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Alzheimer’s disease (AD) is the most common cause of dementia. Much is known concerning AD pathophysiology but our understanding
of the disease at the systems level remains incomplete. Previous AD research has used resting-state functional connectivity magnetic
resonance imaging (rs-fcMRI) to assess the integrity of functional networks within the brain. Most studies have focused on the default-
mode network (DMN), a primary locus of AD pathology. However, other brain regions are inevitably affected with disease progression.
We studied rs-fcMRI in five functionally defined brain networks within a large cohort of human participants of either gender (n � 510)
that ranged in AD severity from unaffected [clinical dementia rating (CDR) 0] to very mild (CDR 0.5) to mild (CDR 1). We observed loss
of correlations within not only the DMN but other networks at CDR 0.5. Within the salience network (SAL), increases were seen between
CDR 0 and CDR 0.5. However, at CDR 1, all networks, including SAL, exhibited reduced correlations. Specific networks were preferentially
affected at certain CDR stages. In addition, cross-network relations were consistently lost with increasing AD severity. Our results
demonstrate that AD is associated with widespread loss of both intranetwork and internetwork correlations. These results provide insight
into AD pathophysiology and reinforce an integrative view of the brain’s functional organization.

Introduction
Alzheimer’s disease (AD) is the most common cause of de-
mentia. The pathological hallmarks of AD are accumulation of
amyloid � (A�1– 42) plaques and tau tangles (Blennow et al.,
2006; Holtzman et al., 2011). The application of novel neuro-

imaging techniques may provide additional insight into AD
pathophysiology.

Resting-state functional connectivity magnetic resonance im-
aging (rs-fcMRI) is a method that noninvasively assesses brain
function (for review, see Zhang and Raichle, 2010). rs-fcMRI
measures the temporal correlation of spontaneous fluctuations of
the blood oxygen level-dependent (BOLD) signal between re-
gions (Biswal et al., 1995). Correlated regions have been repro-
ducibly classified into resting-state networks (RSNs) using both
independent components analysis (Calhoun et al., 2001; Beck-
mann et al., 2005) and seed-based analysis (Damoiseaux et al.,
2006; Shehzad et al., 2009). RSNs are of scientific interest because
they recapitulate the topographies of task-related functional re-
sponse (Beckmann et al., 2005; Smith et al., 2009). Importantly,
rs-fcMRI eliminates performance confounds associated with
task-based functional neuroimaging (Hyvärinen, 1999; Ewers et
al., 2011). We used seed-based analysis, which affords straight-
forward comparison across groups.

The default-mode network (DMN), the RSN most active
in the absence of task (Raichle et al., 2001; Macey et al., 2004), was
the first network to be identified as affected by AD (Greicius et al.,
2004). There is a compelling colocalization between DMN ab-
normalities and AD histopathology (A�1– 42 deposition and atro-
phy) (Braak and Braak, 1991; Buckner et al., 2005, 2008; Bero et
al., 2011; Drzezga et al., 2011). Moreover, the DMN is associated
with episodic memory (Buckner, 2004; Cole et al., 2010), a cog-
nitive domain impaired early in AD. Following the work of Gre-
icius and colleagues (2004), additional resting state studies of AD
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have reported abnormalities in the DMN (Rombouts et al., 2005;
Sorg et al., 2007; Hedden et al., 2009; Zhang et al., 2010; Jones et
al., 2011). Further, DMN rs-fcMRI abnormalities increase with
disease progression (Supekar et al., 2008; Sanz-Arigita et al., 2010;
Zhang et al., 2010; Zhou et al., 2010; Agosta et al., 2011; Petrella et
al., 2011).

Focal changes in DMN function occur early in AD. Eventu-
ally, however, the entire cortex becomes affected. However, the
sequence of involvement of functional systems outside the DMN
is not well known. Only a few rs-fcMRI studies have investigated
the effects of AD in other RSNs (Wang et al., 2007; Zhou et al.,
2008; Murphy et al., 2009; Agosta et al., 2011). rs-fcMRI studies of
AD have found decreased graph-based connectivity measures
across many RSNs (Supekar et al., 2008; Fox et al., 2009; Sanz-
Arigita et al., 2010). Other studies have reported varied changes
in rs-fcMRI between regions of interest (ROI) across RSNs
(Wang et al., 2007; Agosta et al., 2011).

Here, we report a cross-sectional rs-fcMRI study of AD in a
large cohort, assessing five RSNs as a function of disease stage.
Our results demonstrate that widespread disturbances in RSNs
are seen even in very mild [clinical dementia rating (CDR) 0.5]
and mild (CDR 1) AD.

