Second, we used the derivative of the spike
phase spectrum to accurately resolve the frequencies of peaks in the
spectrum. Third, we performed shuffle tests to identify statistically sig-
nificant spectral peaks. We describe these methods in further detail in a
section below.

Estimating position-phase firing rate maps. To motivate the use of local
polynomial kernel regression and to introduce necessary notation, we
first consider a simple estimator that is known in statistics as the
Nadaraya-Watson kernel smoother (Hastie et al., 2009). The Nadaraya-
Watson kernel smoother has been used in previous studies to estimate
the firing-rate maps of hippocampal place cells (Harris et al., 2001, 2003).
Conceptually, it is straightforward: simply divide a smoothed spike den-
sity map by a smoothed position-phase occupancy map to obtain a
smoothed firing-rate map. Formally, the computation proceeds as fol-
lows: We discretize the data in small time steps (	t � 2 ms) that are
indexed by t � 1,. . . ,T. In this discrete representation, the number of
spikes fired by the neuron in each time step (typically zero or one) is given
by the time series N1,. . . ,NT; the linearized position of the rat is given by
X1,. . . ,XT; and the phase of the LFP theta oscillation is given by �1,. . . ,�T.
Then the Nadaraya-Watson estimator of the neuron’s instantaneous firing
rate f at a given linearized position x and LFP theta phase � is given by the
following formula:

f̂ N-W�x,�� �

�
t�1

T

K�Xt � x

hx
,
�t � �

h�
�Nt

�
t�1

T

K�Xt � x

hx
,
�t � �

h�
�	t

,

where K is a kernel function supported in [
1, �1]R[
1, �1]. The
phase difference (� 
 �) in the argument of the kernel function must be
taken in a way that respects the periodicity of phase.

The parameters hx and h� specify the smoothing bandwidth of the
Nadaraya-Watson kernel smoother. The kernel-weighted contributions
of nearby data points that fall within the position bandwidth [x 
 hx,x �
hx] and the phase bandwidth [� 
 h�,� � h�] are averaged together to
produce the estimate f̂N-W(x,�). If hx and h� are too small, then the
Nadaraya-Watson kernel smoother will exhibit unacceptably high vari-
ance, because few data points will be included in the smoothing band-
width around each point in position-phase space. On the other hand, if hx

and h� are too large, then the Nadaraya-Watson kernel smoother will
systematically underestimate the heights (depths) of peaks (valleys) in
the firing-rate map, because the local structure of the data within the
smoothing bandwidth will be averaged away. In other words, the
Nadaraya-Watson kernel smoother controls sampling variance at
the cost of increasing bias in regions of position-phase space where the
true firing-rate map f is curved. Unfortunately, these regions of curva-
ture—i.e., place fields—are precisely the regions where we want to accu-
rately quantify a neuron’s response.

We can achieve a better tradeoff between variance and curvature bias
by adding parameters to explicitly model the local curvature of the firing-
rate map. This is the basic principle of local polynomial kernel regression
(Fan et al., 1995). Assuming that f is everywhere smooth, we can locally
approximate log f with a low-degree polynomial. (In fact, the Nadaraya-
Watson kernel smoother happens to be a special case of local polynomial
kernel regression with a 0-degree polynomial, i.e., a constant function.)
We fit the logarithm of the firing rate with a polynomial to guarantee that
the estimated firing rate is always positive. Furthermore, the logarithm is

the canonical or natural link function for Poisson-distributed count data,
with attractive mathematical properties for efficient maximum-likelihood esti-
mation (McCullagh and Nelder, 1989).

For example, the quadratic Taylor approximation to log f in the neigh-
borhood of the fitting point (x,�) is the following:

log f�X,� � �
B
�x,��� � �0�x,�� � �X � x��x�x,�� � �� � �����x,��

�
1

2
�X � x�2�xx�x,�� �

1

2
�� � ��2����x,��

� �X � x��� � ���x��x,��,

where

�
B
�x,�� 	 
�0�x,�� �x�x,�� ���x,�� �xx�x,�� ����x,�� �x��x,���

is a vector of coefficients. �x(x,�) and ��(x,�) approximate the first-
order partial derivatives of log f at (x,�); likewise, �xx(x,�), ���(x,�),
and �x�(x,�) approximate the second-order partial derivatives. We
can use nearby data points that are within a smoothing bandwidth
around the fitting point to estimate these derivatives. Just as the
Nadaraya-Watson kernel smoother averages the kernel-weighted
contributions of data points around each fitting point, local polyno-
mial kernel regression maximizes the kernel-weighted log-likelihood
of the data (Fan et al., 1995). Assuming that the spike counts are
Poisson-distributed, maximization of the kernel-weighted log-
likelihood takes the following form:

�
B

� x,�� � arg max
�
B

� x,��

�
t�1

T

K�Xt � x

hx
,
�t � �

h�
�
	t � f�Xt,�t � �

B
�x,���

� Ntlog f�Xt,�t � �
B
�x,����,

where the kernel function K and the bandwidth parameters hx and h� are
the same as in the Nadaraya-Watson estimator. This log-likelihood max-
imization problem is equivalent to fitting a generalized linear model with
weighted observations, for which there are well developed numerical
recipes (McCullagh and Nelder, 1989). Exponentiating the constant co-
efficient of the fit gives the “local quadratic” estimator of the firing-rate
map:

f̂ quadratic�x,�� � exp��
B

0�x,���.

Although the local quadratic estimator exhibits less curvature bias
than the Nadaraya-Watson kernel smoother, it is susceptible to over-
fitting in regions of position-phase space where the firing rate is very
close to zero. The Nadaraya-Watson kernel smoother, in contrast, is
immune to overfitting and performs well in regions where the firing
rate is flat and close to zero. Combining the two estimators yields a
robust shrinkage estimator that adapts to the local curvature of the
data without overfitting:

log f̂ shrinkage�x,�� � 	�x,��log f̂N-W�x,��

� �1 � 	�x,���log f̂quadratic�x,��.

The shrinkage parameter 	(x,�) takes values between zero and one, and
can be selected in a data-adaptive manner by cross-validation, as de-
scribed below.

We estimated firing-rate maps on a uniform grid of points that were
spaced 2 cm apart in the linearized position dimension and 6° apart in the
theta phase dimension. This grid spacing was fine enough to support
smooth interpolation between grid points. We excluded linearized posi-
tions within 20 cm of either food well, because theta oscillations in the
LFP often were indistinct when rats stopped to feed, and also because
linearized position was not well defined during turning behavior. At each
grid point, we computed both the Nadaraya-Watson kernel smoother
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and the local quadratic estimator. We used a tensor-product Epanech-
nikov kernel:

K�X � x

hx
,

� � �

h�
�

� � �1 � �X � x�2/hx
2��1 � �� � ��2/h�

2 � if �X � x� 
 hx and �� � �� 
 h�

0 otherwise

which downweights data points at the outlying extremes of the smooth-
ing bandwidth. We chose bandwidth parameters hx � 20 cm and h� �
90° to match the scale of features in the firing-rate maps. To confirm that
this smoothing bandwidth was reasonable, we also tested smaller and
larger values (hx � 15 cm, 30 cm and h� � 60°, 120°) on data from a
randomly selected subsample of neurons. As assessed by visual inspec-
tion of the firing-rate maps and by cross-validation scores (see below),
these smaller and larger values of the bandwidth parameters resulted in
worse fits for a majority of the neurons in the random subsample.

