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Abstract
Animal studies have found that deficits in brain docosahexaenoic acid (DHA, 22:6n-3) accrual
during perinatal development leads to transient and enduring abnormalities in brain development
and function. Determining the relevance of this evidence to brain disorders in humans has been
hampered by an inability to determine antimortem brain DHA levels and limitations associated
with a postmortem approach. Accordingly, there is a need for alternate or complementary
apsroaches to better understand the role of DHA in cortical function and pathology, and
conventional magnetic resonance imaging (MRI) techniques may be ideally suited for this
application. A major advantage of neuroimaging is that it permits prospective evaluation of the
effects of manipulating DHA status on both clinical and neuroimaging variables. Emerging
evidence from MRI studies suggest that greater DHA status is associated with cortical structural
and functional integrity, and suggest that reduced DHA status and abnormalities in cortical
function observed in psychiatric disorders may be interrelated phenomenon. Preliminary evidence
from animal MRI studies support a critical role of DHA in brain maturation. Neuroimaging
research in both human and animals therefore holds tremendous promise for developing a better
understanding of the role of DHA status in cortical function, as well as for elucidating the impact
of DHA deficiency on neuropathological processes implicated in the etiology and progression of
neurodevelopmental and psychiatric disorders.
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1. Introduction
Mammalian brain tissue is predominantly composed of lipids (60–65% of brain dry weight)
which are comprised of saturated, monounsaturated, and polyunsaturated fatty acids. The
principle omega-3 polyunsaturated fatty acid in mammalian brain is docosahexaenoic acid
(DHA, 22:6n-3), which comprises approximately 10–20% of gray matter, and approximately
2% of white matter, fatty acid composition depending on brain region, age, and habitual

© 2012 Elsevier Ltd. All rights reserved.
*To whom correspondence should be addressed: Robert K. McNamara, Ph.D., Department of Psychiatry and Behavioral
Neuroscience, University of Cincinnati College of Medicine, 260 Stetson Street, Cincinnati, OH 45219-0516, PH: 513-558-5601,
FAX: 513-558-4805, robert.mcnamara@uc.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Prostaglandins Leukot Essent Fatty Acids. Author manuscript; available in PMC 2014 January
01.

Published in final edited form as:
Prostaglandins Leukot Essent Fatty Acids. 2013 January ; 88(1): 33–42. doi:10.1016/j.plefa.2012.03.011.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



dietary omega-3 fatty acid intake [1–6]. Although omega-3 fatty acid precursors of DHA,
including α-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA< 20:5n-3), and
docosapentaenoic acid (22:5n-3), cross the blood-brain barrier, they are rapidly β-oxidized
[7,8] and consequently comprise <1% of total brain fatty acid composition [1–6]. Mammals
require a dietary source of omega-3 fatty acids to procure and maintain adequate
concentrations of DHA in peripheral and central tissues, and healthy adult human exhibit
limited or negligible ALA→EPA, ALA→DHA, and EPA→DHA biosynthesis [9].
However, preformed DHA can be obtained directly from the diet, particularly from fatty
cold water fish or fish oil supplements [10], and preformed DHA is significantly more
effective than ALA for increasing DHA levels in erythrocytes [11], breast milk [12,13], and
brain gray matter [14].

Unesterified DHA rapidly diffuses from plasma to brain [15], and at a rate that is
equilibrated with brain DHA consumption [16]. DHA preferentially accumulates in gray
matter [16,17], and is enriched in synaptic and mitochondrial membranes [18]. DHA is
acetylated into the sn-2 position of membrane phospholipids phosphatidylethanolamine and
phosphatidylserine [19], and is mobilized preferentially by the calcium-independent
phospholipase A2 (iPLA2) isoform [20]. It has been estimated that approximately 2–8% of
rat brain DHA is replaced daily due to metabolism, and has a loss half-life in total rat brain
phospholipids of 33 days under steady state ALA intake [21,22]. Dietary ALA insufficiency
resulting in deficits in rat brain DHA composition are associated with a reduction in iPLA2
expression and activity [23], and an increase in the brain DHA half-life [21]. Preliminary
estimates of the DHA half-life in human brain phospholipids are 2.5 years [17].