Materials and Methods
Patient characteristics. Data were examined from 559 human participants
of either sex enrolled in memory and aging studies at the Knight Alzhei-
mer’s Disease Research Center at Washington University in St. Louis.
The Washington University in St. Louis Human Research Protection
Office approved all procedures. Following informed consent, each par-
ticipant had clinical examinations, neuropsychological performance
testing, and neuroimaging studies.

Clinical examination. Experienced clinicians conducted semistruc-
tured interviews with each participant and a knowledgeable collateral
source. The CDR was used to determine the presence or absence of
dementia and, if present, to stage its severity. CDR 0 indicates cognitive
normality while a CDR 0.5 corresponds to very mild AD and CDR 1
specifies mild AD (Morris, 1993; Hagmann et al., 2008). All CDR � 0
participants had a clinical diagnosis of dementia of the Alzheimer’s type
in accordance with the National Institute of Neurological and Commu-
nicative Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association (McKhann et al., 1984; Buckner et al., 2009; Sper-
ling et al., 2009; Zuo et al., 2011).

Image acquisition. Imaging was performed using a 3T Siemens scanner
equipped with a standard 12-channel head coil. A high-resolution struc-
tural scan was acquired using a 3-D sagittal T1-weighted magnetization-
prepared rapid gradient echo (MPRAGE; TE � 16 ms, TR � 2400 ms,
TI � 1000 ms, flip angle � 8°, 256 � 256 acquisition matrix, 1 � 1 � 1
mm voxels]. The high-resolution MPRAGE was used for definitive atlas
registration. High-resolution 2-D multislice oblique axial spin density/
T2-weighted fast spin echo (FSE) structural images were acquired using
slice tilts and positions computed by slice preregistration (TE � 455 ms,
TR � 3200 ms, 256 � 256 acquisition matrix, 1 acquisition, 1 � 1 � 1
mm voxels). These T2-weighted FSE data were used in the rs-fcMRI atlas
registration procedure. rs-fcMRI scans were collected using a gradient
spin-echo sequence (TE � 27 ms, TR � 384 ms, field of view � 256 mm,
flip angle � 90°, 4 mm isotropic voxels) sensitive to the BOLD contrast
(T2* weighting). Complete brain coverage was obtained using 36 contig-
uous slices acquired parallel to the anterior commissure/posterior com-
missure plane. Two 6 min rs-fcMRI runs (164 volumes each) were
acquired, during which participants were instructed to fixate on a visual
cross-hair and not fall asleep.

Preprocessing of rs-fcMRI. Initial preprocessing followed conventional
methods as previously described (Shulman et al., 2010; Drzezga et al.,
2011). Briefly, this included compensation for slice-dependent time
shifts, elimination of systematic odd– even slice intensity differences due
to interleaved acquisition, and rigid body correction for head movement
within and across runs. rs-fcMRI data were intensity scaled (one multi-

plicative factor applied to all voxels of all frames within each run) to
obtain a mode value of 1000 (Ojemann et al., 1997; Morris et al., 2001;
Fagan et al., 2009). This scaling facilitated assessment of voxelwise vari-
ance for purposes of quality assurance but did not affect computed cor-
relations. Atlas transformation was achieved by composition of affine
transforms connecting the rs-fcMRI volumes with the T2-weighted and
MPRAGE structural images. Head movement correction was included in a sin-
gle resampling that generated a volumetric time-series in 3 mm3 atlas space.

Additional preprocessing in preparation for correlation mapping in-
cluded the following: (1) spatial smoothing (6 mm full-width half-
maximum Gaussian blur in each direction), (2) voxelwise removal of
linear trends over each run, (3) temporal low-pass filtering that retained
frequencies �0.1 Hz, and (4) reduction of spurious variance by regres-
sion of nuisance waveforms derived from head motion correction and
extraction of the time series from regions (of noninterest) in white matter
and CSF. This regression step included the time-series averaged over the
whole brain (Buckner et al., 2005; Fox et al., 2009; Bero et al., 2011). A
consequence of whole-brain signal regression is that all subsequently
computed correlations are effectively partial correlations of first-order
controlling for widely shared variance.