To determine the optimal degree of shrinkage between the Nadaraya-
Watson estimator and the local quadratic estimator, we partitioned the
data into passes and performed cross-validation. Let p � 1,. . . ,P be the
pass number, and let Sp be the set of all time bins that belong to pass p. We
excluded each pass from the dataset and estimated firing-rate maps from
the remaining P 
 1 passes; these leave-one-out estimates are denoted by
f̂N-W
(
p) and f̂quadratic

(
p) . We then selected the shrinkage parameter 	(x,�) that
minimized the kernel-weighted cross-validation deviance:

	� x,�� � arg min
	�
0,1�

�
p�1

P �
t�Sp

K�Xt � x

hx
,
�t � �

h�
��Nt log� Nt

N̂�
p��Xt,�t,	�
�

� �Nt � N̂�
p��Xt,�t,	���,

where

N̂�
p��Xt,�t,	� � 	t exp�	 f̂N-W
�
p��Xt,�t� � �1 � 	� f̂quadratic

�
p� �Xt,�t��

is the expected spike count in time bin t that was predicted from the cross-
validation dataset t�Sp. The deviance is a natural error measure for Poisson
count data that is analogous to the sum of squared errors for normally dis-
tributed data. The cross-validation procedure also conveniently provided
jackknife estimates of the firing-rate map, which we used to test the statistical
significance of theta phase precession as described below.

Estimating spike-phase spectra. For each neuron, separate spike phase
spectra were estimated for the right-bound and left-bound directions of
travel in each environment. We required data from a minimum of five
valid passes in a given environment/direction to estimate a correspond-
ing spike phase spectrum. To ensure that our estimates were not contam-
inated by spikes emitted at times when theta phase was ill-defined, we
excluded passes in which the theta power ratio fell below the minimum 5
dB criterion for �10% of the pass duration. We also excluded time
intervals at the start and end of each pass when the rat was within 20 cm
of either food well, because rats were stopped and/or feeding at these
reward locations, and theta phase precession is not observed in these
behavioral states (Skaggs and McNaughton, 1996). We computed a mul-
titaper estimate of the spike phase spectrum by taking a weighted sum of
eigenspectra over passes and tapers (Jarvis and Mitra, 2001). Because
different passes contained different numbers of theta cycles, we con-
structed a separate set of Slepian tapers for each pass to maintain a con-
sistent smoothing bandwidth of �0.05 cycle 
1 (Walden et al., 1995).

The multitaper method reduces the variance of the spectral estimate by
averaging the true spectrum over the smoothing bandwidth. This aver-
aging flattens out local structure in the spectrum whose frequency scale is
smaller than the smoothing bandwidth. As a result, peaks in the esti-
mated spectrum have distorted shapes and are not sharply resolved. Sim-
ply selecting the numerical maximum of a multitaper spectral estimate is
not a consistent estimator of the true peak. However, it is possible to
resolve spectral peaks by examining the covariance structure of the mul-
titaper eigenspectra. We used this method to estimate the peak frequency
of the spike phase spectrum, which was the parameter of interest for

measuring theta phase precession. A detailed explanation of the theory
behind this method is given by Prieto et al. (2007).

Assuming that the spectral density varies smoothly with the band-
width of the multitaper estimate, it can locally approximated by a
second-degree Chebyshev polynomial expansion:

S� f � f�� � a0� f �T0� f�

W� � a1� f �T1� f�

W�
� a2� f �T2� f�

W� , �W 
 f� 
 �W,

where W is the half-bandwidth, Tn are Chebyshev basis polynomials, and
an( f ) are coefficients. The coefficient of the linear term is approximately
proportional to the first derivative of the spectral density at f:

dS� f � f��

df�
� a1� f � � W.

Using this Chebyshev polynomial approximation, the local covariance of
the eigenspectra within the bandwidth [f 
 W,f � W] can be expanded as

Cij� f � 	 �

W

�W

Gij� f��S� f � f��df� � a0� f ��

W

�W

Gij� f��T0� f�

W�df�

� a1� f ��

W

�W

Gij� f��T1� f�

W�df� � a2� f ��

W

�W

Gij� f��T2� f�

W�df�,

where

Gij� f � 	 Vi� f �Vj̈
�� f �

and V1,. . . ,VK are the K orthonormal Slepian tapers (in frequency space)
that were used to compute the multitaper estimate. V1,. . . ,VK are Her-
mitian functions, meaning that their real components are even functions
and their imaginary components are odd functions. T0 and T2 are even
functions, and T1 is an odd function. Because the domain of integration
[
W,�W] is symmetric about zero, a1( f ) can be estimated from the
imaginary component of the complex covariance matrix Cij( f ).

Around each frequency f, we constructed a global covariance matrix
with block-diagonal structure, in which each submatrix along the diag-
onal was the multitaper covariance matrix for a single pass. We estimated
the first derivative of the spectral density, a1( f ) � W, by least-squares fit to
the imaginary component of this global covariance matrix. We then
found all local maxima in the spike phase spectrum (i.e., positive-to-
negative zero-crossings of the first derivative) within the 0.6 –1.4 cycle 
1

frequency band. We deliberately chose this wide, inclusive frequency
band to avoid selection bias.

After finding all candidate local maxima, we defined the peak of the
spike phase spectrum to be the local maximum with the largest integrated
spectral power within �0.05 cycle 
1 (the multitaper smoothing band-
width). We wanted to be confident that this spectral peak reflected a
significant oscillation in the neuron’s spike train, rather than a spurious
fluctuation due to finite sampling. To test statistical significance, we
computed spike phase spectra for 500 surrogate spike trains in which
each spike phase was independently jittered by a random offset drawn
from a uniform distribution on the interval [
�, ��]. This jittering
disrupted oscillatory structure on the theta timescale while preserving
slower spatial modulations of firing rate. The test statistic was the ratio of
integrated power within [fpeak 
W, fpeak �W] divided by the total power
within the 0.6 –1.4 cycle 
1 frequency band. We deemed an observed
peak in the spike phase spectrum to be significant at the 0.05 level if the
test statistic for the experimentally observed spike train was greater than
the value attained by 95% or more of the phase-jittered spike trains.
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Results
We collected data from 5 rats while they ran
on two geometrically identical running
tracks that were located in separate parti-
tions of a room. The rats experienced many
training sessions on one of the tracks (envi-
ronment 1) before recording, whereas the
other track (environment 2) was relatively
novel because it was introduced during re-
cording. This experimental design allowed
us to characterize neural representations of
spatial context between different environ-
ments as well as spatial location within an
environment. We did not record enough
neurons every day to be able to analyze
novelty-triggered dynamics as a function of
the number of exposures to environment 2,
so instead we combined data from all days of
recording. Overall we found that the rats
spent on average 49% of the total recording
time (25 h across all 5 rats in the two tracks)
not at a food well. Seventy percent of this
time the rats ran toward a food well at veloc-
ities �5 cm/s, and during these running pe-
riods we observed a theta power ratio
exceeding 5 dB 99% of the time.

Diversity of firing patterns in
the subiculum
Using tetrodes, we recorded spikes from 91
single units in the subiculum at intermediate
locations along the septal-temporal axis and
extendingalongtheproximal-distal axisof the
subiculum (Fig. 1A). Previous studies pro-
posed various schemes to classify subicular
neurons on the basis of firing rates, bursting
patterns, and extracellular spike waveforms
(Sharp and Green, 1994; Anderson and
O’Mara, 2003). We therefore examined
these parameters to identify salient differ-
ences in the firing properties of the neurons
in our dataset (Fig. 1B,C).

We were able to distinguish separate fast-
spiking and non-fast spiking classes of neu-
rons, but we did not find any clear basis for
classifying neurons according to burstiness.
Three neurons in our dataset had narrow,
symmetric spike waveforms and fired at
high mean rates (�30 spikes/s) with no ap-
preciable bursting tendency. Non-bursting,
fast-spiking neurons in the subiculum have
been previously identified as putative inhib-
itory interneurons (Greene and Totterdell,
1997; Menendez de la Prida et al., 2003). The other 88 neurons had
broad, asymmetric spike waveforms and were quite diverse in their
firing properties. There was no clear category boundary between
“bursting” and “non-bursting” neurons, and burstiness did not sig-
nificantly correlate with any features of the spike waveform that we
measured. We classified these neurons as putative pyramidal cells, in
agreement with previous studies that found substantial variability in
burstiness among subicular neurons with indistinguishable pyrami-
dal morphologies (Taube, 1993; Staff et al., 2000).

