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An intermediate filament protein, Nestin, is known as a neural stem/progenitor cell marker. It was shown to be required for the
survival and self-renewal of neural stem cells according to the phenotypes of Nestin knockout mice. Nestin expression has also been
reported in vascular endothelial cells, and we recently reported Nestin expression in proliferating endothelial progenitor cells, but
not in mature endothelial cells. Using quantitative phosphoproteome analysis, we studied differences in phosphorylation levels
between CNS Nestin in adult neural stem cells and vascular Nestin in adult bone-marrow-derived endothelial progenitor cells. We
detected 495 phosphopeptides in the cell lysates of adult CNS stem/progenitor cells and identified 11 significant phosphorylated
amino acid residues in the Nestin protein. In contrast, endothelial progenitor cells showed no significant phosphorylation of
Nestin. We also measured neoplastic endothelial cells of the mouse brain and identified 13 phosphorylated amino acid residues
in the Nestin protein. Among the 11 phosphorylated amino acids of adult CNS Nestin, five (5565, S570, S819, S883, and S886)
were CNS Nestin-specific phosphorylation sites. Detection of the CNS-specific phosphorylation sites in Nestin, for example, by a
phospho-specific Nestin antibody, may allow the expression of CNS Nestin to be distinguished from vascular Nestin.

1. Introduction

Nestin is a class VI intermediate filament protein expressed in
undifferentiated central nervous system (CNS) cells during
development. The protein is known as a neural stem/
progenitor cell marker and required for the survival and self-
renewal of neural stem cells (NSCs) [1]. Nestin expression is
downregulated when CNS stem/progenitor cells differentiate
into neurons or glial cells [2, 3], and the expression is kept in
adult CNS stem/progenitor cells that reside in the forebrain
neurogenic regions [4, 5]. Nestin expression has also been
reported in vascular endothelial cells (ECs) from a variety of
adult human non-CNS tissues [6, 7]. We recently reported
Nestin expression in proliferating endothelial progenitor
cells (EPCs), but not in mature ECs [8]. We utilized
E/nestin : EGFP transgenic mice using its second intronic

enhancer element to study neural-specific nestin gene expres-
sion [9, 10] and demonstrated that vascular nestin expression
is not activated by the CNS-specific enhancer of the nestin
gene [8]. This finding indicated that the Nestin expressed in
EPCs is cytochemically similar to the protein expressed in
CNS stem/progenitor cells, but the regulatory mechanism of
gene expression is different.

The reversible phosphorylation of proteins results in a
conformational change that alters their function. Many pro-
teins, including cellular receptors, enzymes, and intracellular
signaling molecules, are activated/deactivated by phosphory-
lation/dephosphorylation. Thus, reversible phosphorylation
plays a significant role in the regulation of cellular processes.
Nestin protein in the cytoplasm of CNS stem/progenitor
cells is thought to play a role in distributing Vimentin
from copolymerized intermediate filaments to daughter cells
during cell division [11]. Elevated phosphorylation of Nestin


mailto:namikijun@a8.keio.jp

has been observed to accompany the mitotic reorganization
of Nestin in an immortalized CNS precursor rat cell line
[12]. Concerning the developing mouse brain, more than
500 phosphorylation sites on proteins, including Nestin, have
been identified by phosphoproteomic analysis [13]. How-
ever, Nestin phosphorylation has not been investigated in
adult NSCs. Using quantitative phosphoproteome analysis,
we demonstrate in the present study that different phospho-
rylation levels are found among CNS Nestin in adult NSCs
and vascular Nestin in adult bone-marrow-derived EPCs.

2. Materials and Methods

2.1. Animals. Adult (8 to 10 weeks old) wild-type C57BL/6]
mice were purchased from SLC (Shizuoka, Japan). All
animal-related procedures were approved by the Laboratory
Animal Care and Use Committee of Keio University and
conducted in accordance with the guidelines of the National
Institutes of Health, USA.

2.2. Primary Neural Stem/Progenitor Cell Culture. Neuro-
spheres were generated from adult mouse forebrain as
described previously [8, 10, 14, 15]. Briefly, the striata
from adult mice were dissected, incubated with trypsin
solution for 15min at 37°C, triturated, and then trypsin
inhibitor solution added. Dissociated cells (5000 cells/mL)
were seeded in neurosphere culture medium composed
of DMEM-F12 (1:1), glucose (0.6%), glutamine (2 mM),
sodium bicarbonate (13.4 mM), HEPES (5mM), insulin
(25 ug/mL), transferrin (100 ug/mL), progesterone (20 nM),
sodium selenate (30 nM), and putrescine (60 nM) supple-
mented with recombinant human epidermal growth factor
(EGE, 20ng/mL) and recombinant human basic fibroblast
growth factor (bFGF, 20 ng/mL). Cells were cultured for 7
days in vitro (DIV) and formed floating cell clusters of neural
stem/progenitor cells (neurospheres). Primary neurospheres
were collected and mechanically triturated. Dissociated cells
were counted and stored at —20°C.