Quality assurance. Particular care was taken to minimize the impact of
head motion both at the individual and at the group levels. For each
individual, the preprocessed rs-fcMRI data were passed through a pro-
cedure that detected frames (volumes) with excessively high whole-brain
root mean squared (rms) signal change over time (Sheline et al., 2010;
Smyser et al., 2010; Power et al., 2012; Van Dijk et al., 2012). These frames
were subsequently excluded from rs-fcMRI assessments. The fraction of
frames so excluded was �10% in each group (no significant effect of
group as factor on fraction of frames removed). Overall, 10 individuals
had a large proportion of high-noise frames (�25% frames identified as
contaminated) and were therefore excluded from the analysis. Addi-
tional quality assurance (QA) measures included rms head displacement
(in mm) derived from the motion-correction procedure and the voxel-
wise time series standard deviation averaged over the whole brain (de
Calignon et al., 2012; Van Dijk et al., 2012). QA-based exclusion criteria
were empirically determined with the objective of maximizing the num-
ber of included subjects while achieving QA parameter distribution
equivalence across groups. Individuals (n � 39) with a mean prepro-
cessed rs-fcMRI signal �2.5% SD (after nuisance regression) or rms
movement exceeding 1.25 mm were also excluded. The mean rms move-
ment before and after the removal of contaminated frames is shown in
Table 1. There were no significant differences among groups in QA pa-
rameters (Table 1).

Seed ROI definition. Thirty-six spherical (6 mm radius) ROIs, origi-
nally representing seven RSNs, were derived by maximizing the topo-
graphic concordance between results obtained by seed-based correlation
mapping and by spatial independent component analysis (ICA) (Beck-
mann et al., 2005; Fagan et al., 2009). The fastICA algorithm (Hyvärinen,
1999; Greicius et al., 2004; Sestieri et al., 2011) was implemented in
MATLAB. rs-fcMRI data were analyzed from 17 healthy young adults
acquired in a prior study (Greicius et al., 2004; Fox and Raichle, 2007;
Sestieri et al., 2011). Following preprocessing and atlas transformation as
described above, but omitting nuisance regression, spatial ICA was run
on the rs-fcMRI data concatenated over all runs (4 runs that were 7 min
in duration each) and subjects. Concurrently, correlation mapping was
performed using initial seed coordinates taken from multiple sources
(Table 2). Loci of matching peaks in the correlation maps and the ICA
results were selected as ROI centers. To maximize comparison of certain

Table 1. The mean (SD) rms of movement and standard deviation of the signal
before (pre) and after (post) removal of contaminated frames that contained large
amounts of movement

rms pre SD pre
Percentage of
frames removed rms post SD post

CDR 0 0.54 (0.23) 0.11 (0.094) 6.4 (4.9) 0.48 (0.17) 0.10 (0.081)
CDR 0.5 0.65 (0.34) 0.17 (0.13) 8.2 (4.3) 0.56 (0.18) 0.16 (0.11)
CDR 1 0.60 (0.28) 0.20 (0.15) 8.5 (4.6) 0.52 (0.21) 0.18 (0.12)

The rms decreased after this procedure with differences not significantly affected by group membership.
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features of our results compared with prior findings, four ROIs within
the salience (SAL) network were taken directly from the literature (Shul-
man et al., 1997; Raichle et al., 2001; Greicius et al., 2004; Seeley et al.,
2007; Zhou et al., 2010; Sestieri et al., 2011). Three originally separate
RSNs corresponding to the primary auditory, primary visual, and so-
matomotor cortices were combined into a single sensory-motor network
(SMN). Thus, a total of five RSN were analyzed and included: DMN,
dorsal attention network (DAN), SAL, control (CON), and SMN (Fig. 1).

rs-fcMRI procedures. Correlation maps were produced by extracting
the time course from each of the 36 seed regions. The Pearson correlation
coefficient (r) was computed between the time course from a seed region
and all other brain voxels. Statistical tests of rs-fcMRI results were com-
puted after application of Fisher’s z transform (z � 0.5ln[(1 � r)/(1 �
r)]). CDR group average images were computed by averaging individual
correlation maps across subjects. Group difference significance maps
were computed by a random-effects analysis of the Fisher z transformed
correlation maps (voxelwise p � 0.001, uncorrected; cluster size � 5).

Statistical analysis. To obtain quantitative results at the level of RSN
node pairs, the group-averaged Fisher z-transformed correlation maps
were sampled in areas surrounding the original seeds. These regions were
obtained by thresholding the mean (z-transformed) correlation map av-
eraged over groups (weighting each group equally) at a threshold of �z� �
0.3 and isolating the cluster of voxels surrounding each seed. Results
using these expanded seed ROIs were qualitatively similar to, but consid-
erably less noisy, than directly computing seed pair correlation matrices.
The use of expanded seed ROIs also reduced the variance across individ-
uals. This improvement in quantitative stability is understandable as the

spatial extent of group differences in correlation maps is greater than the
volume of the original seeds. All presently reported results concerning
ROI pairs were obtained by evaluating z-transformed correlation maps
within expanded seed ROIs. The values extracted from these expanded
seed ROIs were subjected to one-way ANOVA (3 levels: CDR 0, 0.5, and
1). The p values were corrected for the false discovery rate (q � 0.05) and
significant effects assessed with post hoc t tests between the CDR 0 versus
CDR 0.5 and CDR 0.5 versus CDR 1 contrast levels ( p � 0.05).