Neurons at different proximal-distal locations within the subic-
ulum receive different inputs and send output projections to differ-
ent targets (Witter, 2006). Sharp and Green (1994) reported that
neurons in the proximal subiculum (closer to area CA1) have slightly
lower mean firing rates and fire over a somewhat smaller proportion
of the environment than neurons in the distal subiculum (closer to
presubiculum). We therefore examined functional differentiations
along the transverse axis of the subiculum.

We found a pronounced proximal-distal gradient in the dis-
tribution of firing rates among neurons in the subiculum. We

Figure 1. Single-unit recording in the subiculum. A, A Nissl-stained coronal section, �6.8 mm posterior from bregma, showing
representative recording sites in the intermediate subiculum. The arrows indicate two tetrode penetration tracks. Scale bar, 500
�m. B, Spike autocorrelograms and mean extracellular spike waveforms of three representative subicular neurons. Spike auto-
correlograms were computed with 1 ms bins. Mean spike waveforms were computed with spikes aligned on the initial negativity
(trough). The bursting neuron at top is distinguished by the short-lag peak in its autocorrelogram, as quantified by the burst index.
The fast-spiking neuron at bottom is distinguished by the narrow and nearly symmetric negative and positive phases of the spike
waveform. C, Summary of mean firing rate and burst index for all neurons recorded in the subiculum. Each symbol corresponds to
a single neuron. Fast-spiking neurons (putative inhibitory interneurons) are plotted as circles, and non-fast spiking neurons
(putative pyramidal neurons) are plotted as triangles. Symbols are color-coded by anatomical location along the transverse axis of
the subiculum. Mean rates increased from proximal to distal subiculum. D, Spike waveform width and trough/peak asymmetry for
the same neurons shown in C. E, Summary of mean firing rate and burst index for all neurons recorded in distal area CA1 and in the
CA1/subiculum transition zone. Fast-spiking neurons (putative inhibitory interneurons) are plotted as circles, and non-fast spiking
neurons (putative pyramidal neurons) are plotted as triangles. F, Spike waveform width and trough/peak asymmetry for the same
neurons shown in E.
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grouped neurons by anatomical location in transverse thirds of
the subiculum: proximal (closer to CA1), middle, or distal (closer
to presubiculum). Plotting the mean firing rates of subicular neu-
rons grouped by transverse location revealed a striking pattern
(Fig. 1C). The median (interquartile range) firing rates of princi-
pal neurons in the proximal, middle, and distal groups were,
respectively, 2.5 (1.4 –3.7), 6.3 (4.1–11.4), and 10.3 (6.6 –14.1)
spikes/s. The effect of proximal-distal location on firing rate was
statistically significant (p � 10
7, Kruskal–Wallis test). We did
not find a statistically significant effect of proximal-distal loca-
tion on spike waveforms (Fig. 1D).

For reference, we compared the firing properties of neurons in
the subiculum to those of simultaneously recorded neurons in area
CA1 at nearby locations along the septal-temporal axis. In 3 of the 5
rats, some tetrodes penetrated the distal part of area CA1 and the
transition zone where the principal cell layer of area CA1 superfi-
cially overlaps the principal cell layer of the subiculum. The neurons

that we recorded at these locations seemed to constitute a homoge-
neous sample; none of our analyses revealed significant differences
between neurons in the CA1/subiculum transition zone versus neu-
rons in CA1 proper. Therefore, to improve the statistical power of
comparisons with neurons in the subiculum proper, we assigned all
of these neurons to a single “distal CA1” group, with the caveat that
this may be an oversimplification of the neuronal population in the
CA1/subiculum transition zone.

As expected (Barnes et al., 1990; Sharp and Green, 1994), we
found that the median (interquartile range) firing rate of princi-
pal neurons in the distal CA1 group was 1.4 (1.1–1.7) spikes/s,
which was significantly lower than the overall median firing rate
of principal neurons in the subiculum (p � 10
9, Kruskal–Wallis
test). The firing rates of principal neurons in area CA1 cluster
near zero; in the proximal subiculum, firing rates are slightly
higher; and in the middle and distal subiculum, the firing-rate
distributions are shifted even higher.

Figure 2. Spatial representation in the subiculum. A–C, Each panel shows position-phase firing-rate maps and spike-amplitude cluster plots for one neuron. The top and bottom rows correspond
to sessions 1 and 3 which were in the same environment. Each position-phase firing-rate map shows the estimated firing rate of the neuron as a function of the rat’s linearized position and the phase
of theta oscillations in the LFP. Separate firing-rate maps are shown for the right-bound and left-bound directions of travel in the environment. Linearized position was measured with respect to the
midpoint of the track, and theta phase was defined so that the positive peak of the theta oscillation was at 0°. The firing-rate maps are duplicated over two cycles of theta to clearly show their
phase-periodicity. To the right, cluster plots show spike amplitudes recorded on pairs of tetrode channels. Black points correspond to spikes from the neuron, and gray points correspond to spikes
from other neurons. A, A representative neuron in the proximal subiculum. B, A representative neuron in the middle subiculum. C, A representative neuron in the distal subiculum.
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Spatial representation in the subiculum
We also found significant proximal-distal differences in the spa-
tial coding properties of neurons in the subiculum. We estimated
firing-rate maps as a function of the animal’s linearized position
along the track and the instantaneous phase of theta oscillations
in the LFP (see Materials and Methods). For each neuron, sepa-
rate position-phase firing-rate maps were estimated in each en-
vironment and direction of running. Figure 2 shows examples of
firing-rate maps for representative neurons in the proximal, mid-
dle, and distal subiculum. These firing-rate maps contain well
defined regions of high firing rate in position-phase space, which
we refer to as unitary place fields in line with previous terminol-
ogy (Maurer et al., 2006). Note that these place fields have oblique
orientations that are indicative of theta phase precession; this
aspect of spatial coding will be addressed later in the paper.

We found that a majority of neurons in the subiculum have
multiple, irregularly spaced unitary place fields, consistent with
previous descriptions of “patchy” spatial firing (Barnes et al.,
1990; Sharp and Green, 1994). Remarkably, the firing-rate maps
seemed to vary from those in proximal subiculum (Fig. 2A) that
closely resembled maps from CA1 neurons to those in the middle
and distal parts of the subiculum (Fig. 2B,C) that resembled the
multipeaked maps from entorhinal grid cells in linear environ-
ments (Hafting et al., 2008; Derdikman et al., 2009; Mizuseki et
al., 2009). Almost all of the neurons that we recorded in the subic-
ulum showed distinct patterns of activity in the right-bound versus
left-bound directions of travel; this is consistent with the known
directional selectivity of neurons in area CA1 (McNaughton et al.,
1983) and also agrees with previous recording studies of subicular
neurons during directional running on an 8-arm radial maze
(Barnes et al., 1990).

To compare the spatial firing patterns of neurons in the prox-
imal, middle, and distal subiculum, we computed spatial activity
fractions based on the firing-rate maps (Battaglia et al., 2004). A
spatial activity fraction close to zero indicates that the neuron is

sparsely active in space and only fires in a single location in the
environment, whereas a fraction close to one indicates that the
neuron fires uniformly over all spatial location. Plotting the spa-
tial activity fractions of subicular neurons grouped by transverse
location revealed a proximal-distal gradient that was consistent
with the firing-rate gradient (Fig. 3A). The median (interquartile
range) spatial activity fraction of principal neurons in the proxi-
mal, middle, and distal groups were, respectively, 0.31 (0.19 –
0.43), 0.54 (0.32– 0.68), and 0.69 (0.59 – 0.74). The effect of
proximal-distal location on spatial activity fraction was statisti-
cally significant (p � 10
4, Kruskal–Wallis test).

Comparison between regions confirmed previous findings
that neurons in the subiculum tend to fire over a greater propor-
tion of the environment than neurons in area CA1 (Fig. 3B). The
median (interquartile range) spatial activity fraction of putative
principal neurons in distal CA1 was 0.26 (0.21– 0.37), which was
significantly lower than the overall median spatial activity frac-
tion in the subiculum (p � 10
10, Kruskal–Wallis test). Thus, the
different firing-rate distributions in area CA1 and the subiculum
are mirrored by different patterns of spatial selectivity. We found
essentially identical results by estimating position-rate firing
maps from data using simple Gaussian smoothing (the log-
quadratic estimator in the methods section). Thus this observed
proximal-distal gradient in firing properties is robust to details in
the statistical procedures for estimating firing rate maps.