During perinatal rat brain development, cortical DHA concentrations increase sharply in
parallel with active periods of neurogenesis, neuroblast migration, differentiation and
synaptogenesis [1]. In human brain, DHA accumulates at a rapid rate initiating at
approximately the third trimester in utero, and increases to approximately 9% of total
cortical fatty acid composition in term-birth infants [24,25]. Infants born preterm exhibit
lower postmortem cortical DHA concentrations relative to term infants maintained on the
same ALA-fortified formula [25–28]. Non-human primates born preterm similarly exhibit
lower postmortem brain DHA concentrations relative to term-born primates [29,30]. During
human childhood and adolescence, there is a linear increase in postmortem frontal cortex
DHA composition, which stabilizes at ~15% of total cortical fatty acid composition by ~20
years of age [4].

Preclinical studies have provided evidence that brain DHA accrual during perinatal
maturation is required for normal neurotrophic factor expression, neurite outgrowth,
neurogenesis and migration, neuronal differentiation and dendritic arborization, embryonic
cortical plate expansion, nerve growth cone membrane signaling dynamics, and
synaptogenesis and plasticity [31–42]. Moreover, early cortical DHA accrual during
perinatal development is required for the normal functional maturation of multiple
neurotransmitter systems, including dopamine, serotonin, and acetylcholine [43–45].
Behavioral studies have demonstrated that deficits in cortical DHA accrual during perinatal
development are associated with enduring impairments in different cognitive tasks [46], and
elevated indices of depression and aggression [47]. In addition to the demonstrated
neurotrophic effects of DHA, emerging evidence suggests that DHA is protective against
neuronal degenerative processes in response to a variety of excitotoxic insults [48–54], and
increases resilience of axons and white matter in experimental injury and inflammation
models [55–57].

While the importance of cortical DHA accrual in human brain development and function is
poorly understood and controversial, a body of evidence suggests that higher maternal DHA
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status during and following pregnancy is associated with improved infant cognitive
development, particularly in the realm of attention [58–65]. Moreover, a growing body of
evidence suggests that deficits in attention during childhood frequently precede and predict
the subsequent emergence of psychopathology in high-risk populations [66–70].
Importantly, the initial onset of psychiatric disorders, including attention deficit
hyperactivity disorder (ADHD), schizophrenia, bipolar disorder, and major depressive
disorder (MDD), most frequently occurs during childhood and adolescence [71–73]. It is
relevant, therefore, that cross-sectional studies have repeatedly found that patients with
ADHD [74–77], schizophrenia [78–80], bipolar disorder [81–83], and MDD [83–89] exhibit
peripheral (plasma, erythrocyte) DHA deficits compared with healthy controls. Together,
these data suggest that low DHA status may contribute to impaired development of brain
circuits that mediate attention.

While the contribution of DHA deficiency to the progressive abnormalities in cortical
structure and function observed in psychiatric patients is not known, investigations of the
relationship between cortical DHA status and psychopathology have relied on case-control
studies of postmortem brain tissue. Some postmortem brain studies have observed
significant cortical DHA deficits in patients with psychiatric disorders [90–93] whereas
others have not [94–97]. The discrepancy in these findings may be attributable in part to
methodological challenges and limitations associated with this approach [98]. Nevertheless,
evidence from primary and secondary intervention studies suggest that elevating DHA status
through dietary supplementation is efficacious for preventing and/or treating
psychopathology in adolescent [99–102] and adult [103–105] patients, and prospective
longitudinal studies have found that lower baseline DHA status is a significant predictor of
future suicidal attempts in medication-free MDD patients [106] and cytokine-induced MDD
[107]. However, it is currently not known if central mechanisms mediate the
psychopathogenic effects of low DHA status, and new approaches are required to more
definitively elucidate such mechanisms.

