¢ Human Brain Mapping 34:2439-2454 (2013) ¢

A Framework for the Analysis of Phantom Data in
Multicenter Diffusion Tensor Imaging Studies

Lindsay Walker,"z"< Michael Curry,I Amritha Nayak,"2 Nicholas Lange,3’4

Carlo Pierpaoli,' and the Brain Development Cooperative Group®
1Progmm on Pediatric Imaging and Tissue Sciences, NICHD, NIH, Bethesda, Maryland
“Center for Neuroscience and Regenerative Medicine at the Uniformed Services
University of the Health Sciences, Bethesda, Maryland
*Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
4Department of and Biostatistics, Harvard School of Public Health, Boston, Massachusetts
>www.NIH-PediatricMRI.org

* *

Abstract: Diffusion tensor imaging (DTI) is commonly used for studies of the human brain due to its
inherent sensitivity to the microstructural architecture of white matter. To increase sampling diversity,
it is often desirable to perform multicenter studies. However, it is likely that the variability of acquired
data will be greater in multicenter studies than in single-center studies due to the added confound of
differences between sites. Therefore, careful characterization of the contributions to variance in a multi-
center study is extremely important for meaningful pooling of data from multiple sites. We propose a
two-step analysis framework for first identifying outlier datasets, followed by a parametric variance
analysis for identification of intersite and intrasite contributions to total variance. This framework is
then applied to phantom data from the NIH MRI study of normal brain development (PedsMRI). Our
results suggest that initial outlier identification is extremely important for accurate assessment of inter-
site and intrasite variability, as well as for early identification of problems with data acquisition. We
recommend the use of the presented framework at frequent intervals during the data acquisition phase
of multicenter DTT studies, which will allow investigators to identify and solve problems as they occur.
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INTRODUCTION

Diffusion tensor imaging (DTI), [Basser et al., 1994] is a
magnetic resonance imaging (MRI) technique which is
commonly used to study the human brain because of its
inherent sensitivity to the microstructural architecture of
white matter (WM) [Beaulieu, 2002], providing more mi-
croscopic details about the brain’s structure than is evident
from traditional structural imaging modalities. It is this
sensitivity that makes DTI an ideal tool for the study of
neurological and psychiatric disorders affecting white mat-
ter, as well as for characterizing the development of the
normal, healthy, human brain to gain a better understand-
ing of the differences between the healthy and unhealthy
brain. Characterizing normal brain development was the
primary goal of the National Institutes of Health (NIH)
MRI Study of Normal Brain Development (NIH Pediatric
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MRI, PedsMRI), (www.NIH-PediatricMRI.org), which set
out to acquire neuroimaging data from ~ 500 healthy,
psychiatrically normal children with race ethnicity and
socio-economic status representative of the population of
the United States, using multiple imaging techniques such
as T1, T2, and proton density weighted imaging, MR spec-
troscopy, and DTL The primary focus of the project was
to acquire T1, T2, and proton density weighted images,
while spectroscopy and DTI, the more challenging modal-
ities for this multicenter study, were added as ancillary
modalities. It was necessary to use multiple imaging cen-
ters to recruit a sample that closely matched the US census
data, and to provide a manageable work load to each
imaging center.

While the benefits, advantages and necessities of multi-
center studies are apparent, it is likely that the variability
of acquired data will be greater than in single-center stud-
ies due to the added confound of differences between
sites. Intersite differences can originate from many factors,
including but not limited to differences in scanner manu-
facturer, scanner software version, field strength, site-spe-
cific quality control procedures, and adherence to the
research protocol. Considering that most studies also occur
over months, or even years, intersite variability must be
considered alongside the variability of each single site
over time (the so-called intrasite variability). It is impor-
tant to assess the impact of both intersite and intrasite var-
iability to meaningfully pool quantitative imaging data
from different imaging centers. As multicenter DTI studies
gain in popularity, it is vital that simple tools for the
assessment of variability are available to ensure that qual-
ity research is achievable.

Assessment of variance in multicenter studies is not a
new concept, and has been investigated by both the struc-
tural MRI, and functional MRI (fMRI) communities, see
for example [Focke et al., 2011; Fu et al., 2006; Gouttard
et al.,, 2008] for structural MRI and [Brown et al., 2011;
Friedman et al., 2008] for fMRI studies. Most variability
analysis in DTI data has focused on test-retest reproduci-
bility in a population of healthy subjects and/or patients
[Marenco et al.,, 2006; Pagani et al., 2010; Pfefferbaum
et al., 2003; Vollmar et al., 2010]. These studies invariably
find a large site effect, indicating that combining DTI data
from multiple centers without accounting for intersite
effects is ill advised. Some of these studies recommend
that the data’s sample variance should be used as a covari-
ate in statistical analysis to account for site differences
[Friedman et al., 2008; Pagani et al., 2010]; however, accu-
rate estimation of sample variance in DTI data is not
straightforward. And the use of multiple human subjects
adds an additional level of uncertainty due to anatomical
variability from subject to subject. Ideally, assessment of
variability would be performed on a phantom or a human
volunteer (living phantom) imaged at each site on multiple
occasions. Unlike population data collected at each site on
unrelated subjects, phantoms are more suitable for quality
assessment because of their voxel-wise correspondence.

A recent study of variance in DTI multicenter studies
used a phantom and a single human volunteer to assess
intersite and intrasite precision and accuracy across three
sites. Similar to previous works, the study found site
effects which significantly affected the DTI measurement
accuracy [Zhu et al., 2011]. Using a wild bootstrapping
technique, the authors estimated sample variance in their
datasets, and showed an improvement in group analysis
by an inverse weighting of each data point by its esti-
mated sample variance. However, sample variance, or
noise, in DTI data is known to bias the metrics derived
from the diffusion tensor [Farrell et al., 2007; Pierpaoli
et al,, 1996], and as such, weighting by sample variance
alone may be insufficient for meaningful pooling of DTI
data from multiple sites.