2.3. EPC Culture. EPCs were cultured from mononuclear
cells (MNCs) under previously reported culture conditions
[8]. The femurs and tibias of adult mice were crushed,
suspended in aMEM (#11900, Gibco Invitrogen, Carlsbad,
CA) supplemented with 10% fetal bovine serum (FBS)
and 1% penicillin G (10,000 units/mL) streptomycin sul-
fate (10,000 ug/mL) (PS), and filtered through a 70-ym
filter (Cell Strainer #352350, Falcon, Bedford, MA). MNCs
were isolated from bone marrow cells by Ficoll density-
gradient centrifugation (Ficoll-Paque Plus, 1.077 g/mL, GE
Healthcare, Uppsala, Sweden). Cells (1 x 10° cell/mL) were
plated on fibronectin-coated 6-well plates (#140675, Nunc,
Roskilde, Denmark) in endothelial basal medium supple-
mented with 5% FBS, vascular endothelial growth factor
(VEGF), bFGF, recombinant analog of insulin-like growth
factor-1 (R3*-IGF-1), EGE hydrocortisone, ascorbic acid, and
gentamicin/amphotericin-B (EGM-2-MV Bullet Kit CC-
3202, Lonza, Walkersville, MD). The medium was changed
after 24 hours to remove nonadherent cells and renewed
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every week. At 21 DIV, cells were lifted by incubation with
0.25% trypsin and 1 mM EDTA and then stored at —20°C.

Although a unique EPC marker has not been identified,
EPCs are characterized as cells with a high proliferative
potential that display typical endothelial characteristics and
differentiate into ECs in vitro [16]. EPCs obtained under the
above culture conditions were positive for the proliferation
marker Ki67, positive for EC lineage marker CD31 and vas-
cular endothelium cadherin or the uptake of 1,1’ dioctadecyl-
3,3,3',3'-tetramethylindo-carbocyanine perchlorate Ac-LDL
(Dil-Ac-LDL), negative for the mature EC marker von
Willebrand factor (vWF), and capable of differentiating into
mature ECs [8].

2.4. EC Line. To compare phosphorylation between CNS
Nestin and vascular endothelial Nestin in proliferative cells
further, we prepared neoplastic ECs. Cells from a mouse
brain endothelioma cell line (bEnd.3 cells CRL-2299, ATCC,
Manassas, VA) were characterized as proliferative endothelial
cells expressing vascular Nestin similar to EPCs and positive
for mature EC marker vWF [8].

The EC line was cultured according to the manufac-
turer’s instructions. Briefly, cells were maintained in DMEM
(#12699, Gibco Invitrogen) supplemented with 10% FBS and
1% PS. The medium was renewed every 3 to 4 days. Cells
were harvested by incubation with 0.25% trypsin and 1 mM
EDTA and stored at —20°C.

2.5. Quantitative Phosphoproteome Analysis. Cells were pro-
cessed for phosphoproteome analysis based on mass spec-
trometry (MS) coupled with miniaturized on-line liquid
chromatography (LC). Proteins were extracted from cells
(100,000 cells from adult neurospheres; 1,000,000 cells
from EPCs and the neoplastic ECs) using 12mM sodium
deoxycholate and 12mM sodium lauroyl sarcosinate, and
digested with Lys-C and trypsin [17]. Phosphopeptides were
enriched by aliphatic hydroxy acid-modified metal oxide
chromatography with titania [18] and analyzed by nanoLC-
MS/MS using an LTQ-Orbitrap instrument (Thermo Fisher
Scientific, Bremen, Germany). Peptides and proteins were
identified using Mascot version 2.3 (Matrix Science, Lon-
don) with the SwissProt database. Label-free quantitation
was performed based on the peak areas of extracted ion
chromatograms for identified phosphopeptides using Mass
Navigator (Mitsui Knowledge Industry, Tokyo, Japan).

3. Results

3.1. Protein Phosphorylation of CNS Stem/Progenitor Cells,
EPCs, and Neoplastic ECs. CNS stem/progenitor cells were
obtained from striata of the lateral wall of the lateral
ventricles in the adult mouse brain and grown as neuro-
spheres in vitro. Phosphoproteome analysis detected 495
phosphopeptides in the cell lysates (Table 1). Approximately
90% of the peptides detected in neurosphere cells were phos-
phorylated. A similar percentage of phosphopeptides was
measured in neoplastic ECs. However, approximately 60%
of peptides in nonneoplastic proliferative endothelial cells,
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TABLE 1: Protein phosphorylation of adult CNS stem/progenitor cells, EPCs, and neoplastic ECs.