2. Clinical MRI studies
Conventional magnetic resonance imaging (MRI) techniques may be well-suited to elucidate
the role of DHA in human cortical function and pathology. Modern MRI techniques permit
investigation of dynamic changes in cortical structure, chemistry, and functional activity, as
well as associated changes in clinical symptoms and DHA status. Because cortical DHA
status cannot be determined in living human subjects, peripheral indices (i.e., erythrocyte
membrane DHA composition) may serve as a surrogate measure of DHA status. In human
subjects, erythrocyte DHA levels provide a valid and reliable index of habitual DHA intake
[108–111]. Additionally, non-human primate and human postmortem studies suggest that
cortical and erythrocyte DHA levels are positively correlated under steady state dietary
conditions [4,5], though erythrocyte DHA levels change more rapidly than brain cortex
levels in response to changes in dietary omega-3 fatty acid intake.

Potential neuroimaging techniques available to evaluate the role of DHA status in
psychopathology include: (1) structural MRI, which determines cortical and subcortical gray
and white matter volumes, (2) diffusion tension imaging (DTI), which determines white
matter structural integrity, (3) MRI T2 relaxometery which determines membrane water
content as an index of fluidity, (4) functional magnetic resonance imaging (fMRI), which
determines resting and task-elicited changes in cortical activation patterns, (5) proton
magnetic resonance spectroscopy (1H MRS), which determines concentrations of different
chemical markers associated with cortical metabolic integrity, and (6) phosphorous magnetic
resonance spectroscopy (31P MRS), which determines chemical indices of phospholipid
membrane turnover. Additionally, positron emission tomography (PET) can determine
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changes in multiple metabolic processes including cortical fatty acid incorporation and
turnover rates and glucose metabolism. While these different imaging techniques have been
used extensively in clinical and animal research, only recently have they been employed to
investigate the role of DHA status on cortical structural and functional integrity.

The present review will focus on MRI studies investigating the role of DHA in
neurodevelopmental and psychiatric disorders, and readers are referred to a separate review
in this issue that is focused on the role of DHA in age-related neurodegenerative processes
[112]. In the following sections, evidence for abnormalities in cortical structural and
functional integrity in psychiatric disorders associated with DHA deficiency is briefly
reviewed, and evidence from MRI studies investigating relationships with peripheral indices
of DHA status and/or the effects of long-chain omega-3 fatty acid supplementation on MRI
outcomes are presented.

2.1. Structural magnetic resonance imaging
Longitudinal and cross-sectional structural MRI studies have begun to characterize gray and
white matter maturational patterns in typically developing youth [113]. The childhood and
adolescent period is associated with dynamic changes in both regressive (synaptic pruning)
and progressive (i.e., myelination) cellular events. Longitudinal structural MRI studies have
found that the period between childhood and early adolescence (7–12 years) is associated
with a rapid expansion of cortical gray matter density, whereas the period between
adolescence (13–18 years) and young adulthood (≥ 8 years) is associated with a progressive
loss of cortical gray matter density, which stabilizes in the third decade of life [114]. These
age-related changes in cortical volume are sexually dimorphic, peaking later in males than
females [115], and are governed by both genetic and environmental factors [116,117].
Postmortem human and non-human primate histological studies suggest that the decrease in
cortical gray matter volume during adolescence is attributable in part to reductions in
synaptic density rather than neuronal loss [118–121]. Frontal gray matter density loss is
associated with reciprocal increases in white matter density in fiber tracts including
frontotemporal pathways [122–123], the expansion of which is positively correlated with
cognitive development (i.e., performance on working memory tasks)[124].

Although the effect of deficits in prenatal brain DHA accrual on human neuroanatomical
trajectories are not known, structural MRI studies have found that children/adolescents born
preterm, which is associated with early deficits in cortical DHA accrual, exhibit significant
reductions in regional cortical and striatal gray matter volumes, reduced amygdala and
hippocampal volumes, reduced corpus callosum and white matter volumes, and larger
cerebral ventricles compared with age- and sex-matched term born controls [125].
Importantly, a placebo-controlled structural MRI study found that postnatal DHA
supplementation did not significantly alter age-related changes in white matter volume in
premature infants [126]. It is also relevant that preterm children are at increased risk for
developing ADHD [127–131], and structural MRI studies have found that ADHD children
exhibit patterns of cortical gray and white matter volume deficits similar to those observed
in preterm children [132].