These differences could not be explained by biases in sampling
of data from individual animals. Table 2 shows the number of
units recorded in each rat and in each brain region, as well as the
number of recording sessions. Since we recorded different num-
bers of cells from each rat in each brain region, we examined
whether the variation found in firing properties across brain re-
gions could be explained by biases due to individual variation
across rats. Figure 3C shows four plots, one for each brain region,
in which for each unit in each recording session, the overall unit’s
firing rate is plotted against its spatial activity fraction. Each unit/

Figure 3. A, Summary of mean firing rate and spatial activity fraction for all putative principal neurons recorded in the subiculum. Only valid running passes during task sessions were included
in the calculation of mean firing rate. Each symbol corresponds to a single neuron. Symbols are color-coded by anatomical location along the transverse axis of the subiculum. Spatial representation
within the subiculum exhibits a proximal-distal gradient. B, Summary of mean firing rate and spatial activity fraction for all putative principal neurons recorded in distal area CA1 and in the
CA1/subiculum transition zone. Comparison of A and B reveals that neurons in area CA1 have lower mean firing rates and finer spatial selectivity than neurons in the subiculum. C, Firing rate versus
spatial activity pattern for each unit in each recording session, across rats and brain regions.
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session is color coded according to the identity of the individual
rat. Together, these plots do not reveal any systematic variation in
firing properties across individual rats that could account for
variation in firing properties across regions.

Similarly, we found that unit isolation quality could not ex-
plain anatomical differences in firing rate or sparsity. We took
each recording session for each neuron and computed two firing
rate properties, overall mean firing rate and spatial activity frac-
tion, and two measures of unit isolation quality, the L-ratio and
isolation distance (Schmitzer-Torbert et al., 2005). We examined
data on a per-session basis because unit isolation quality could in
principle change between recording sessions as the animal is
moved between environments. We then examined the relation-
ships between these values across all neurons and recording ses-
sions. We found that only 1.5% and 4.8% of the total variation in
firing rates across neurons and sessions could be explained by
variations in L-ratio and isolation distance respectively. Simi-
larly, we found that only 0.05% and 0.03% of the total variation in
spatial activity fractions across neurons and sessions could be
explained by variations in L-ratio and isolation distance respec-
tively. Moreover, when we subsampled units from all four re-
gions until the groups had approximately identical mean values
for both cluster quality measures, we still found significant dif-
ferences in overall firing rate (p � 10
16, Kruskal–Wallis
ANOVA) and mean spatial activity (p � 10
15, Kruskal–Wallis
ANOVA) across the four regions, indicating again that our results
are not due to differences in the quality of recordings.

Spatial information content of subicular firing-rate maps
What are the functional consequences of these spatial activity
differences on neural information processing? We applied infor-
mation theory to address this question. Using experimentally
derived position-phase firing-rate maps, we simulated realistic
spiking responses and computed the mutual information be-
tween spatial variables and spiking in short (20 ms) time win-
dows. This model-based information-theoretic analysis allowed
us to extrapolate from our experimental data to infer differences
in the amount of spatial information that is conveyed by neuro-
nal populations in the proximal, middle, and distal subiculum
and in area CA1.

First, we compared the spatial information content of the
firing-rate maps of single neurons. We found that, on average,
single neurons in the subiculum convey more spatial informa-

tion than do single neurons in distal CA1. The median (inter-
quartile range) of mutual information for neurons in the
subiculum was 0.057 (0.036–0.080) bits, versus 0.021 (0.0081–
0.056) bits for neurons in distal CA1. This difference was statistically
significant (p � 0.001, Kruskal–Wallis test). Comparisons within
the subiculum revealed a statistically significant effect of transverse
location as well. The median (interquartile range) mutual infor-
mation for single neurons in the proximal, middle, and distal
portions of the subiculum was, respectively, 0.030 (0.011– 0.052),
0.062 (0.040 – 0.088), and 0.062 (0.043– 0.083) bits (p � 10
4,
Kruskal–Wallis ANOVA). Post hoc multiple comparison with the
Tukey–Kramer method showed that the median information for
the proximal group was significantly lower than the median in-
formation for the middle and distal groups, at the 0.05 statistical
significance level.

These differences in spatial information content can be under-
stood by considering the relationship between mean firing rate
and information (Fig. 4A,B). Neurons with high mean firing
rates tend to fire over a large proportion of the environment, with
numerous up-and-down spatial modulations of intensity; con-
versely, neurons with low mean firing rates tend to fire sparsely
and remain silent in most of the environment (Fig. 3A,B). A key
insight of our information-theoretic analysis is that distributed,
spatially modulated firing throughout the environment conveys
more information than sparse, spatially localized firing. For ex-
ample, a spatially selective neuron that fires in only a single place
field will be silent at most times, and these silences convey little
information about the animal’s current spatial location because
they ambiguously code for any place that is not within the neu-
ron’s place field. Stated in information-theoretic terms, this
mostly silent neuron has a low response entropy, and because the
response entropy is an upper bound on mutual information, the
mutual information must also be low. In agreement with this
theoretical argument, we found a significant positive correlation
between mean firing rate and the information conveyed by single
neurons in the subiculum and in area CA1 (Spearman r � 0.66,
p � 10
9). Neurons with very low firing rates (�1 spikes/s)
conveyed little information, whereas neurons with higher firing
rates conveyed more information, even though they were less
spatially selective. Hippocampal area CA1 and the proximal
subiculum contain a substantial fraction of neurons that are si-
lent or only fire in a small region of the environment; these rela-
tively uninformative neurons explain the lower information
content of these regions. In contrast, the middle and distal subic-
ulum contain neurons with higher mean firing rates and larger
activity fractions, and most of these neurons exhibit informative
spatial firing-rate modulations.

Next, we compared the spatial information content of multi-
neuronal combinations of firing-rate maps. Given an ensemble of
neurons with diverse firing-rate maps, the amount of informa-
tion that is conveyed in a combinatorial ensemble code can ex-
ceed the sum of information that each single neuron conveys
independently. We found that, for a given ensemble size, ran-
domly selected ensembles of subicular neurons, particularly the
middle and distal subiculum, carry substantially more spatial in-
formation than randomly selected ensembles of CA1 neurons
(Fig. 4C). For all groups, the relationship between ensemble size
and mutual information was very close to linear. We therefore
quantified the gain in information per additional neuron by
linear regression of the median mutual information against
ensemble size. The slopes (bootstrap standard error) of the
best fit lines for the proximal, middle, and distal portions of
the subiculum were, respectively 0.037 (0.00094), 0.059

Table 2. Number of single units and recording sessions in each brain region within
each rat

CA1 and
transition zone

Proximal
subiculum

Middle
subiculum

Distal
subiculum

Rat 1
Total units 8 6 2 0
Total sessions 10 8 3 0

Rat 2
Total units 4 4 13 2
Total sessions 12 8 17 8

Rat 3
Total units 0 7 13 0
Total sessions 0 14 16 0

Rat 4
Total units 12 4 7 5
Total sessions 15 8 17 13

Rat 5
Total units 0 0 0 25
Total sessions 0 0 0 24
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(0.0010), and 0.064 (0.00080) bits/neuron. The slope of the
best fit line for area CA1 and the CA1/subiculum transition
zone was 0.036 (0.0013) bits/neuron. We performed a one-
way ANOVA on these slopes, using bootstrap estimates of the
variances of the regression coefficients. This ANOVA revealed
a highly significant effect of transverse anatomical location
( p � 10 
9). Pairwise multiple comparisons with the Tukey–

Kramer method revealed that distal area CA1 and the proximal
subiculum had significantly smaller slopes than the middle subicu-
lum and distal subiculum, at the 0.05 significance level. Thus, neu-
ronal ensembles in the proximal subiculum convey as much spatial
information as neuronal ensembles in area CA1, and neuronal en-
sembles in the middle and distal subiculum convey more spatial
information.