In a DTT multicenter study, the three main contributions
to variance are: (1) occasional outlier datasets that may be
caused by any number of isolated occurrences, (2) system-
atic differences between centers that may be due to differ-
ences in scanner calibration, and (3) intrinsic noise. Here
we propose a two-step analysis for assessing phantom
data in multicenter DTI studies. The first step is an initial
inspection for outlier datasets based on the voxel-wise me-
dian of the tensor-derived metrics. This first step may also
be informative about systematic site differences. The sec-
ond step is an evaluation of the intersite and intrasite var-
iances for the assessment of systematic site differences and
intrinsic noise. This framework is then applied to the
phantom data acquired as part of the PedsMRI study. This
includes a physical phantom, the American College of Ra-
diology (ACR) accreditation phantom (http://www.
acr.org), which was scanned monthly at all sites over the
5 years of data collection in the project, and a living phan-
tom scanned at each site at the beginning of years 1, 3,
and 5. The software tools of this framework are publicly
available through the free DTI analysis software package
TORTOISE [Pierpaoli et al.,, 2010], downloadable from
www.tortoisedti.org.

MATERIALS AND METHODS

In this section, we present detailed descriptions of the
two-step analysis framework, as well as a description of
the data from the PedsMRI study. This is followed by a
validation of the analysis framework using simulated data.
Finally, we apply the framework to the physical and living
phantom data of the PedsMRI multicenter study.

Framework for the Assessment of Phantom
Data in Multicenter Studies

To assess the multiple sources of variability in DTI data
in multicenter studies, we propose a two-step analysis
framework, the first for identifying occasional outlier data-
sets and the second for measuring intersite and intrasite
variability. The software tools for these analysis steps are
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Figure 1.
Schematic of the first step of the analysis framework: outlier identification. A median map is cal-
culated for the desired tensor-derived metric (for example, FA). Each individual time point FA
image is subtracted from the median to identify outlier datasets.

applied voxel-wise to the tensor-derived metrics, such as
fractional anisotropy (FA), mean diffusivity [Trace(D)], or
any others of interest. These two tools are ideally suited to
either a living phantom or a physical phantom, in that the
subject or object being scanned at every time point is mor-
phologically identical allowing for meaningful voxel-wise
measurements after appropriate image registration of all
time points.

The first analysis step is based on the voxel-wise median
of the tensor-derived metrics. For each time point, the
desired metric maps, e.g., FA, are computed. In this exam-
ple, the voxel-wise map of the median FA is calculated
across all time points. Outliers are then identified by sub-
tracting each individual time point FA map from the me-
dian FA map. A schematic of this example is shown in
Figure 1. Theoretically, this measure is most meaningful if
the number of acquisitions is equal across sites and if there
are more good data points than outlier data points. Under
these conditions, the median is a measure of the central
tendency for the dataset, and time points showing a large
deviation from the median can be considered outliers.
Outlier images identified in this initial step are inappropri-
ate for parametric analyses of intersite and intrasite vari-
ability. Identified datasets should be closely scrutinized to

determine the cause of the bias, corrected if possible, or
removed from further analysis. Subject datasets acquired
at the same time period and/or from the same site as all
identified outlier phantom datasets should be similarly
scrutinized to determine their eligibility for inclusion in
the multicenter study analyses.

The second analysis step is for the assessment of overall
variance. Similar to the definition of the traditional
ANOVA, one can compute the intrasite (i.e., within site)
and the intersite (i.e., between sites) variances, on a voxel-
wise basis, creating maps of variance. Intrasite variance is
computed by first calculating the variance across all time-
points for each site, then calculating the mean of the indi-
vidual site variances. Intersite variance can be computed
by first calculating the mean across all time-points for each
site, and then calculating the variance of the individual
site means, as previously implemented by Zhu et al. for
multicenter DTI variance analysis [Zhu et al., 2011]. In
other words, we calculate the variance of the means and
the mean of the variances; under the condition of no site
bias, these two quantities should be equal. Sites are
denoted as i = 1, 2, ..., n and time points per site as j =
1,2, ..., m, and xj is the image from site i at time point j,
we then define the following quantities:
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Mean site image :

1
. %zj:xif (1)

1
Mean image for all sites and times — points : x = p X
i
@)
Intrasite variance (average) :
1
Gizntra = Z Z Xij — xl (33)
: j
Intrasite variability (average) :
) 3b
Cintra = \/ Z 1 zj: xq - xz ( )
Intersite variance : o7, = 7 Z mi(X; — x)° (4a)
Intersite variability :  Ginter = ! Z mi(%; —X)>  (4b)
y: inter n—1 : i\Xi

We define the intra- and intersite variability as the
square root of their respective variances [Eqgs. (3b) and
(4b)], as in the relationship between variance and standard
deviation. In addition, we define the intraclass and inter-
class correlation (ICC) coefficients [Kistner and Muller,
2004], which provide the fraction of variance attributed to
intra- and intersite variance, respectively.
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Data

The PedsMRI project had two “objectives”; Objective 1
enrolled a cohort of children over 5 years of age [Evans,
2006] and Objective 2 enrolled a younger cohort, between
birth and 5 years of age [Almli et al., 2007]. The DTI proto-
col for Objectives 1 and 2 are identical with the exception
of additional intermediate b value (b = 500 s mm ?)
images for Objective 2. The majority of the phantom data
was acquired under the Objective 1 protocol, and as such
where the Objective 2 protocol was used the b = 500 s
mm > data were removed, leaving identical protocols for
all included data. The objective 1 DTI acquisition protocol
specified a spin echo EPI sequence with minimum TR = 3
s, minimum achievable TE with full echo acquisition, axial
slices (i.e., perpendicular to the z axis of the magnet, not
oblique), field of view (FOV), matrix, and slice thickness
adjusted to give 3 x 3 x 3 mm® voxels, with the FOV and
matrix size adjusted depending on the head size of the
child. About 48-60 contiguous slices (no slice gaps), b val-
ues of 0 s mm 2 and 1,000 s mm 2 with six diffusion sen-
sitization ~ directions, repeated four times without
averaging for a total of 28 brain volumes [4 x (1 x b=0s

TABLE I. Description of living phantom datasets

Time relative slice Orientation
to first Brain Resolution Upsampling Resolution thickness of