Emerging evidence from cross-sectional structural MRI studies suggest that patients with
MDD exhibit lateral ventricle enlargement and smaller volumes of the basal ganglia,
thalamus, hippocampus, frontal lobe, cingulate cortex, and orbitofrontal cortex compared
with healthy controls [133]. Bipolar disorder is associated with increased volumes in lateral
ventricles, temporal lobe, and putamen [134] as well as progressive frontal white matter
pathology [135–138]. Moreover, reductions in amygdala volume have consistently been
observed in pediatric and adolescent, but not adult, bipolar patients [139], and chronic
lithium exposure is associated with increased hippocampal and amygdala volumes compared
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with unmedicated patients and healthy controls [134]. A longitudinal structural MRI study
further suggests that bipolar disorder is associated with accelerated loss in gray matter
volume in subregions of the prefrontal cortex during adolescence compared with typically
developing controls [140]. Longitudinal structural MRI studies have also found that
schizophrenic patients exhibit greater decreases over time in whole brain volume, whole
brain gray matter, frontal gray and white matter, parietal white matter, and temporal white
matter volume, as well as greater increases in lateral ventricular volume, compared with
healthy controls [141]. Postmortem histological studies suggest that the deficits in gray
matter volume observed in patients with psychiatric disorders is attributable in part to
lamina-specific reductions in neuronal size and density, dendritic arborization, and/or
dendritic spine density rather than neuronal loss [142–149].

Whether these region-specific deficits in gray and white matter volumes observed in
psychiatric patients by MRI are associated with lower DHA status, or are preventable or
reversible with adequate dietary DHA supplementation, is not known. However, prospective
structural MRI is ideally suited to evaluate this relationship. For example, patients with
generalized peroxisomal disorders exhibit significant erythrocyte and postmortem cortex
DHA deficits [150] and impaired central myelinogenesis [151], and a preliminary structural
MRI study found that treatment with DHA ethyl ester (100–600 mg/d) normalized or
significantly improved brain white matter volumes in peroxisomal disorder patients [152]. A
second preliminary structural MRI study found that greater habitual intake of long-chain
omega-3 fatty acids, which are positively correlated with erythrocyte DHA composition
[108–111], was associated with larger gray matter volumes in the anterior cingulate cortex,
the right hippocampus, and the right amygdala [153]. In a prospective randomized placebo-
controlled structural MRI trial, chronic (1 year) treatment with ethyl-EPA was found to slow
volume loss in the caudate and thalamus of patients with Huntington's disease [154].
Together, these preliminary MRI findings suggest that DHA status is positively associated
with regional gray and white matter volumes.

Neuronal membrane fluidity can also be evaluated using MRI by investigating changes in
brain water proton transverse relaxation times (T2). A preliminary T2 MRI study found that
four week treatment with EPA+DHA decreased whole brain T2 relaxation time in bipolar
patients compared with healthy controls, and was interpreted to reflect an increase cortical
membrane fluidity [155]. In a second study, 12-week ethyl-EPA treatment prevented
progressive increases in hippocampal T2 relaxation time observed in placebo-treated first-
episode psychosis patients, and reductions in negative symptom severity were associated
with smaller increases in T2 relaxation time [156].

2.2. Diffusion tension imaging (DTI)
As discussed, white matter abnormalities are one of the most consistently reported
neuroimaging findings in psychiatric disorders, and preclinical evidence suggests that DHA
increases myelin resilience to inflammation and injury. Complimenting MRI determinations
of white matter volumes, DTI additionally permits investigation of white matter structural
integrity as indexed by fractional anisotropy. A reduction in fractional anisotropy is
indicative of loss of white matter integrity, and has been found to be correlated with inter-
regional functional connectivity. For example, deficits in functional prefrontal-amygdala
connectivity in bipolar patients are correlated with reduced fractional anisotropy in the
uncinate fasciculus [157], the principal white matter axonal bundle connecting prefrontal
regions with anterior temporal lobe structures [158–160]. While the relationship between
DHA status and DTI measures of white matter integrity are not known, a preliminary DTI
study (n=12) observed a positive correlation between total plasma polyunsaturated fatty acid
concentrations and fractional anisotropy in the uncinate fasciculus white matter tract in
medicated psychotic patients [161].
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2.3. Functional magnetic resonance imaging
Functional magnetic resonance imaging (fMRI) determines relative changes in blood
oxygen level-dependent (BOLD) activity. Increases in BOLD signal are attributable to
greater oxygen-dependent synaptic activity and associated increases in local blood volume
[162], and reductions in BOLD signal are thought to reflect a suppression of neural activity
and shunting of blood from less active to more active regions [163]. fMRI studies can be
performed during resting state or during performance of cognitive tasks designed to activate
specific brain regions of interest, including the identical pairs continuous performance task.
In general, evidence from fMRI studies suggest that psychiatric disorders including MDD
and bipolar disorder are associated with greater resting activity in the prefrontal cortex,
deficits in task-elicited prefrontal activation, and greater amygdala activation during both
resting and active states using different tasks [164–169].