) pSites Multi-pPeptides
i pPeptides . (pSite/total pSites) (single or multi-pSite peptides/total pPeptides)
(pPeptides/total peptides) . . .
Serine Threonine Tyrosine 1p 2p >2p
Neurospheres 495 (91.2%) 443 (84.2%) 71 (13.5%)  12(2.3%) 401 (81.0%) 74 (14.9%) 20 (4.0%)
EPCs 250 + 5 (59.7%) 194 + 8 (87.4%) 20 =3 (9.0%) 8 = 0 (3.6%) 228 = 6 (91.0%) 19 + 0 (7.4%) 4 + 0 (1.6%)
Neoplastic ECs 980 (97.8%) 896 (88.1%) 103 (10.1%) 18 (1.8%) 675 (68.9%) 256 (26.1%) 49 (5.0%)

pPeptides, phosphopeptides; pSites, phosphorylation sites; multi-pPeptides, multi-phosphorylated peptides; 1p, single-phosphorylated site; 2p, two

phosphorylated sites. Data are mean + standard deviation.

Nestin phosphorylation Cell samples
Phosphorylated sites Peptide sequence Neurospheres EPCs Neoplastic ECs
5169 RPPAPAHASPIRAPEVEELAR 1.4.E + 05 0
§565, S570 ENCNSSIEENSGTVKSPEK 1.5.E + 04 0 0
S575 ENCNSSIEENSGTVKSPEK 0 3.1.LE+ 02 7.5.E + 04
5688 FPRSPEEDQQAFRPLEK 3.7E+03 0 1.9.E + 05
S728 ERQESLKSPEEEDQQAFR 1.8.E+05 0 1.1.LE + 06
§728,S731 ERQESLKSPEEEDQQAFR 9.9.E + 04 0 44E+05
S731 ERQESLKSPEEEDQQAFR 4.1.E+05 0 6.2.E + 04
S813 ESQESLKSPEEEDQR 0 3.9.E+ 04
S813,S816 LVEKESQESLKSPEEEDQR 0 0 1.2.E+ 05
S819 ESQESLKSPEEEDQR 2.9.E + 04 0
5883, S886 VSQVSLESLEK 1.2.E+05 0
S1010 SLEDESQETFGSLEK 1.6.E +05 0 52.E+05
S1216 SLGEVEWELPGSGSQQR 0 0 4.8.E + 04
S1562, S1565 SPASPKWEQAGEQR 0 0 5.1.E+04
S$1565 SPASPKWEQAGEQR 2.8.E+05 0 6.1.E + 04
S1837 APLVGSPVHLGPSQPLK 1.1.LE+05 0 3.9.E+05
S1860, S1861 FTLSGVDGDSWSSGED 0 0 1.5.E + 06
0 1.0E+7
[T T T
Peptide peak area

FiGure 1: Quantitative phosphoproteome analysis of Nestin. A peak area of more than 1.E+04 indicates significant phosphorylation detected

by MS/MS. pSites, phosphorylated sites of amino acid residues.

EPCs, were phosphorylated, indicating that intracellular and
cell membrane proteins were activated overall in neurosphere
cells compared to EPCs. Generally, phosphorylation occurs
most commonly on serine, followed by threonine. More
than 80% of phosphorylated sites were serine residues
in our samples, and the ratio of phosphorylated amino
acids was not different between neurosphere cells, EPCs,
and neoplastic ECs (Table 1). We tabulated phosphorylated
proteins and their phosphorylated amino acid residues in
Figure 1 in Supplementary Material (available online at
doi:10.1155/2012/430138).

3.2. Nestin Phosphorylation of CNS Stem/Progenitor Cells,
EPCs, and Neoplastic ECs. Quantitative phosphoproteome
analysis identified 10 phosphopeptides and 11 significant
phosphorylated amino acid residues (a peak area >1.E +04)

in the Nestin protein from adult neurosphere cells (Figure 1).
In contrast, EPCs derived from adult mouse bone marrow
showed no significant phosphorylation of Nestin (n = 2).
In neoplastic ECs, 13 significant phosphorylated amino acid
residues were identified. Thus, the finding that Nestin is
not phosphorylated in EPCs is not likely due to the tissue
specificity of ECs. All phosphorylated amino acid residues
found in neurosphere cells and neoplastic ECs were serine.
Although phosphothreonine was reported in samples of
Nestin from an immortalized rat cell line [12] and human
HeLa cells (cervical carcinoma) [19, 20], we did not detect
the phosphorylation of threonine residues in the Nestin
proteins from our samples. Five of the phosphorylated
amino acid residues (S565, S570, S819, S883, and S886)
were detected in neurosphere cells only, eight (S575, S668,
S813, S816, S1216, S1562, S1860, and S1861) were detected



in neoplastic ECs only, and six (S169, S728, S731, S1010,
S1565, and S1837) were detected in both neurosphere cells
and neoplastic ECs (Figure 1).