Site Manufacturer scan (days) coverage (acquired) at scanner (reconstructed) (mm) acquisition
1 Siemens 26 full 3.0 — 3.0 3.0 oblique
1+ Siemens 297 full 3.0 — 3.0 3.0 oblique
1+ Siemens 626 full 3.0 — 3.0 3.0 oblique
1+ Siemens 1,059 full 3.0 — 3.0 3.0 oblique
2 GE 0 cut—S,I 3.0 128->256 1.48 3.0 axial
2 GE 273 full 3.0 128—->256 1.48 3.0 axial
2+ GE 356 full 297 — 297 3.0 axial
2+ GE 1,218 full 297 — 2.97 3.0 axial
3+ Siemens 315 full 3.0 — 3.0 3.0 axial
3+ Siemens 978 full 3.0 — 3.0 3.0 axial
3+ Siemens 979 full 3.0 — 3.0 3.0 axial
4 GE 21 cut—I 3.13 — 3.13 4.0 axial
4+ GE 320 cut—I 3.13 — 3.13 4.0 axial
4+ GE 439 full 3.13 64—>256 0.78 3.0 axial
44 GE 553 full 2.81 128—->256 141 3.0 axial
4+ GE 588 full 2.97 — 2.97 3.0 axial
4+ GE 588 full 297 64—>256 0.74 3.0 axial
5+ Siemens 270 full 3.0 — 3.0 3.0 oblique
5+ Siemens 355 full 3.0 — 3.0 3.0 oblique
5 Siemens 444 full 3.0 — 3.0 3.0 oblique
5+ Siemens 940 full 3.0 — 3.0 3.0 oblique
5** Siemens 941 full 3.0 — 3.0 3.0 oblique

** = rejected, +

= included in simulated data, S = superior, I = inferior.
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TABLE Il. Description of ACR phantom datasets

Upsampling slice
Time DWI Resolution at Resolution thickness

Site points repeats Coverage (acquired) scanner (reconstructed) (mm)
1 1 4 full 40 — 4.0 3.0
27 1 partial 3.0 — 3.0 3.0
6 1 full 3.0 — 3.0 3.0
1 4 full 3.0 — 3.0 3.0
2 2 1 full 2,97 64->256 0.74 3.0
1 2 full 2,97 64—>256 0.74 3.0
3 4 full 2.97 128->256 1.48 3.0
1 5 full 2.97 128->256 1.48 3.0
3 1 full 2,97 — 2.97 3.0
1 3 full 2.97 — 297 3.0
17 4 full 297 — 2.97 3.0
3 1 4 full 3.44 — 3.44 3.0
1 4 full 3.36 — 3.36 3.0
1 4 full 3.30 — 3.30 3.0
1 4 full 3.22 — 3.22 3.0
2 4 full 3.06 — 3.06 3.0
38 1 full 3.0 — 3.0 3.0
2 2 full 3.0 — 3.0 3.0
2 3 full 3.0 — 3.0 3.0
31 4 full 3.0 — 3.0 3.0
4 1 2 full 3.13 — 3.13 4.0
1 3 full 3.13 — 3.13 4.0
1 4 full 3.13 — 3.13 4.0
1 2 full 2.81 128->256 1.41 3.0
2 2 full 2.97 128->256 1.48 3.0
3 4 full 2.97 128->256 1.48 3.0
1 1 full 2,97 — 2.97 3.0
2 2 full 297 — 297 3.0
1 3 full 297 — 2.97 3.0
1 4 full 2,97 — 2.97 3.0
5 1 2 full 3.0 — 3.0 3.0
21 4 full 3.0 — 3.0 3.0

Total scans = 178, Total scans according to protocol = 71.

mm 2 4 6 x b = 1,000 s mm ?)]. Images were to be recon-
structed at their native resolution, without zero filling or
interpolation. No cardiac gating was applied. DTI data
was acquired at five of the six participating PedsMRI cen-
ters (sites numbered 1 through 5, as defined in the public
database at www.NIH-PediatricMRI.org), on a 1.5T mag-
net from either a Siemens scanner (three sites) or a GE
scanner (two sites). Adherence to protocol was not 100%,
and as such, there is some variability in these parameters
across the living phantom and physical phantom scans,
which are documented in Tables I and II. T2 weighted
(T2W) images were also acquired at each time point with
a 2D PDW/T2W acquisition with TR = 3,500, TE1 = 17
ms, TE2 = 119 ms, axial slices, parallel to the anterior com-
missure-posterior commissure (AC-PC) plane, FOV = 250
x 220 mm?, matrix = 256 x 224, 80-90 slices of 2 mm
thickness, as needed to cover the apex of the head to the
bottom of the cerebellum. Each T2W scan for the living
phantom was aligned to MNI space as described in the

PedsMRI Objective 1 paper [Evans, 2006]. T2W scans for
the physical phantom were aligned according to the ACR
phantom specifications [ACR, 1998].

For this work, all T2W images were rigidly coregistered
using FLIRT from the FSL package [Jenkinson et al., 2002]
to one time point which was determined to be the highest
quality scan by visual inspection, independently deter-
mined for the physical phantom and the living phantom.
DTI data was processed with the TORTOISE processing
pipeline [Pierpaoli et al., 2010], mainly: (1) Eddy current
distortion and motion correction [Rohde et al., 2004], (2)
susceptibility-induced EPI distortion correction [Wu et al.,
2008], using the T2W image as a target for registration, (3)
rigid reorientation into a common final space defined by
the registered T2W image. All corrections were performed
in the native space of the diffusion weighted images
(DWIs), all transformations were applied in a single inter-
polation step, and the b-matrix was reoriented appropri-
ately [Rohde et al., 2004].
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Validation With Simulated Data

Using only the highest quality time points from the liv-
ing phantom data (N = 16), we performed a tensor-based
registration using a nonparametric, diffeomorphic deform-
able image registration technique implemented in DTI-TK
[Zhang et al., 2007], that incrementally estimates its dis-
placement field using a tensor-based registration formula-
tion [Zhang et al., 2005], to create a mean living phantom
tensor. We then used this mean tensor to create synthetic
DWIs with a known Gaussian distribution of noise, as pre-
viously described [Chang et al., 2007]. This was repeated
100 times, to simulate fictional multicenter studies with
varying numbers of sites and scans per site. The noise
value used, 12.5, is the mean signal standard deviation
(SD) measured from the residuals of the tensor fit [Walker
et al., 2011] from the individual living phantom scans,
which results in an SNR of the b0 images of ~ 40. Addi-
tional datasets were simulated to have lower SNR, using
signal SD at two times baseline = 25.0 (SNR ~ 15) and 10
times baseline = 125.0 (SNR ~ 5). Nonlinear tensor fitting
was performed on all simulated DWI datasets to generate
synthetic tensors, and subsequently compute FA and
Trace(D) maps. In addition, we added 10%, and subtracted
10% from FA and Trace(D) images (12.5 signal standard
deviation) to create synthetic maps with a bias.