In a dose-ranging controlled fMRI trial, our group investigated the effects of 8-week DHA
supplementation on functional cortical activity during performance of sustained attention
task (CPT-IP) in healthy male children (8–10 years) [170]. At 8 weeks, erythrocyte
membrane DHA composition increased significantly from baseline in subjects receiving
low-dose (+47%) and high-dose DHA (+70%), but not placebo (−11%). During sustained
attention, both DHA dose groups exhibited significantly greater change from baseline in the
activation of dorsolateral prefrontal cortex (DLPFC, BA9), and low-dose and high-dose
DHA groups exhibited greater decreases in the occipital cortex and cerebellar cortex,
respectively, relative to placebo. Relative to low-dose DHA, high-dose DHA resulted in
greater decreases in activation of bilateral cerebellum. Using a less stringent statistical
threshold, greater decreases in temporal lobe and cerebellar cortices were observed in the
high-dose DHA group compared with placebo. Among all subjects, erythrocyte DHA
composition was positively correlated with DLPFC activation at baseline and endpoint. This
fMRI study therefore provides proof-of-concept evidence that increasing dietary DHA
intake alters functional activity in cortical attention networks in healthy male children. It is
relevant, therefore, that mediation-naïve pediatric ADHD patients exhibited reduced
prefrontal cortex activation and greater cerebellar cortex activation while performing a
sustained attention task [171], a pattern that is opposite to that observed in healthy children
receiving DHA supplmentation.

Prior case-control studies have found that MDD patients exhibit DHA deficits in
erythrocytes [89] and postmortem prefrontal cortex [91], and EPA+DHA supplementation
increases erythrocyte DHA levels and decrease mood symptom severity [100–102]. In view
of these findings, our group conducted a prospective 10-week open-label supplementation
trial to evaluate the effects of two doses of fish oil (EPA+DHA) (2.4 or 15 g/d) on functional
cortical activity patterns in adolescent (10–18 years) MDD patients during performance of a
sustained attention task (CPT-IP) [172]. We found that adolescent MDD patients exhibited
significantly lower erythrocyte and plasma DHA levels compared with a nested healthy
adolescent control group. At baseline, MDD patient erythrocyte DHA composition was
positively correlated with functional activation of the prefrontal cortex and anterior cingulate
cortex during sustained attention (Fig. 1). Fish oil supplementation significantly increased
erythrocyte DHA composition in low- and high-dose groups, and baseline depression
symptom severity scores declined significantly in both dose groups. However, we did not
observe any significant baseline-endpoint changes in functional activity in either low-dose
or high-dose groups, or when both groups were combined. These preliminary fMRI findings
suggest that DHA status of adolescent MDD patients is positively associated with functional
activity in the prefrontal cortex, and that increasing DHA status reduces depression
symptom severity independent of changes in functional cortical activity.
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2.4. Proton magnetic resonance spectroscopy (1H MRS)
Proton magnetic resonance spectroscopy (1H MRS) is a voxel-based technique that
determines cortical concentrations of different compounds including glutamine/glutamate/γ-
aminobutyric acid (Glx), myo-inositol (mI), and N-acetyl aspartate (NAA). The Glx peak
detected by 1H MRS is primarily composed of neuronal and astrocyte glutamine, a
glutamate precursor, and glutamate. NAA is primarily localized to neurons [173,174] and is
positively correlated with mitochondrial metabolism [175,176], and cortical NAA
concentrations decrease following excitotoxic injury [177–179]. mI is a product of Gαq-
coupled receptor-generated phosphoinositide biosynthesis [180], and is a carbohydrate
metabolized from glucose via 1L-myo-inositol 1-phosphate synthase that is predominantly
concentrated in astroctyes [173,174]. The mI peak detectable by 1H MRS likely reflects this
astrocyte mI pool.