In CNS stem/progenitor cells, Nestin protein prefer-
entially forms heterodimers and heterotetramers with a
variety of intermediate filament proteins, particularly type
I Vimentin and type IV a-Internexin [21, 22]. Phospho-
proteome analysis detected phosphorylation of Vimentin but
not a-Internexin from the samples of adult neurospheres,
EPCs, and neoplastic ECs (Figure 1 in Supplementary
Material).

4. Discussion

Recent investigations of nestin-knockout mice have reported
that Nestin deficiency results in embryonic lethality with the
neuroepithelium of the developing neural tube exhibiting
low numbers of NSCs and high levels of apoptosis [1].
The downregulation of nestin in the embryonic cerebral
cortex using small interference RNAs against nestin mRNA
results in Gl cell-cycle arrest and a severe reduction in
the generation of neurons [23]. However, no data have
been reported on the in vivo function of adult Nestin.
Transient transfection of nestin-non-expressing cells with an
expression vector carrying rat nestin cDNA has been shown
to promote the disassembly of phosphorylated Vimentin
intermediate filaments in the cytoplasm during mitosis [11].
Our phosphoproteome analysis detected phosphorylated
Vimentin in the adult neurosphere sample. Thus, Nestin
in adult NSCs is likely to mediate the distribution of
Vimentin protein to daughter cells during self-renewal and
neurogenesis.

In a rat neuronal progenitor cell line, the mitotic
reorganization of Nestin was accompanied by the elevated
phosphorylation of Nestin, and T316 was identified as a
Nestin phosphorylation site [12]. Phosphorylated threonine
was not detected in Nestin from adult CNS stem/progenitor
cells, EPCs, or neoplastic ECs in the present study. However,
we identified 11 significant phosphorylation sites at serine
residues in Nestin protein from adult CNS stem/progenitor
cells using quantitative phosphoproteome analysis. The
difference in phosphorylated amino acids and the number of
phosphorylated sites may be due to technological advances
in phosphoproteome analysis and/or the difference in cell
sources. Phosphorylated serine residues have been reported
in Nestin protein from the brain of mouse embryos [13]
and mouse skin melanoma [24] and have been assumed
by similar data in human Hela cells [19, 20]. Among
the 11 phosphorylated serine residues we identified in
Nestin protein, only two (S565 and S1010) were reported
previously; the other nine (S169, S570, S728, S731, S819,
S883, 5886, S1565, and S1837) were newly identified in the
present study.

Nestin protein is expressed not only in NSCs, but also in
tissue stem/progenitor cells beyond the germ layers, includ-
ing mesenchymal stem cells [25], vascular endothelium [6-
8], muscle [26-28], testes [29], and teeth [30]. Nestin is also
abundant in progenitor cells derived from embryonic stem

Stem Cells International

cells that have the potential to develop into neuroectodermal,
endodermal, and mesodermal lineages [31]. We recently
reported that Nestin is expressed in proliferating ECs and
may be useful as a marker of neovascularization [8]. Nestin
expression has been reported in the angiogenic endothelium
of cancers [32, 33]. Independent cell-type-specific elements
of the nestin gene are identified in transgenic mice; the first
intron directs reporter gene expression to the mesodermal
somite, and the second intron contains enhancer that
functions in NSCs [28]. Although the regulatory mech-
anisms underlying nestin gene expression in proliferative
vascular cells are different from those in NSCs, the protein
expression of vascular Nestin is cytochemically similar to
CNS Nestin [8]. The phosphorylation of Nestin protein from
adult neurospheres can allow it to be distinguished from
Nestin in EPCs. Although Nestin phosphorylation was also
observed in neoplastic ECs, our phosphoproteome analysis
identified CNS-specific phosphorylation sites, suggesting
that a phospho-specific Nestin antibody may distinguish
between the expression of CNS and vascular Nestin proteins.

5. Conclusions

Quantitative phosphoproteome analysis identified phospho-
rylated serine residues in Nestin from adult mouse CNS
stem/progenitor cells. Phosphorylation was not observed in
Nestin from EPCs. Detection of the CNS-specific phospho-
rylation sites in Nestin, for example, by a phospho-specific
Nestin antibody, may allow the expression of CNS Nestin to
be distinguished from vascular Nestin.
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