Five scenarios which are representative of real data situa-
tions were tested. In these scenarios, sites had a combination
of “good” data, tensor-derived metric maps from low SNR
DWIs and/or biased tensor-derived metric maps. Biased
metric maps could be considered occasional outliers, while
data computed from low SNR DWIs are representative of
different intrinsic noise levels. Both could be indicative of
site-specific systematic differences. The five scenarios are

1. The ideal case—only good data at all sites

2. Minor outliers—10% outlier datasets introduced

3. Minor noise differences—10% low SNR datasets
introduced

4. Systematic site bias—one site contains all biased
images

5. Systematic noise difference—one site contains all
noisy DWI datasets

All scenarios were tested with a balanced number of
scans per site (10 sites, 10 scans per site). In addition, Sce-
narios 1-3 were also tested with an unbalanced number of
scans per site, according to the distribution of living phan-
tom datasets, i.e., five sites with N = [3,4,3,6,4], respec-
tively (see Living Phantom section below).

Application to Phantom Data From the PedsMRI
Physical phantom

The physical phantom used by the PedsMRI project is
the ACR MRI accreditation phantom [ACR, 1998]. It is a

cylindrical phantom constructed of acrylate plastic, glass,
and silicone rubber. The phantom is filled with 10 milli-
molar (mmol) nickel chloride solution containing sodium
chloride (45 mmol) to simulate biological conductivity.
The contrast vial contains 20 mmol nickel chloride and
15 mmol sodium chloride solution. The phantom contains a
number of structures designed to measure the amount and
type of distortion in structural T1- and T2-weighted scans.

A total of 202 DTI scans were acquired at the five sites,
with 24 scans rejected because of large deviations from the
acquisition protocol or severe artifacts for a total of 178
successful DTI scans (Table II). Of these 178 successful
scans, 71 were acquired strictly according to protocol. Sites
1 and 4 each only acquired one scan according to protocol,
and as such we were not able to perform any voxel-wise
variance analysis of these two sites. Thus, the framework
is applied to a total of only 69 scans from Sites 2, 3, and 5
for the physical phantom. These 69 scans are unequally
distributed across sites, so the framework was applied
both to the full 69 datasets, as well as to a balanced set
with 17 scans per site.

Living phantom

The living phantom is a healthy adult male aged 51
years at first scan. A total of 22 DTI scans were acquired
at the five sites over 5 years (Table I). It is assumed that
the living phantom brain is stable over this time and any
aging related variability is much smaller than inter- and
intrasite variability. The datasets were assessed for gross
artifacts before the analysis framework was applied. One
time point was rejected due to severe ghosting, and one
time point was rejected due to extremely low SNR. 20
datasets remained that were acceptable for voxel-wise
analysis. While these 20 scans are not equally distributed
across the sites, the number of scans is small and as such
a balanced dataset was not assessed.

Additionally, data were output from TORTOISE both
with and without the EPI distortion correction applied.
The framework was applied in both situations to assess
the impact of preprocessing of DTI data on variance.

The results of the analysis framework for both the ACR
and living phantom data are used to make inferences
about the quality of the multicenter data, including
whether there are site and/or time-specific biases or
increased variance due to systematic site effects.

RESULTS
Validation With Simulated Data

Outlier identification analysis successfully identified all
simulated datasets with an introduced bias and low SNR.
Representative images from each of the five scenarios are
shown in Figure 2. In the ideal case, where no bias or dif-
ference in SNR exists between sites and scans (Test 1),
then the difference from median is essentially zero; the
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Figure 2.
Sample difference from median maps for the simulated data validation tests for outlier identifica-
tion. Bias and noise levels are indicated below the affected images. The outlier identification step
clearly identifies data sets with both a bias and low SNR.

maps show a slightly noisy distribution with no particular
pattern or structure. With an introduced positive or nega-
tive bias of 10%, the intensity of FA and Trace(D) are
increased or decreased, respectively, and show a structure
that mimics the features of the FA and Trace(D) images,
respectively. With low SNR, both at 2 and 10 times the
baseline SD, FA is increased and Trace(D) is decreased in
comparison to median. This is expected due to the previ-
ously described behavior of tensor-derived metrics; as
SNR decreases, FA becomes more positively biased [Pier-
paoli and Basser, 1996], while Trace(D) becomes more neg-
atively biased [Jones and Basser, 2004; Pierpaoli and
Basser, 1996]. When a site is systematically different from
the other sites, either with a bias or low SNR, it results in
a shift of the median value toward the biased images,
resulting in a slightly nonzero difference from median for
nonaffected images of the simulation. This is most clearly
visible by comparing Trace(D) in Tests 4 and 5 (Fig. 2),

where the first five (unaffected) images shown are nega-
tive when a positive bias is introduced and positive when
low SNR images are introduced. If one compares these
unaffected images with all images from Test 1, one can see
a small difference in intensity despite these images having
the same intrinsic SNR.

Intersite and intrasite variance in the ideal case, where
no differences in SNR or biases exist, should be of the
same magnitude indicating that no site bias exists and that
the amount of variance is comparable within each site and
across sites; this is the basis of the ANOVA F test under a
null hypothesis of no site effects. Thus, the ICC values in
the ideal case (Test 1) should be ICCipter = ICCinga = 0.5.
Deviations from this would indicate whether the data has
greater intersite variance or greater intrasite variance. On
the basis of our classical definitions of intersite and intra-
site variance, we would expect to find greater ICCjyte, in
cases where the mean value differs between sites, while

* 2445 o



¢ Walker et al. ¢

Intra 08

Figure 3.
Intersite and intrasite variability maps of FA and Trace(D) for
simulated data.

greater ICC;,,, would be found in cases where the within-
site variance differs between sites.