In general, case-control 1H MRS studies have observed increased Glx concentrations in the
prefrontal cortex of patients with bipolar disorder and schizophrenia, and reduced prefrontal
Glx concentrations in patients with MDD [181,182]. 1H MRS studies have observed
decreased NAA concentrations in the prefrontal cortex of patients with bipolar disorder
[183–185] and decreased NAA in medial temporal lobe structures of schizophrenic patients
[181]. Postmortem studies have observed lower mI concentrations in the prefrontal cortex of
patients with unipolar or bipolar depression [186], and some, but not all, 1H MRS studies
have observed reduced mI concentrations in the prefrontal cortex of patients with mood
disorders [187–190].

A preliminary placebo-controlled 1H MRS study found that 12-week supplementation with
ethyl-EPA selectively increased NAA concentrations in the anterior cingulate cortex of
medicated patients with bipolar disorder [191]. A second placebo-controlled 1H MRS study
found that 12-week ethyl-EPA supplementation increased Glx concentrations in the
temporal lobes of first-episode psychotic patients [192]. A third placebo-controlled, dose-
ranging, multi-voxel 1H MRS study, found that 8-week DHA supplementation did not
significantly alter any chemical peak including mI, Glx, NAA in the right or left dorsolateral
prefrontal cortex (BA9) and anterior cingulate gyrus of healthy male children (8–10 years)
[McNamara et al., unpublished data].

2.5. Phosphorous magnetic resonance spectroscopy (31P MRS)
31P MRS permits central determination of concentrations of phosphorus-containing
metabolites, including phospholipid anabolites (i.e., phosphomonoesters, PME) and
catabolites (i.e., phosphodiesters, PDE). Reductions in the PME:PDE ratio, secondary to
either elevations in PDE or reductions in PME, are thought to reflect a decrease in the
synthesis and/or an increase in the breakdown of membrane phospholipids. 31P MRS studies
have repeatedly observed significant reductions in regional brain PME and concomitant
elevations in PDE in the brains of schizophrenic patients [193]. Abnormalities in 31P MRS
measures of membrane phospholipid metabolism have been observed in medication-naïve
first-episode psychosis patients [194–196], and are correlated with both symptom severity
[197] and ventricle-to-brain ratio [198]. A meta-analyses of 31P MRS studies in patients
with bipolar disorder found that PME levels are lower in euthymic patients, and are higher
in depressed patients, compared with healthy controls [199].

A preliminary 31P MRS study found that cortical PDE levels were correlated with
erythrocyte DHA and EPA in healthy subjects [200]. A second study found that erythrocyte
total polyunsaturated fatty acids and arachidonic acid (20:4n-6) were positively correlated
with bilateral prefrontal cortex PME levels, and linoleic acid (18:2n-6) was positively
correlated with PDE levels, in neuroleptic-naïve first-episode psychosis patients [201]. In
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this study, these fatty acids were not correlated with PME levels in other regions including
the basal ganglia, occipital, inferior parietal, or superior temporal cortex. Lastly, a case study
found that 6 month treatment with ethyl-EPA resulted in the normalization of brain
membrane phospholipid metabolism in a patient with schizophrenia [202].