Figure 4. Information-theoretic comparison of spatial representations in the subiculum and in area CA1. A, Relationship between mean firing rate and mutual information conveyed by single
neurons in the subiculum. model neurons whose position-phase firing-rate maps were matched to experimental data from putative principal neurons in the subiculum. Symbols are color-coded
according to the location of the neuron along the transverse dimension of the subiculum. Neurons with mean firing rates �1 spikes/s have low mutual information, whereas higher firing rates are
compatible with high mutual information. B, Relationship between mean firing rate and the spatial information conveyed by model neurons whose position-phase firing-rate maps were matched
to experimental data from putative principal neurons in the CA1/subiculum transition zone and in distal area CA1. Mean firing rates is strongly correlated with mutual information, and the
distribution is skewed so that most neurons are clustered close to zero mean firing rate and convey almost no information. C, Histograms of spatial information conveyed by neuronal ensembles of
different sizes in different subregions. Each subpanel is a histogram of mutual information for ensembles of model neurons of a given size. From left to right, columns correspond to single neurons,
pairs of neurons, triplets of neurons, etc. Each row represents data from an anatomical subregion. As expected, the distributions shift to the right as the ensemble size increases; however, this shift
is larger in the distal and middle subiculum than in the proximal subiculum and in distal area CA1 and the CA1/subiculum transition zone. For single neurons and pairs, the distribution of mutual
information is skewed toward zero in the more proximal subregions. As one can also see in B, the mode of the distribution of mutual information among single neurons in area CA1 is near zero. D,
E, Medians and interquartile ranges of the histograms shown in C. Mutual information increases nearly linearly with the number of neurons in the ensemble. For a given ensemble size, neurons in
the proximal subiculum convey as much spatial information as do neurons in distal area CA1 and the CA1/subiculum transition zone, and neurons in the middle and distal subiculum convey more
spatial information.
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Our information-theoretic analysis points to the functional
consequences of sparse versus non-sparse spatial representations
in area CA1 and in the subiculum. Sparse, selective spatial repre-
sentation has an information cost, because neurons (like CA1
place cells) that are active in only a small fraction of the environ-
ment convey little information when they are silent. In contrast,
the non-sparse, high firing-rate spatial representation in the mid-
dle and distal subiculum results in greater average information
per neuron, because neurons that exhibit spatial firing-rate mod-
ulations over a large proportion of the environment consistently
convey information for most of the time.

Remapping of subicular spatial representations between two
geometrically identical environments
Most place cells in the hippocampus exhibit distinct firing-rate
maps in easily distinguished environments (Muller and Kubie,
1987; Best et al., 2001). Given the projections from area CA1 to
the subiculum, we would expect these changes in spatial repre-

sentation to propagate to the subiculum.
However, published studies of the subicu-
lum suggested that the spatial representa-
tion in the subiculum is much less
sensitive to changes in environment than
the upstream spatial representation in
area CA1 (Sharp, 2006; Lever et al., 2009).
To investigate this puzzle, we examined
the firing-rate maps of neurons that were
recorded in both environment 1 and en-
vironment 2.

We found clear evidence that the spa-
tial representation in subiculum remaps
across two geometrically identical envi-
ronments that differed only in their famil-
iarity to the rats and their allocentric
locations. Of the subicular neurons that
we recorded, 59 putative principal neu-
rons had stable, well isolated, identifiable
spike waveforms in both environment 1
and environment 2. We found many ex-
amples of neurons whose firing-rate maps
were completely different between envi-
ronment 1 and environment 2. Examples
of between-environment remapping by
representative neurons in the proximal,
middle, and distal subiculum are shown
in Figure 5. The diversity of remapping
patterns is remarkable. Some neurons
(like the one shown in Fig. 5A) had clear
place fields in one environment and rarely
spiked in the other environment. Other
neurons maintained homotopic place
fields across both environments, but with
significant differences in firing rate, which
has been described as “rate remapping” in
the hippocampus (Leutgeb et al., 2005).
Such rate remapping could account for
previous claims about the invariance of
subicular receptive fields (Sharp, 2006).
Most commonly, we observed a complex
form of remapping, where a subset of
place fields were maintained across both
environments while other portions of the
firing-rate map changed. Given a neu-

ron’s firing-rate map in one environment, we could not find any
parameter that reliably predicted how similar that neuron’s
firing-rate map would be in the other environment.

To quantify these observations over our entire dataset, we first
examined differences in the firing rates of neurons across envi-
ronment 1 versus environment 2. Overall, neurons in the subic-
ulum maintained a similar level of activity in both environments
(Fig. 6A). There was a nonsignificant trend for neurons in the
distal subiculum to have lower firing rates in environment 2 than
in environment 1 (p � 0.15, two-sided binomial test); this differ-
ence may be attributable to that fact that environment 2 was less
familiar and therefore rats tended to run more slowly in environ-
ment 2. The overall correlation between firing rate in environ-
ment 1 and firing rate in environment 2 was strong among
subicular neurons (Spearman r � 0.87, p � 10
9). In contrast,
principal neurons in distal area CA1 had much lower firing rates,
and a substantial proportion had firing rates close to zero in one
or both of the environments (Fig. 6B). Among neurons in the

Figure 5. Examples of remapping in the subiculum. A–F, Each panel shows position-phase firing-rate maps of a single neuron
in the same direction of travel in both environment 1 and environment 2, along with a comparative overlay of the spatial firing-rate
profiles in the two environments. Arrows indicate the direction of travel. To show firing-rate differences, the firing-rate maps in
each pair are plotted with the same color scale. Dark blue is zero, and dark red is the maximum firing rate encountered in either
environment. A, B, Representative neurons in the proximal subiculum. C, D, Representative neurons in the middle subiculum. E, F,
Representative neurons in the distal subiculum.
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distal CA1 group, the correlation between
firing rate in environment 1 and firing
rate in environment 2 was weak and not
statistically significant (Spearman r �
0.19, p � 0.49). With a firing rate of 1
spikes/s as a threshold for categorizing a
neuron as active/inactive, 7 of 15 (47%)
principal neurons in distal CA1 and the
CA1/subiculum transition zone were ac-
tive in one environment but not the other.
Only 4 of 59 (7%) principal neurons in the
subiculum exhibited such a contrast in ac-
tivity between the two environments.
Fast-spiking putative inhibitory interneu-
rons in both the subiculum and in CA1
fired consistently at the same high firing
rate in either environment (data not
shown).

We also quantified the within-neuron
pairwise similarity of position-phase firing-
rate maps in environment 1 and environ-
ment 2 (Fig. 6C–F). The first measure,
cosine similarity of receptive fields (DeAn-
gelis et al., 1999), is equivalent to treating a
given neuron’s firing-rate maps in the two
environments as vectors and taking their
dot product. The second measure, normal-
ized overlap (Battaglia et al., 2004; Singer et
al., 2010) measures the overlapping areas of
the spatial firing profiles. Both the cosine
similarity and normalized overlap measures
are sensitive to overall place field rates and
sizes, so we performed within-neuron com-
parisons only, comparing the similarity of
firing-rate maps in environment 1 versus
environment 2 to the similarity across two
exposures to environment 1. If the spatial
representation in the subiculum were
invariant to changes in environment,
then we would expect, by chance alone,
approximately half of the neurons to
have higher similarity scores for [envi-
ronment 1– environment 2] than for
[environment 1– environment 1].

In fact, we found that a significant ma-
jority of neurons in the subiculum exhib-
ited more similarity in their firing-rate
maps between two sessions in the same
environment than between different envi-
ronments (cosine similarity: 39 of 39 neu-
rons, p � 10
10; normalized overlap: 37
of 39 neurons, p � 10
8; binomial test).
Performing the same analyses with prin-
cipal neurons in distal CA1 showed that
they also remapped between environ-
ment 1 and environment 2, as expected
(cosine similarity: 10 of 11 neurons, p �
0.01; normalized overlap: 10 of 11 neurons, p � 0.01; binomial
test). These results clearly demonstrate that the spatial repre-
sentation in the subiculum, like the spatial representation in
the hippocampus, is not invariant to changes of environmen-
tal context. This is in contrast to previous studies which em-
phasized the qualitative, though not exact, invariance of

subicular representations across environments (Sharp, 1997,
2006).