Figure 3 shows the intersite and intrasite variability
maps for Test 1 for FA and Trace(D). Test 1 is an ideal
case, and as such we expect these maps to be of the same
magnitude. While the intersite variability map tends to
have a noisier appearance than the intrasite variability
map, their intensity is of similar magnitude. Both inter-
and intrasite variability maps show greater variability in
more anisotropic regions. Figure 4 shows the ICC maps
for the five simulated test scenarios, and Table III gives
the mean ICC values for the slice shown in Figure 4. As
expected, the ideal scenario (Test 1) has ICCjpe, and ICCy,-
ra Near 0.5, although the contribution of intersite variabili-
ty tends to be slightly lower than the intrasite
contribution. A similar result is seen for the cases of minor
occurrences of bias (Test 2). Inclusion of low SNR datasets
resulted in increased ICCiyy,, although only slightly differ-
ent than the ideal case. When a single site is systematically
different either with a bias or low SNR, the intersite vari-
ability is overall much greater than the intrasite variability.
For FA, the effects are dependent on the level of anisot-
ropy. When a site is biased, intersite variability is greatest
at higher anisotropy. When a site contains noisy images,
the intrasite variability becomes greater at higher
anisotropy.

When using an unbalanced number of scans, the results
were similar to the balanced case. Outlier detection suc-
cessfully identified all datasets with either a bias or low

Intra Inter Intra Inter

Figure 4.
ICC maps for simulated data. No site difference is indicated
when inter and intrasite ICC are equal (ICCiyer = ICCipera =
0.5).

SNR. Intersite and intrasite variance was similar between
the balanced and unbalanced cases. For the ideal case, the
result was identical, with values close to 0.5, but slightly
higher ICCjp,. For Tests 2 and 3, we introduced ~ 20%

TABLE Ill. ICC values for simulated data
(ICCinter = ICCi,tra = 0.5 indicates no site effect)

FA Trace (D)
ICCinter ICCintra ICCinter ICCintra

Test no. Balanced number of scans

1 0.48 0.52 047 0.52
2 0.48 0.52 0.46 0.53
3 0.45 0.54 0.48 0.52
4 0.56 0.44 0.91 0.08
5 0.93 0.06 0.93 0.07
Test no. Unbalanced number of scans

1 0.46 0.53 047 0.53
2 0.46 0.53 0.53 0.47
3 0.43 0.57 0.47 0.53
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-1500.0 um?/s

Figure 5.
Difference from median maps for the PedsMRI physical phantom. Site 3 clearly shows a signifi-

cant site difference compared to Sites 2 and 5.

biased or low SNR datasets. In these cases, the ICC values
are still close to 0.5, however, with biased images, the
ICCinter is higher than ICC;;y,, for Trace(D).

Application to Phantom Data From the PedsMRI
Physical phantom

For the ACR phantom data, we tested all 69 scans from
three sites, as well as a balanced set with 17 scans per site
(N = 51). Figure 5 shows a few representative difference
from median images of Trace(D) for the ACR phantom
scans. The first two time points of Site 2 have elevated
Trace(D) compared to the median. Site 3 has no identifia-
ble outliers, but has uniformly elevated Trace(D) com-
pared to the median in all time points. Site 5 has two time
points with greatly reduced Trace(D) (one shown in Fig.
5), and one time point with slightly reduced Trace(D) (not
pictured). The FA maps for the ACR phantom (not pic-
tured) should ideally be close to zero, but in reality have a
complex anisotropic structure, particularly at the interfaces
of the internal structures of the ACR phantom, making
interpretation of FA data from the ACR difficult. All time
points from Site 3 show a very slightly reduced FA com-
pared to median, and the Site 5 time point with slightly
reduce Trace(D) has an associated elevated FA with a het-
erogeneous appearance.

Intersite variability is much greater than intrasite vari-
ability for Trace(D) and slightly greater for FA (Fig. 6),
which is reflected in the much greater contribution of
ICCinter (Table IV). This finding logically follows from the
results of the outlier detection tool (Fig. 5) which showed
a major site effect from Site 3, with a consistently higher

value of Trace(D) compared to median for the study. The
same results are seen both in the balanced and unbalanced
tests. Because of the magnitude of the site effect, the vari-
ability maps are shown as they proved more informative
than the ICC maps.

0.0

3000.0

Figure 6.
Inter- and intrasite variability maps for the PedsMRI physical
phantom. Intersite variability is clearly greater than intrasite vari-
ability, indicating a significant site difference.
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TABLE IV. ICC values for ACR phantom

FA Trace (D)
ICCir\ter ICCi.ntra ICCi.nter ICCintra
Balanced case, N = 51 0.67 0.33 0.92 0.08
Unbalanced case, N = 69 0.72 0.28 0.94 0.06

Living phantom

With the living phantom data, the outlier identification
tool revealed two outliers from Site 2 with large deviation
from median, showing reduced FA and elevated Trace(D),
indicated by the black hashed circles in Figure 7. These
outliers closely resemble the biased images from the simu-
lated tests, with a structured pattern. In addition, two
datasets from Site 4 also show reduced FA and elevated
Trace(D), indicated by white circles. In these two datasets,
the images appear more like the simulated datasets with
different SNR with a more homogeneous appearance.
Finally, one dataset from Site 5 shows elevated FA, but rel-
atively normal Trace(D).

In the living phantom data, we also tested whether
intersite and intrasite variability is affected by the type of
image distortion correction scheme that is used. Thus,
intersite and intrasite variability was calculated with and
without the use of EPI distortion correction. This was
done because EPI distortion correction is often neglected

Trace(D) -15000

in DTI preprocessing pipelines, but recent work has shown
it to be an important component of a DTI preprocessing
pipeline [Andersson et al., 2003; Embleton et al., 2010; Irfa-
noglu et al,, 2010; Wu et al., 2008]. Figure 8 shows the
intersite and intrasite variability maps of FA and Trace(D).
Again, the variability maps provided more anatomical in-
formation than the ICC maps, and as such were selected
for visualization. On average, in the parenchyma, intersite
variability is elevated compared to intrasite variability for
both FA and Trace(D). This effect is amplified at tissue
interfaces within the brain, suggesting inconsistent mor-
phology and/or misregistration of the living phantom
time points, potentially caused by a systematic site differ-
ence. In particular, large intersite variability is seen in the
frontal lobes and genu of the corpus callosum; brain
regions previously shown to be affected by susceptibility-
induced EPI distortions [Wu et al., 2008]. Variance analysis
after EPI correction shows that this regionally increased
intersite variability is dramatically reduced, although not
completely eliminated. Because of the heterogeneous na-
ture of the variability seen in the living phantom data, ICC
values were collected in 4 ROIs (Table V): two regions
with average levels of intersite variability (temporal con-
taining a mix of gray matter and white matter, and occipi-
tal white matter) and two regions with strongly elevated
intersite variability (genu of the corpus callosum and fron-
tal containing a mix of gray matter and white matter). All
regions show greater ICCine, than ICCiny,, both before
and after EPI correction. However, the frontal region and