Inspection of these results suggested that correlations within and
across RSNs were progressively lost with advancing AD stage. To perform
statistical tests of these effects while avoiding sampling error at the level of
node pairs, we computed individual subject composite scores for each
network for each CDR stage. Thus, the composite DMN score for a
subject k was computed as ck

DMN � �zijk�i, j � DMN, where i and j refer to a
ROI pair and � � represents the mean across subjects. Similarly, ck

X was
computed as the average correlation within network X in subject k. A
similar strategy was used to define cross-network composite scores.
Thus, ck

X, Y � �zijk�i � X, j � Y was computed the average correlation be-
tween RSNs X and Y in subject k. This approach to statistical inference
achieves data reduction and reduces the impact of sampling error across
node pairs. However, this method potentially obscures focal phenomena.
To assess statistical significance, the ck of all RSNs and RSN pairs was
entered into one-way ANOVAs with CDR status as a factor. The resulting
p values were Bonferroni corrected for five (within-network) and 10
(between-network) multiple comparisons, respectively. Significant ef-
fects were assessed by post hoc t tests of the CDR 0 versus CDR 0.5 and
CDR 0.5 versus CDR 1 contrasts ( p � 0.05).

Table 2. Regions, MNI coordinates, and sample of references supporting choice of ROIs

ROI MNI coordinates References

Posterior cingulate cortexa 0, �51, 29 Greicius et al., 2004; Sestieri et al., 2011
Medial prefrontal cortex (mPFC)a 0, 61, 22 Greicius et al., 2004; Sestieri et al., 2011
Left lateral parietal (lLP)a �48, �66, 34 Shulman et al., 1997; Raichle et al., 2001; Greicius et al., 2004; Seeley et al., 2007; Zhou et al., 2010; Sestieri et al., 2011
Right lateral parietal (rLP)a 53, �61, 35 Shulman et al., 1997; Raichle et al., 2001; Greicius et al., 2004; Seeley et al., 2007; Zhou et al., 2010; Sestieri et al., 2011
Left inferior temporal (liTmp)a �65, �22, �9 Raichle et al., 2001; Alexander, 2002; Seeley et al., 2007
Right inferior temporal (riTmp)a 61, �21, �12 Raichle et al., 2001; Alexander, 2002; Seeley et al., 2007
Medial thalamus (mdThal)a 0, �9, 7 de Zubicaray et al., 2001; Raichle et al., 2001; Dosenbach et al., 2007; Seeley et al., 2007
Left posterior cerebellum (lpCBLM)a �28, �82, �32 Raichle et al., 2001; Johnson et al., 2002; Dosenbach et al., 2007; Seeley et al., 2007
Right posterior cerebellum (rpCBLM)a 26, �89, �34 Raichle et al., 2001; Johnson et al., 2002; Dosenbach et al., 2007; Seeley et al., 2007
Left front eye field (lFEF)b �29, �5, 55 Casey et al., 1998; Fox et al., 2006; Sylvester et al., 2007
Right front eye field (rFEF)b 31, �5, 54 Casey et al., 1998; Fox et al., 2006; Sylvester et al., 2007
Left posterior intraparietal sulcus (lpIPS)b �26, �65, 52 Büchel et al., 1998; Mazoyer et al., 2001; Fox et al., 2006; Dosenbach et al., 2007; Sylvester et al., 2009
Right posterior intraparietal sulcus (rpIPS)b 28, �65, 51 Büchel et al., 1998; Mazoyer et al., 2001; Fox et al., 2006; Dosenbach et al., 2007; Sylvester et al., 2009
Left anterior intraparietal sulcus (laIPS)b �45, �37, 48 Mazoyer et al., 2001; Fox et al., 2006; Sylvester et al., 2009
Right anterior intraparietal sulcus (raIPS)b 43, �36, 46 Mazoyer et al., 2001; Fox et al., 2006; Sylvester et al., 2009
Left MT (lMT)b �52, �66, �4 Büchel et al., 1998; Mazoyer et al., 2001; Fox et al., 2006; Sylvester et al., 2009
Right MT (rMT)b 55, �62, �7 Büchel et al., 1998; Mazoyer et al., 2001; Fox et al., 2006; Sylvester et al., 2009
Dorsal mPFC (dmPFC)c 1, 30, 44 Casey et al., 1998; Seeley et al., 2007
Left anterior PFC (laPFC)c �45, 50, �5 Mazoyer et al., 2001; Dosenbach et al., 2007; Seeley et al., 2007
Right anterior PFC (raPFC)c 46, 51, �7 Mazoyer et al., 2001; Dosenbach et al., 2007; Seeley et al., 2007
Left superior parietal (lSP)c �51, �50, 49 Mazoyer et al., 2001; Dosenbach et al., 2007; Seeley et al., 2007, 2009
Right superior Parietal (rSP)c 53, �49, 47 Seeley et al., 2007
Right anterior cingulate cortex (rPG-ACC)d 12, 32, 30 Kjaer et al., 2002; Henke et al., 2003; Zhou et al., 2010; Zielinski et al., 2010
Left anterior cingulate cortex (LPG-ACC)d �13, 34, 16 Kjaer et al., 2002; Henke et al., 2003; Zhou et al., 2010; Zielinski et al., 2010
Right ventral anterior cingulate cortex (rSG-ACC)d 10, 34, �6 Zhou et al., 2010
Left putamen (lPut)d �19, 3, 9 Greicius et al., 2003; Zhou et al., 2010
Right putamen (rPut)d Greicius et al., 2003; Zhou et al., 2010
Left insula (lIns)d �42, 6, 4 Casey et al., 1998; Fox et al., 2006; Zielinski et al., 2010
Right insula (rIns)d 43, 7, 2 Casey et al., 1998; Fox et al., 2006; Zielinski et al., 2010
Left motor cortex (lMC)e �40, �23, 53 Ellermann et al., 1998; Fox et al., 2009
Right motor cortex (rMC)e 41, �22, 48 Ellermann et al., 1998; Fox et al., 2009
Supplemental motor area (SMA)e 1, �18, 49 Ellermann et al., 1998; Seeley et al., 2007; Zielinski et al., 2010
Left primary visual (lV1)e �8, �83, 0 Henke et al., 2003; Fox et al., 2009
Right primary visual (rV1)e 7, �83, 0 Henke et al., 2003; Fox et al., 2009
Left primary auditory (lA1)e �64, �28, 13
Right primary auditory (rA1)e 62, �24, 13