We again used our model-based information-theoretic ap-
proach to rigorously compare how much information neurons
convey about the animal’s current environmental context. Be-
cause the two tracks were geometrically identical, we could com-

Figure 6. Remapping of spatial representations across environments. A, Scatter plot of mean firing rates in environment 1
versus environment 2 for putative principal neurons in the subiculum. Mean firing rates were computed during times when the rat
was running toward a food well with a speed of least 10 cm/s and the LFP theta power ratio was above threshold. Symbols are
color-coded according to the location of the neuron along the transverse dimension of the subiculum. The dashed diagonal line has
unity slope. B, A similar scatter plot of mean firing rates in environment 1 versus environment 2 for putative principal neurons in the
CA1/subiculum transition zone and in distal area CA1. C, Cosine similarity of position-phase firing-rate maps between two sessions
in the same environment (horizontal axis) and between two different environments (vertical axis), for neurons in the subiculum.
Departures below the dashed diagonal unity line indicate dissimilar spatial representations in environment 1 versus environment
2. Each symbol corresponds to a neuron and a direction of travel (right-bound or left-bound). Symbols are color-coded according to
the location of the neuron along the transverse dimension of the subiculum. D, The same cosine similarity measures for neurons in
the CA1/subiculum transition zone and in distal area CA1. E, Normalized overlap of position-phase firing-rate maps between two
sessions in the same environment (horizontal axis) and between two different environments (vertical axis), for neurons in the
subiculum. Again, departures below the dashed diagonal unity line indicate dissimilar spatial representations in environment 1
and environment 2. Symbols are the same as in C. F, The same normalized overlap measures for neurons in the CA1/subiculum
transition zone and in distal area CA1. G, Mutual information between spike responses and environment, conditioned on linearized
position in the environment, for ensembles of neurons in the subiculum. Each plotted point is the median of the conditional mutual
information for ensembles of a given size. Error bars indicate the interquartile range of values. Symbols and lines are color-coded
according to the location of neurons along the transverse dimension of the subiculum. H, Medians and interquartile ranges of
conditional mutual information for ensembles of neurons in distal area CA1 and in the CA1/subiculum transition zone.
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pare the spiking probabilities of neurons at equivalent linearized
positions across both environments. In terms of information the-
ory, we estimated the conditional mutual information between
ensemble spiking responses and the identity of the environment,
given the animal’s current linearized position on the track. We
found that neurons in the subiculum, on average, are as informa-
tive about spatial context as neurons in area CA1. Figure 6, G and
H, shows the gain in conditional mutual information per addi-
tional neuron in the ensemble. The slopes of the best fit lines
(bootstrap standard error) for the proximal, middle, and distal
portions of the subiculum were, respectively 0.012 (0.00027),
0.016 (0.00036), and 0.022 (0.00034) bits/neuron. For compari-
son, the gain in conditional mutual information per additional
neuron in distal area CA1 and was 0.015 (0.00052) bits/neuron.
We performed a one-way ANOVA on these slopes, using boot-
strap estimates of the sample variances. This ANOVA revealed a
significant effect of transverse anatomical location (p � 10
9).
Pairwise multiple comparisons with the Tukey–Kramer method
revealed that the gain in conditional mutual information was
significantly lower in the proximal subiculum versus the middle
subiculum, and significantly higher in the distal subiculum, at the
0.05 statistical significance level. Thus, there is a proximal-distal
gradient in the amount of environment-specific information that
is conveyed in the subiculum. Neurons in the proximal subicu-
lum convey slightly less information than those in area CA1,
while neurons in the distal subiculum convey more information.
Overall, the population of neurons in the subiculum is as infor-
mative about the identity of the current environment as the up-
stream population in area CA1.

Theta modulation in the subiculum
The spatial information analyses revealed that the firing-rate
maps of subicular neurons contain ample information about
both the animal’s location in an environment and the identity of
that environment. We then asked whether subicular neurons also
had the potential to participate in a temporal code associated with
phase precession. We first examined the relationship between the
firing of neurons in the subiculum and the phase of the theta
oscillations in the LFP (Fig. 7).

Previous investigators found that the firing of neurons in the
subiculum was significantly modulated by LFP theta phase (An-
derson and O’Mara, 2003). We confirmed this result in our data
and also discovered that distal subicular neurons were more
strongly theta modulated than their proximal or distal subicular
counterparts. Overall, we found significant theta power during
74% of the total recording time across all rats. Of the 91 neurons
that we recorded in the subiculum, 89 had a statistically signifi-
cant unimodal theta phase preference at the 0.05 significance
level (Rayleigh test for nonuniformity). Categorizing neurons in
the subiculum by transverse location revealed significant differ-
ences in the degree theta modulation (Fig. 7B,C). The population
average firing rate in the distal subiculum was not only greater
than that in the proximal subiculum, but also more strongly
modulated by theta phase. Differences in theta phase modulation
were also apparent when analyzed on a per-neuron basis. We
quantified the phase locking of each neuron to LFP theta oscilla-
tions by fitting the distribution of spike phases with a von Mises
distribution and calculating the concentration parameter of fit
(Siapas et al., 2005). The concentration parameter assumes pos-
itive values, and larger values indicate stronger phase locking.
Excluding fast-spiking neurons, median (interquartile range)
spike phase concentration values in the proximal, middle, and

distal portions of the subiculum were, respectively, 0.25 (0.16 –
0.34), 0.17 (0.11– 0.29), and 0.34 (0.28 – 0.50) (p � 0.00014,
Kruskal–Wallis ANOVA). Pairwise multiple comparisons with
the Tukey–Kramer method revealed that neurons and proximal
and middle subiculum had significantly weaker theta phase mod-
ulation than neurons in the distal subiculum at the 0.05 level, but
the proximal and middle groups did not significantly differ from
each other. To control for possible theta phase offsets between
recording sites, we repeated these analyses with each neuron ref-
erenced to the local phase of theta recorded on the same tetrode
on which the neuron’s spikes were recorded, instead of a com-
mon reference electrode in each hemisphere. This did not quali-
tatively alter any of the results.

Phase precession in the subiculum
The position-phase firing-rate maps in Figures 2 and 5 indicate
that neurons in the subiculum exhibit theta phase precession.
Many of the unitary place fields in these firing-rate maps are
obliquely oriented in position-phase space, with a negative cor-
relation between forward displacement along the track and the
preferred theta phase of firing. In addition, phase precession is
apparent over multiple successive place fields along the track.
Similar multifield phase precession has been described for neu-
rons in the hippocampus (Maurer et al., 2006) and in the EC
(Hafting et al., 2008; Mizuseki et al., 2009).

To quantify theta phase precession over the entire dataset, we
segmented individual place fields in the firing-rate maps and
measured their sizes and slopes in position-phase space, using a
fully automated, unbiased procedure (Fig. 8A). This procedure
was designed to be equally sensitive to positive and negative
slopes. Using this algorithm, we segmented 143 unitary place
fields that had a statistically significant correlation between theta
phase and linearized position. The correlation between phase and
position was negative—that is, there was theta phase precession
in the expected direction—in 142 of 143 of these unitary place
fields (Fig. 8B).