1500.0 um?/s

Figure 7.
Difference from median maps for the PedsMRI living phantom data. Datasets identified as out-
liers are marked by white, solid and hashed black circles.
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Figure 8.
Inter- and intrasite variability maps for the PedsMRI living phantom data. Intersite variability is
greater than intrasite variability. This is strongest at csf/tissue and white matter/gray matter inter-
faces, indicating significant misregistration between sites.

genu of the corpus callosum show significant reduction in
ICCjpter after correction.

These results include all 20 living phantom datasets.
However, the outlier identification step indicates that cer-
tain datasets should not be included in this type of para-
metric analysis of variance. Therefore, this analysis was
repeated using 15 of the 20 living phantom scans, with
EPI correction applied, with a distribution at the five sites

TABLE V. ICC values for living phantom

FA Trace(D)
Region ICCintcr ICCintra ICCinter ICCintra

Without EPI correction

Temporal (GM) 0.52 0.48 0.60 0.40
Genu (WM) 0.97 0.03 0.84 0.16
Frontal (GM/WM) 0.73 0.27 0.72 0.16
Occipital (WM) 0.65 0.35 0.61 0.39
With EPI correction

Temporal (GM) 0.51 0.49 0.60 0.40
Genu (WM) 0.79 0.21 0.78 0.22
Frontal (GM/WM) 0.70 0.30 0.65 0.35
Occipital (WM) 0.64 0.36 0.60 0.40

With EPI correction and outliers removed

Temporal (GM) 0.51 0.49 0.72 0.28
Genu (WM) 0.77 0.23 0.71 0.29
Frontal (GM/WM) 0.65 0.35 0.64 0.36
Occipital (WM) 0.61 0.39 0.69 0.31

of N = [3,2,3,4,3] respectively. After removal of the out-
liers, ICCiper decreased, and ICCip,, increased, although
they did not reach the ideal value of 0.5 each. For
Trace(D), however, with the outliers removed, the ICCj ey
is greater than when all 20 subjects are included.

DISCUSSION

Use of phantoms in multicenter DTI studies is necessary
for assessing potential issues with data quality and under-
standing the sources of variance in data that we wish to
pool over multiple sites and scanners. In this work, we
propose a two-step analysis framework for multicenter
DTI study analysis that can identify problematic outlier
datasets and indicate if there is a significant site effect in
the variance of the data. We presented validation of the
tools using simulated data, as well as results from the
PedsMRI multicenter study.

Outlier identification is based on calculating the distance
of each dataset from the median calculated from all data-
sets. With the simulated data, the tool was able to identify
all datasets with an introduced bias, as well as all datasets
with low SNR. Because DTI-derived metrics such as FA
and Trace(D) are biased by noise, the outlier identification
step is ideal for identifying datasets affected by both bi-
ased data and noisy data. This step is a qualitative assess-
ment, as the median value of all data is influenced by the
datasets themselves. For instance, in the tests where a sin-
gle site was systematically different, both the biased/low
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SNR datasets and the unaffected time points differed from
the median, with the “good” data shifted a very small
amount in the opposite direction of the “bad” data. How-
ever, this tool is still useful as a diagnostic for outliers, as
it indicates that one set of data differs substantially from
the median, while the remaining data differs only slightly.
It is important to note that the median value is used
instead of the mean value precisely for this reason. The
mean value is strongly affected by outliers, while the me-
dian value is generally robust to outliers. In the case of a
systematic difference, the presence of a large number of
outlier data points results in only a small shift of the me-
dian value, allowing for a clear identification of problem-
atic data points.

An incidental finding of the variance analysis in simu-
lated brain data is higher variance of FA in white matter
structures (Fig. 3). Using Monte Carlo simulations, Pier-
paoli et al. [1996] showed that for constant SNR the var-
iance of FA increases as anisotropy decreases, and that for
a given anisotropy, the variance of FA increases as SNR
decreases. The tensors in our simulations were derived
from real human brain data where SNR is not constant—it
is lower in white matter than in gray matter and CSF
because of the strong T2* weighting of the DWIs. In our
results, the observed larger variance in white matter
regions is consistent with the presence of lower SNR in
white matter. Interestingly, the effect of the reduction of
SNR in white matter overcomes the variance reduction
expected because of the higher anisotropy. Our results are
in agreement with those of Chang et al. [2007], who pre-
sented similar maps of variance of FA from simulations of
human brain data. However, our results are in apparent
disagreement with the observations of several DTI investi-
gations of data quality and reproducibility [Farrell et al.,
2007; Heim et al., 2004; Marenco et al., 2006] that reported
larger variability of FA in gray matter than in white mat-
ter. It should be noticed, however, that as a metric of FA
variability these works did not use the variance of FA but
its coefficient of variation (CoV). CoV is defined as the
variance divided by the mean. We argue that in isotropic
regions, CoV is not an appropriate metric for FA variabili-
ty, because as the denominator of the fraction approaches
zero, the values of CoV become very large and virtually
meaningless. We believe that the use of CoV(FA) is at the
basis of the very larger variability of FA found by these
papers in gray matter regions.