2.6. Positron emission tomography (PET)
A pioneering PET study using radiolabeled DHA ([1-11C]DHA) investigated incorporation
and turnover rates in healthy adult human subjects [17]. This study found that DHA
incorporation was greater in gray versus white matter regions, and was positively correlated
with regional cerebral blood flow. A second PET study using radiolabeled glucose ([18F]-
fluoro-2-deoxyglucose) evaluated the relationship between plasma DHA composition and
resting state cerebral glucose metabolism in adult medication-free MDD patients [203].
Plasma DHA composition was positively correlated with glucose metabolism in the
temporoparietal cortex, and negatively correlated with glucose metabolism in prefrontal
cortex and anterior cingulate cortex. This study also found that plasma EPA (20:5n-3) levels
were not significantly correlated with regional cerebral glucose metabolism. These
preliminary data suggest that DHA status is correlated with regional cortical glucose
metabolic activity, and that DHA status may have opposing effects on resting activity in
prefrontal and temporal cortices.

3. Animal MRI findings
Because it is not possible to directly investigate cortical gray matter DHA composition in
living human subjects, analogous MRI techniques are available for rodents so that brain
DHA status can be manipulated and quantitated. A rodent 7T Bruker Biospec MRI system is
presented in Figure 2A. Moreover, other postmortem brain variables can be directly
quantified, including histology (i.e., spine density), gene expression, and neurochemical
concentrations to evaluate relationships with MRI measures. Additionally, pharmacological
MRI (phMRI) can be used to evaluate dynamic changes in cortical activation patterns
following pharmacological challenge [204], and seed-region analysis can be performed to
measure functional connectivity between different brain regions [205]. Rodent MRI is
therefore well-suited for extending and interpreting clinical MRI findings.

To date there have been few studies investigating the effects of brain DHA deficits or
enrichment on MRI outcomes. A structural MRI study did not find alterations in brain gray
or white volumes in aged (>15 months) omega-3 fatty acid-deficient rats relative to aged
controls [206]. In a structural MRI study, our group recently found that young adult rats
subjected to deficits in cortical DHA accrual during postnatal development exhibited
elevations in volume in prefrontal cortex, nucleus accumbens, and amygdala in young
adulthood compared with controls [207]. In an 1H MRS study, our group investigated the
effects of perinatal deficits in DHA accrual on Glx, mI, and NAA concentrations in rat
medial prefrontal cortex. The position of the voxel in the rat medial prefrontal cortex and a
representative 1H MRS spectrum is presented in Figure 2. We found that perinatal, but not
postnatal, deficits in brain DHA accrual were associated with reductions in baseline
concentrations of mI, but not Glx or NAA, in the medial prefrontal cortex [208].
Additionally, acute treatment with SKF83959, a selective agonist at dopamine D1
phosphoinositide-coupled receptors, increased mI concentrations in the perinatal deficiency
group but not in controls [208]. To date, there have been no animal 31P-MRS, phMRI, or
DTI studies conducted to investigate membrane turnover, functional activity and
connectivity, or white matter integrity, respectively, in DHA-deficient or DHA-enriched rat
brain.
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4. Discussion
Emerging evidence from both human and animal MRI studies are beginning to develop a
clearer understanding of the role of DHA in cortical structure and function, and may provide
critical insight into the contribution of DHA deficiency to the progressive neuropathological
brain changes implicated in psychiatric disorders. An advantage of clinical MRI is that it
permits prospective and concomitant evaluation of the effects of manipulating DHA status
on both symptom severity and different neuroimaging variables to investigate potential
central mediating mechanisms. A limitation associated with clinical MRI studies includes
reliance on peripheral measures of DHA status which may not accurately reflect brain DHA
levels [209]. However, emerging evidence suggests that plasma and/or erythrocyte DHA
levels are correlated with functional cortical activity by fMRI [170], membrane
phospholipid turnover by 31P MRS [200], and resting cortical glucose metabolism by PET
[203]. Although rodent MRI studies permit systematic manipulation of brain DHA
composition, rodent brain DHA deficiency models frequently produce large reductions in
brain DHA levels which may not be clinically relevant. Another limitation of rodent MRI
studies is the requirement for general anesthesia to obviate motion artifacts, and different
general anesthetics have been found to alter blood blow dynamics [204] and neuronal
morphology [210]. Nevertheless, combining evidence from both clinical and animal MRI
approaches is anticipated to accelerate our understanding of the role of DHA in cortical
structure and function.