Figure 7. Theta phase modulation of single-unit spiking in the subiculum. A, Theta phase
tuning curves of putative principal neurons in the subiculum. Each row of the color map shows
the instantaneous firing rate of a single neuron as a function of the phase of theta oscillations in
the LFP. Instantaneous firing rates were estimated with an Epanechnikov kernel smoother (15°
half-width) and normalized by the maximum for each neuron. Neurons are sorted by their
preferred theta phase, indicated by white dots for neurons that are significantly modulated at
the 0.05 statistical significance level. To show periodicity, tuning curves are displayed over two
full cycles of theta. B, Corresponding population firing rates, averaged over principal neurons in
the distal, middle, and proximal thirds of the subiculum. C, Histograms of spike phase concen-
tration parameters for neurons in the distal, middle, and proximal thirds of the subiculum.
Larger values indicate stronger phase locking to LFP theta oscillations.
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We also measured the spatial extent of the place field along the
linearized position dimension (field length) and found a signifi-
cant correlation with phase precession slope, as has been reported
for the place fields of CA1 neurons (Huxter et al., 2003; Dragoi
and Buzsáki, 2006). Larger place fields had shallower phase pre-
cession rates (Spearman correlation � 0.65, p � 10
9). Similar
statistically significant correlations (all p � 0.001) were obtained
when we separately analyzed neurons in the proximal, middle,
and distal groups, and we also obtained a similar correlation with
the place fields of neurons that we recorded in distal area CA1
(Fig. 8D). Place fields were preferentially centered around the
trough of the LFP theta oscillation (Fig. 8C,E). These findings
indicate that although neurons in the subiculum and CA1 differ
in their spatial activity fractions and mean firing rates, the phe-
nomenology of theta phase precession within unitary place fields
is similar.

Although this place-field segmentation analysis demonstrated
qualitative similarities in phase precession between the subicu-
lum and CA1, it only included a small subset of the place field that
could be cleanly segmented in an automated fashion. Many neu-
rons in the subiculum had firing-rate maps that contained char-
acteristic “sloped” regions indicative of phase precession, but
unitary fields in these regions could not be segmented because
they were overlapping (for example, see the middle part of the
firing-rate map in Fig. 8A). To give a more complete accounting
of phase precession which did not require segmentation of recep-

tive fields and include all of the spike data, we computed the spike
phase spectrum (Mizuseki et al., 2009). This method quantifies
the relative frequency shift between the neuron’s oscillatory spik-
ing and the ongoing theta oscillation in the local field potential;
phase advance due to theta phase precession is manifested as a
peak frequency that is faster than the frequency of the LFP theta,
which is defined as unity in the spike phase spectrum. Because
most of the neurons fired differently in the two directions of
running along the track and across the two environments, we
estimated separate spectra for each environment and direction of
travel. We used a multitaper covariance method to locate the
peak of each spike phase spectrum, and we used a shuffle test to
determine which spectra had significant peaks. This peak-finding
procedure, illustrated in Figure 9A, was designed to be equally
sensitive to peak frequencies above or below the theta frequency.

We found that neurons in the subiculum had peak frequencies
which were consistently shifted above unity, indicating that their
spiking oscillated faster than the local LFP theta oscillation. This
was true for neurons in the proximal, middle, and distal thirds of
the subiculum, and also held true regardless of the neuron’s spa-
tial activity fraction (Fig. 9B). There was, however, a weak but
significant negative correlation between the spatial activity frac-
tion and the peak frequency of the spike phase spectrum (Spear-
man correlation � 
0.14, p � 0.03).

When we performed the same spike phase spectrum analysis
with neurons in distal area CA1 and the CA1/subiculum transi-
tion zone, we found that principal neurons exhibited a range of
shifted peak frequencies similar to those observed in the subicu-
lum, even though neurons in distal area CA1 had significantly
smaller spatial activity fractions and lower mean firing rates (Fig.
9C). Both in the subiculum and in CA1, fast-spiking putative
interneurons, with spatial activity fractions close to unity, had
peak frequencies that were closer to unity. In summary, principal
neurons in the subiculum and in area CA1 oscillate at similar
frequencies— offset from the frequency of theta oscillations—
despite pronounced differences in firing rate and spatial activity
fraction between these two regions and at different proximal-
distal levels within the subiculum. This result implies that the
mechanism of phase precession is not sensitive to differences in
overall activity level or distributed spatial coding, and it also sug-
gests that neurons in the subiculum are frequency-coupled to
upstream cell assemblies in the hippocampus (Geisler et al.,
2010).

Given that neurons in the subiculum exhibit theta phase pre-
cession, we examined whether phase precession is essential for
the spatial information content of subicular firing-rate maps. We
repeated our information-theoretic analysis with synthetically
generated firing-rate maps in which theta phase precession (that
is, the interactions between phase and position) had been re-
moved while preserving each neuron’s overall theta modulation
and spatial firing profile. We found that replacing phase preces-
sion with simple theta modulation had little effect on the amount
of spatial information conveyed in patterns of spiking and silence
in short (10 – 40 ms) time windows. However, due to the compu-
tational limitations, we only measured information in single time
bins and did not examine temporal correlations in spiking across
multiple time bins. Thus it remains possible that additional in-
formation may be conveyed by sequential spiking patterns asso-
ciated with theta phase precession in the subiculum.

Discussion
We gained several insights into how spatial information is prop-
agated and transformed through the subiculum. First, we found

Figure 8. Theta phase precession in unitary place fields. A, Illustration of the place field
segmentation method. A position-phase firing-rate map is shown for a representative neuron
in the subiculum. Segmented place fields are outlined in a dashed white contour, and white
arrows indicate the principal axis of phase precession within each field. B, Summary of field
length and phase precession slope for all unitary place fields of subicular neurons with signifi-
cant position-phase correlations. Each symbol corresponds to a unitary place field. Symbols are
color-coded according to the anatomical location of the neuron along the transverse axis of the
subiculum. Phase precessions slope is positively correlated with field length, so that larger place
fields have shallower slopes. C, Summary of preferred theta phase and peak firing rate for the
same unitary place fields as in B. The vertical line indicates the mean phase for all segmented
place fields, which is near to the trough of the LFP theta oscillation. D, Summary of field length
and phase precession slope for all unitary place fields of CA1 neurons with significant position-
phase correlations. E, Summary of preferred theta phase and peak firing rate for the same
unitary place fields as in D.
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that the spatial representation within the subiculum exhibits a
proximal-distal gradient, with higher firing rates and more spa-
tially distributed firing patterns in the distal part of the subicu-
lum. Second, we found that this transverse gradient within the
subiculum has important functional consequences: the distrib-

uted firing-rate maps of neurons in the distal subiculum con-
tained more information, on average per neuron, about both
spatial location and spatial context than the sparse firing-rate
maps of neurons in the proximal subiculum or area CA1. Finally,
we demonstrated that neurons at all proximal-distal locations
within the subiculum exhibit theta phase precession.

Proximal-distal differentiation within the subiculum
We found several significant proximal-distal differences within
the subiculum. Neurons in the proximal subiculum (closer to
area CA1) have lower mean firing rates and sparser spatial firing-
rate maps than neurons in the distal subiculum (closer to the
presubiculum). The proximal-distal difference in the sparseness
of coding is larger than the difference that was reported in a
earlier study (Sharp and Green, 1994). This discrepancy may be
due to methodological differences, including the septal-temporal
recording location within the subiculum, the behavioral para-
digm and the measure that was used to quantify sparseness.

We also found that the transverse gradient in spatial represen-
tation corresponded to a gradient in the spatial information.
Neurons in the proximal subiculum, which are more similar to
neurons in area CA1, carry less spatial information than neurons
in the distal subiculum, which have high mean firing rates and
large spatial activity fractions. In addition, neurons in the distal
subiculum tend to show stronger theta modulation than neurons
in the proximal subiculum.