Both the outlier identification and the variance analysis
steps of the framework are targeted at identifying prob-
lems in multicenter data. We do not, however, offer spe-
cific solutions for the correction of these problems. When
outliers occur in real data, further investigation is needed
to reveal the cause of the issue. Only once the cause of the
problem is identified might it be possible to construct a so-
lution. In some instances, it may not be possible to correct
all encountered problems. A prime example of this can be
seen from the ACR and living phantom data of the
PedsMRI. Site 2 shows two ACR time points with elevated

Trace(D) and apparently normal FA, and two living phan-
tom time points with elevated Trace(D) and low FA. These
four time points occur only at the beginning of the study.
Shortly after the latest of these four time points, the scan-
ner at Site 2 underwent a software upgrade, after which
FA and Trace(D) values appear to return to normal. The
particular combination of elevated Trace(D) and depressed
FA suggested that these data were acquired with a higher
maximum b value than was assumed in fitting the tensor.
Further investigation suggested that a maximum b value
of ~ 1,500 s mm™2 rather than 1,000 s mm 2 would be
required to achieve the values of Trace(D) seen in these
time points. As a potential solution, we adjusted the b ma-
trix accordingly and were able to correct the measures of
diffusivity such as Trace(D). However, the low anisotropy
values cannot be corrected in this way. This is because the
shape of the diffusion displacement profile becomes dis-
torted at higher b values; the measured signal attenuates to
the point that it reaches the level of the noise, resulting in an
inability to properly estimate the eigenvalues and an artifi-
cially decreased value of anisotropy [Jones and Basser, 2004;
Koay et al., 2009]. This difference in measured anisotropy
due to a change in acquisition means that these datasets
cannot be included in a standardized database. By detecting
these outliers in the phantom data, we were able to identify
45 similarly affected subject datasets from the same site and
time period in the PedsMRI study and reject them from
public release and any further analysis.

Additionally, three ACR time points from Site 5 were
identified as outliers. Two of these had similar behavior,
with a dramatic decrease in Trace(D) value, and a slight
increase in FA value. Upon further inspection of these two
datasets, it was determined that the DTI data was incom-
plete, missing 1 DWI volume, resulting in a total of 27 vol.
instead of the prescribed 28 vol. The outlier Trace(D) and
FA values are then attributed to an incorrect mapping of
the gradient table to the DWIs. If the missing volume were
documented by the site, it would be possible to create an
amended gradient table with which to potentially correct
these outlier data points. With respect to this issue, no
similar datasets were seen in the PedsMRI project data.

The third ACR outlier dataset from Site 5 showed low
Trace(D) and dramatically elevated FA. On further inspec-
tion, the SNR of the DWIs of this dataset was very low,
resulting in a large bias in the anisotropy values. This
appeared to be an isolated occurrence, as subject datasets
from the time period were assessed for SNR issues, but
none were found.

Two Living Phantom time points from Site 4 had low
Trace(D) and elevated FA. Similar to Site 2, Site 4 under-
went a software upgrade shortly after these two time
points. In addition, these datasets were acquired with an
incorrect slice thickness of 4 mm and had eddy current
distortions that were of a severity not correctable by any
correction algorithm available to us. Because of the simul-
taneous occurrence of these three problems, all of which
were uncorrectable, similarly affected data in the project
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Figure 9.
Example of a ghosting artifact that resulted in an outlier dataset from the PedsMRI living phantom data.

should be rejected. We identified 135 datasets from Site 4
with these issues and removed them before public release.

Finally, site 5 had one living phantom time point with
elevated FA and relatively normal Trace(D). The pattern of
increase in FA was particularly elevated along the right
and left sides of the brain with a section in the middle less
affected. Further investigation of this data showed ghost-
ing in the DWIs with a heterogeneous intensity, modulat-
ing from left to right (Fig. 9). Thirteen similarly affected
subject datasets from the PedsMRI project were identified
and removed from public release.

In addition to isolated outliers, Site 3 in the ACR phan-
tom data showed a systematic increase in Trace(D) com-
pared to the median, indicating a potential site effect
which is clearly supported by the inter- and intrasite vari-
ability measures for the ACR phantom (Fig. 6). This pat-
tern, however, is not found in the Living Phantom data,
and there is no evidence of a systematic increase in
Trace(D) values in the subject data from the PedsMRI. We
believe that this highlights the fact that water phantoms
such as the ACR phantom are not appropriate as a quanti-
tative phantom for the assessment of DTI data. For
instance, the diffusivity of water (or doped water as in the
ACR phantom) is not close to the diffusivity of human
brain tissue. The diffusivity is also quite sensitive to tem-
perature, which was not carefully controlled or docu-
mented over time and from site to site in the PedsMRI
project. Water, as a nonviscous fluid, is subject to convec-
tive flow, which creates pseudo-anisotropy effects, result-
ing in modulated FA and Trace(D) values in seemingly
isotropic regions. This effectively prevents assessment of
hardware issues such as gradient nonlinearity. Addition-
ally, the embedded structures of the ACR phantom that
are designed for geometric calibration in structural MRI
data create many edges and interfaces which results in

susceptibility distortions and partial volume effects in DTI
data, further corrupting the values of tensor-derived met-
rics. Thus, it is difficult to pin-point the cause of the sys-
tematic difference in Trace(D) and FA between Site 3 and
the other sites. However, because the living phantom does
not show similar behavior, it is reasonable to believe that
this is an artifact of the phantom used and will not have
an impact on the subject data of the PedsMRI. The use of
a diffusion phantom, which has known diffusivity values
close to human brain tissue such as those proposed by
Tofts et al. [2000] and by Pierpaoli et al. [2009] is of utmost
importance for a quantitative assessment of bias and var-
iance. In addition, a compound with a viscosity high
enough to have no anisotropy due to convective flow, and
a known temperature profile, such as the one proposed by
Pierpaoli et al. [2009], would be most appropriate as a
phantom in multicenter studies using DTI data.

An additional observation of the outlier detection tool is
that isolated outliers may not be identified in parametric
variance testing. For instance, in the simulated data tests 2
and 3, where a moderate number of data points were cor-
rupted, no strong difference is seen between the inter- and
intrasite variability, indicating that there is no site effect.
In fact, there truly is no site effect in these two tests, as the
corrupted data points were spread equally throughout the
different sites, allowing these problematic datasets to go
undetected, highlighting the importance of the initial out-
lier identification step. Measures of intersite and intrasite
variability were, however, able to detect systematic differ-
ences between sites, particularly as shown in Tests 4 and 5
(Fig. 4 and Table III).