Regarding future MRI studies, evaluation of the relationship between DHA status and
functional brain maturation requires a prospective longitudinal study design. By analogy,
prior prospective longitudinal MRI studies have found robust effects of psychostimulant
medications on cortical developmetal trajectories in ADHD patients [211], and that semi-
chronic lithium treatment increased prefrontal cortical volumes in bipolar patients
responding to treatment [212]. Using this approach, it will be of considerable interest to
determine whether increasing DHA status can normalize abnormlities in cortical gray and
white matter volumes in psychiatric patients, and whether increasing DHA status can
prevent or forestall progression of neuropathology in high-risk subjects. In an ongoing
placebo-controlled trial (NCT00917501) we are evaluating whether 12-week EPA+DHA
(fish oil) supplementation influences functional connectivity by fMRI and chemical indices
of metabolic integrity by 1H MRS in medication-free adolescents at ultra high-risk for
developing mania (i.e., they have a biological parent with bipolar disorder and are diagnosed
with DSM-IV MDD).

An issue for future omega-3 fatty acid intervention trials is brain bioavailability. Although
preformed DHA is effective for increasing cortical gray matter DHA levels [14],
unesterified DHA, but not phospholipid-esterified DHA, diffuses from plasma to brain more
efficiency [16]. By analogy, peripheral bioavailability of EPA+DHA from re-esterified
triglycerides was found to have greater incorporation into peripheral membranes compared
with natural fish oil [213]. Moreover, our preliminary fMRI data suggest that
supplementation with triglyceride DHA [170], but not natural fish oil [172], increases
functional prefrontal cortical activity. Future fMRI studies are therefore warranted to
determine which DHA carriers are most effective for altering functional cortical activity.
Moreover, EPA is rapidly oxidized following entry into brain [7], plasma EPA levels are not
correlated with resting cortical glucose metabolism in MDD patients [199], and
EPA→DHA biosynthesis is negligible in human subjects [9]. However, MRI studies have
observed effects of ethyl-EPA supplementation on different aspects of cortical metabolic
function [154,156,191,192,202], raising the possibility that peripheral actions of long-chain
omega-3 fatty acids may also contribute to central changes observed by MRI.
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In view of the clinical observation that patients with psychiatric disorders exhibit deficits in
frontal white matter volume by structural MRI and reduced frontal white matter integrity by
DTI, and preclinical evidence that increasing brain DHA status increases resilience of white
matter to experimental injury and inflammation, it will be of considerable interest to
determine in future studies whether increasing DHA status can reverse deficits in frontal
white matter integrity in patients with psychiatric disorders. Furthermore, preclinical
evidence that increasing brain DHA status increases dendritic spine density [41], and it will
be of interest to determine whether DHA supplementation can alter developmental
trajectories in human gray matter volume and associated cognitive function in typically
developing youth, as well as slow accelerated gray matter atrophy observed in patients with
psychiatric disorders.

These preliminary observations support a role for MRI research to develop a clearer
understanding of the role of DHA in cortical functional maturation as well as for elucidating
the contribution of DHA deficiency to neuropathological processes implicated in the
pathoetiology of psychiatric disorders. While human and animal MRI techniques both have
unique limitations, combining these approaches is anticipated to accelerate our
understanding of the role of DHA in cortical structure and function as well as guide the
optimization of treatment and prevention strategies.
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Fig. 1.
Statistical parametric map illustrating the relationship between erythrocyte DHA
composition and regional activation patterns during performance of the CPT-IP task at
baseline in adolescent MDD patients (n=21). Erythroycte DHA composition is positively
correlated with functional activation clustered in the left medial frontal gyrus (BA9,
dorsolateral prefrontal cortex) and left anterior cingulate cortex during sustained attention.
Significant correlations were defined as an r-value equivalent to p≤0.05 (corrected).
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Fig. 2.
The 7T Bruker Biospec rodent imaging system (A), localization of a 1H MRS voxel in rat
bilateral medial prefrontal cortex in the coronal view (+3.7 cm anterior of Bregma)(B), and a
representative 1H MRS spectrum from a control rat medial prefrontal cortex (C). Cr,
creatine; Glx, glutamate+glutamine; mI, myo-inositol; Cho, choline; NAA, N-acetyl
aspartate.
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