The proximal and distal portions of the subiculum send out-
put projections to different territories (Naber and Witter, 1998).
Thus, the observed proximal-distal gradients in firing rate and
spatial activity may reflect different requirements for sparse ver-
sus distributed spatial coding in the target areas. Proximal-distal
gradients may also relate to the topographical organization of
entorhinal inputs to the subiculum. The distal subiculum con-
nects reciprocally with the medial EC while the proximal subic-
ulum is interconnected with the lateral EC (Witter, 2006). LFP
theta oscillations and theta modulation of spiking are stronger in
the medial EC than in lateral EC (Deshmukh et al., 2010). This is
consistent with our observation that neurons in distal subiculum
show stronger theta modulation of spiking than neurons in prox-
imal subiculum. At the same time, neurons in medial EC exhibit
greater spatial selectivity than those in lateral EC (Hargreaves et
al., 2005). We suggest that the dorsal subicular neurons that re-
ceive medial EC inputs may integrate a greater number of inputs
from EC or area CA1 than neurons in the proximal subiculum, so
that the net resultant spatial firing profile per neuron is less selec-
tive in the distal subiculum despite the spatial selectivity of indi-
vidual neurons in medial EC. Finally, recent work has found an
analogous proximo-distal functional specialization within the
CA1 field (Henriksen et al., 2010). These findings point toward
the existence of a general proximo-distal organization governing
hippocampal computations.

Advantages of distributed coding in the subiculum
We replicated previous findings that neurons in the subiculum
tend to have higher firing rates and poorer spatial selectivity than
neurons in area CA1 (Barnes et al., 1990; Sharp and Green, 1994).
However, using information theory, we demonstrated that subic-
ular place fields with high mean firing rates and broad, multi-
peaked spatial firing profiles actually convey more spatial
information than the more compact CA1 place fields. In effect,
subicular neurons with multiple unitary fields act as “multi-
plexed” CA1 place cells, sacrificing spatial selectivity for higher
information capacity.

Figure 9. Spectral analysis of theta phase precession. A, The spike phase spectrum of a
representative neuron in the subiculum. This example corresponds to the same neuron, envi-
ronment, and direction of travel that is shown in Figure 7A. The top shows the estimated power
spectral density, while the bottom shows the estimated first derivative of the spectrum with
respect to frequency. Note that this first derivative was estimated using the covariance of the
multitaper eigenspectra, not by numerical differentiation of the estimated power spectral den-
sity. The solid vertical line indicates the peak frequency, which is greater from unity, indicating
phase precession. Gray lines in the top are spike phase spectra computed for 500 surrogate spike
trains in which spikes were independently jittered within a single theta cycle. This shuffle test
shows that the peak in the observed spike phase spectrum is statistically significant. B, Sum-
mary of peak frequencies for all spike phase spectra of subicular neurons that have significant
peaks. Each symbol corresponds to spike phase spectrum of a single neuron in a particular
environment and direction of travel. Spatial activity fractions were computed from the corre-
sponding firing-rate maps. The spike phase spectra of fast-spiking neurons (putative inhibitory
interneurons) are plotted as circles, and the spike phase spectra of non-fast spiking neurons
(putative pyramidal neurons) are plotted as triangles. Symbols are color-coded according to the
anatomical location of the neuron along the transverse axis of the subiculum. The peaks of the
spike phase spectra for putative principal neurons occur at frequencies that are shifted above
unity, and the distribution of peak frequencies is similar across proximal-distal locations within
the subiculum. C, Summary of peak frequencies for all spike phase spectra of CA1 neurons that
have significant peaks.
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Previous studies have noted that spatial representations become
progressively less sparse at each stage of feedforward processing
(Barnes et al., 1990; Jung and McNaughton, 1993; Leutgeb et al.,
2004). We propose that one of the functions of the subiculum is to
transform the still relatively sparse spatial representation in area CA1
(Thompson and Best, 1989; Karlsson and Frank, 2008) into a dense,
distributed representation that is suitable for conveying information
to downstream targets outside of the hippocampal formation.
Sparse representations have several advantages: metabolic efficiency,
reduced interference during learning, associative memory capacity
and the ability to learn using simple local synaptic plasticity rules
(Marr, 1971; Fiete et al., 2004; Olshausen and Field, 2004). However,
sparse representations are also wasteful in terms of average informa-
tion per neuron, because a large fraction of neurons in the popula-
tion are silent for most of the time and therefore contribute little
information. In contrast, in dense distributed representations any
randomly selected neuron in the population is likely to be informa-
tive at any given time. From the perspective of a downstream decod-
ing circuit that can sample only a small random subset of incoming
axons, it may advantageous to receive inputs from less sparse subic-
ular neurons because enough spikes will be received in a short time
window to disambiguate the animal’s current spatial location. Thus,
the distributed spatial representation in the subiculum may be spe-
cialized for conveying hippocampally processed information to the
rest of the brain.

Intriguingly, these results are qualitatively consistent with
novel theories of long range brain communication based on com-
pressed sensing (Isely et al., 2011). This theory shows how a
downstream region (in this context the subiculum) can ran-
domly subsample a sparse high dimensional representation (in
this context CA1) through dense synaptic connections, yielding a
compressed representation with minimal information loss. This
compressed representation can then be sent to other brain re-
gions with a small number of long-range axons.

Subicular representation of spatial context
An earlier hypothesis was that the subiculum, unlike area CA1,
provides an “invariant” spatial representation (Sharp, 2006). Our
data suggest subicular representations are more informative
about spatial context than earlier suspected. We found that indi-
vidual neurons in the subiculum remap across two different en-
vironments, even when those environments are geometrically
identical. Furthermore, subicular and CA1 neurons convey sim-
ilarly information about the identity of the current environment.

However, we did observe a diversity of remapping patterns in
the subiculum. Some neurons appeared to have completely dif-
ferent place fields in the two environments, whereas others
seemed to have place fields in similar locations but with modest
scaling of firing-rate. These different degrees of remapping at a
single-neuron may support multiple levels of representation, as
has been suggested by others (Leutgeb et al., 2005). Neuron that
maintain the same firing-rate map may support a generalized
representation of geometric similarities across environments,
whereas neurons that exhibit completely different firing-rate
maps could disambiguate between geometrically identical envi-
ronments (Singer et al., 2010).

Theta phase precession in the subiculum
We found that neurons at all proximal-distal locations within
the subiculum exhibit robust theta phase precession, and that the
range of oscillatory spiking frequencies is similar between the
subiculum and nearby regions of area CA1. This finding implies
that the mechanism of phase precession in the subiculum must be

remarkably invariant to proximal-distal gradients in mean firing
rate, spatial activity, and anatomical connectivity.

The manifestation of theta phase precession across both area
CA1 and the subiculum, and the “compositional” appearance of
subicular firing-rate maps with multiple unitary place fields
might seem to suggest that neurons in the subiculum inherit their
properties as a result of the convergence of multiple inputs from
CA1 place cells (Barnes et al., 1990; Sharp and Green, 1994). This
hypothesis, although appealing, is unlikely to be correct. The
projection from CA1 to the subiculum is extremely dense (Ama-
ral et al., 1991; Cenquizca and Swanson, 2007), so each neuron in
the subiculum likely receives inputs from many CA1 place cells.
Recent modeling work has shown that the summation of spiking
outputs from phase-precessing CA1 place cells results in a net
excitatory drive that is phase-locked, not precessing, relative to
theta (Geisler et al., 2010). Therefore, massed convergence and
summation of many CA1 inputs would produce weak or absent
phase precession in the subiculum. More intricate circuit-level
mechanisms are required to explain the persistence of theta phase
precession despite the tremendous convergence of CA1 inputs
onto subicular neurons.

What are the consequences of theta phase precession for spa-
tial information coding in the subiculum? It is not clear whether
temporal coding of distances by “temporal sequence compres-
sion,” which was developed for hippocampal place cells with sin-
gle place fields (Skaggs et al., 1996; Dragoi and Buzsáki, 2006), is
a plausible mechanism in the subiculum. Neurons in the middle
and distal subiculum tend to multiplex their firing over multiple
place fields, so that their spikes do not correspond to a single
region in the environment. As a result, spike-timing differences
between pairs of neurons are ambiguous with respect to spatial
order and distances between the neurons’ place fields. Instead, it
may be more fruitful to think about theta phase precession as a
signature of transiently synchronized cell assemblies that are
temporally segregated from the larger population by their fre-
quency of co-oscillation (Geisler et al., 2010). Coordinated phase
precession of cell assemblies across area CA1 and the subiculum
may facilitate the transmission of spatial information and spike
timing-dependent plasticity within the hippocampal circuit.
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