In the living phantom data, ICCj,te, is generally greater
than ICC;,, for both FA and Trace(D) in the parenchyma.
This effect is amplified at the tissue interfaces, suggesting
that inconsistent morphology is a significant issue.
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Interestingly, the contribution of misregistration to vari-
ability is less for intrasite variability than for the intersite
variability (Fig. 8), indicating that registration of time
points within each site is more accurate than across sites.
In the PedsMRI both scanner manufacturers used an ante-
rior—posterior phase encode direction, but one manufac-
turer used a positive blip, while the other used a negative
blip. The consequence of this difference is that one results
in a compressed tissue artifact, while the other results in a
stretched tissue artifact, which produced significant mor-
phological differences between sites. This type of suscepti-
bility induced EPI distortion is correctable with EPI
distortion correction techniques, and our results indicate
that by using image registration-based EPI distortion cor-
rection as implemented in TORTOISE, we are able to
reduce the large regional variability. The ICC values
before and after correction indicate a trend toward more
equal ICCiner and ICCipia; however, the EPI correction is
clearly not able to fully correct for this distortion induced
increased intersite variability.

Interestingly, when outlier datasets were removed
before performing the variance analysis step, the FA ICC
values were improved compared to the ICC values which
included the outliers. However, Trace(D) ICC values were
significantly worsened, with a large contribution of
ICCinter- On careful inspection of Figure 7, the nonoutlier
Trace(D) maps of Site 2 and 4 appear systematically lower
than those of Sites 1, 3, and 5. Sites 2 and 4 used GE scan-
ners, while Sites 1, 3, and 5 used Siemens scanners. This
means that inclusion of outliers in the variance analysis
resulted in a so-called “masking effect” [Barnett and
Lewis, 1985], where the presence of extreme outliers
masked the presence of smaller, and in this case system-
atic, outliers. This also means that a bias exists between
GE and Siemens scanners in the PedsMRI DTI dataset,
which must be considered before pooling of data within
this study, and may suggest that use of a single scanner
manufacturer in multicenter studies is better than using
multiple manufacturers.

Overall, we found that by both identifying outliers and
assessing inter- and intrasite variability, we can have some
confidence in determining the appropriateness of pooling
data from multiple sites and scanners. In an ideal situa-
tion, we would also include tools for correcting for site dif-
ferences in cases where data varies from site to site, as is
apparent in the PedsMRI data. However, the appropriate
ways in which to do this with DTI data remains an open
question. For instance, a number of works suggest incor-
porating measures of variance as covariates in group sta-
tistical analysis to account for variance differences across
sites [Friedman et al.,, 2008; Pagani et al., 2010], although
they do not suggest an appropriate method for accurate
estimation of the variance. The recent work by Zhu et al.
provides a potential method for estimation of variance
using the wild bootstrapping technique [Zhu et al., 2011],
although it is unclear whether wild bootstrapping is an
appropriate method for variance estimation in the pres-

ence of physiological noise artifacts such as are persistent
in DTI data [Jones and Pierpaoli, 2005; Pierpaoli et al.,
2003; Skare and Andersson, 2001; Walker et al., 2011]. In
fact, it is extremely difficult to make an accurate and pre-
cise noise estimation in DTI data, as, to our knowledge, no
models exist that can predict the occurrences and impact
of physiological noise. Additionally and importantly, it is
evident that scanner and site differences in variance can
be due to systematic biases in the tensor-derived metrics,
not only differences in variance between sites. In fact, the
level of bias is intrinsically linked to the amount of noise
in the DTI data [Farrell et al., 2007; Pierpaoli et al., 1996].
One study suggested the use of a global scaling factor for
adjusting FA values in a multicenter study [Vollmar et al.,
2010]; however, without a gold standard, it is unclear how
a meaningful quantitative scaling factor should be deter-
mined. The optimal situation in a multicenter study is pre-
vention and not a cure; in other words, collect good
quality data from the beginning and perform continuous
quality assurance of data as it is acquired. We propose
that the framework presented here can be used at regular
intervals during data acquisition to identify problems as
they manifest. For earliest diagnosis of problems, outlier
analysis can begin as early as after acquisition of two time
points, and variance analysis can being after acquisition of
three time points. This approach is applicable not only to
multicenter studies, but is also useful for identifying prob-
lems with on-going single scanner studies as well.

CONCLUSION

In this work, we present a two-step analysis framework
for the assessment of phantom data in a multicenter study,
along with validation using simulated data in tests that
mimic real data situations. Careful characterization of the
contributions to variance in a multicenter study is
extremely important for accurate quantitative analysis of
DTI data. However, more work is needed to determine the
best method of meaningfully combining data acquired at
different sites. From our work on the NIH MRI study of
normal brain development, it is clear to us that the causes
of outlier datasets, as well as systematic site differences
within a single study, do not always have the same origin,
and as such, cannot necessarily be treated with only one
solution. Indeed, not all problems can be corrected. Our
recommendation for multicenter studies is to perform a
well controlled and well designed study from the outset
by eliminating or restricting sources of expected added
variance at the stage of data acquisition, to avoid many of
the possible confounds that can occur. Because of the chal-
lenging nature of acquiring DTI data on unsedated chil-
dren, the DTI component of the PedsMRI study was
ancillary to the main objective, and as such suffered from
a lack of rapid, highly structured quality control during
data acquisition. On the basis of our experiences, we pro-
pose that the framework developed here should be
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applied early in a study, and at frequent, regular intervals
throughout the course of data acquisition to allow investi-
gators to quickly identify and solve problems as they
occur, thus preventing substantial data rejection. In that
vein, we present the following recommendations.

Recommendations for Multicenter DTI Studies

* Phantoms, both physical and living, are better than
population studies to detect small deviations between
sites and over time because of the added confounds of
biological and morphological diversity in a population.
Continued monitoring of acquired data over time,
using tools such as those proposed in this work, is
important.

Assess phantom data before and after any software
and/or hardware upgrades during the course of the
study.

Accurate quantification of diffusivity is desirable. This
requires a phantom with reliable, repeatable measure-
ments. A diffusion phantom should be used for this
purpose.

Acquire approximately equal numbers of phantom
scans per site to enable a meaningful parametric analy-
sis of phantom data. Our results suggest that exactly
equal may not be necessary, but large differences in
the number of scans may complicate the interpretation
of variance analyses.

Use EPI distortion correction to improve susceptibility
induced EPI distortions, which are a significant con-
tributor to intersite variability.

Use of a single scanner manufacturer and software
version may help to reduce site-specific differences.
Use the framework presented in this study to assess
data as it is acquired to promptly identify and correct
problems in your study.
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