References included contain ROIs that are within the expanded seed ROIs used in this study.

Footnote symbols indicate network membership and correspond to colors in Figure 1. aDMN. bDAN. cCON. dSAL. eSMN.
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Results
Demographics of participants
A total of 510 participants had acceptable neuroimaging studies
following QA measures. The average age was 77 years with 47% of
the participants being male; 386 were CDR 0, 91 were CDR 0.5,
and 33 were CDR 1. No significant differences in age, education,
or sex were present among the three groups (all p � 0.33). Mini-

mental status exam (MMSE) scores were
systematically lower with greater CDR
stage (mean MMSE � 29 for CDR 0, 27
for CDR 0.5, and 20 for CDR 1).

Functional connectivity of the posterior
cingulate cortex
Correlation maps generated using a seed
in posterior cingulate cortex (PCC; 0,
�51, 29) for each of the groups are shown
in Figure 2, A–C. Correlation magnitude
within the DMN and anticorrelations
with other RSNs were systematically lower
for higher CDR. The CDR 0 –CDR 0.5
comparison (Fig. 2D) showed decreases
in correlations between the PCC and me-
dial prefrontal cortex (mPFC), inferior
temporal cortex (iTMP), and lateral pari-
etal cortex (LP), all nodes of the DMN.
Reduced anticorrelations were seen in so-
matosensory, motor, and premotor re-
gions bilaterally. These results suggest that
decreases in functional connectivity with
the PCC are detectable at the group level
even at the earliest symptomatic disease
stage (CDR 0.5). Similar, but more pro-
nounced effects were evident in the CDR
0.5–CDR 1 comparison (Fig. 2E).

To more thoroughly investigate the effects of disease severity
within the DMN, we assessed correlations between the PCC and
other DMN nodes. The z-transformed correlation for each seed–
ROI pair was subjected to a one-way ANOVA for effect of CDR
(Table 3). Each ANOVA yielded a p value that was false-discovery
rate corrected at q � 0.05 (critical p � 0.02). Some but not all

Figure 1. Schematic representation of the 36 canonical expanded seed regions used for evaluating composite scores for five brain RSNs. Abbreviations and corresponding Montreal Neurological
Institute (MNI) coordinates are listed in Table 2.

Figure 2. rs-fcMRI maps using the PCC as a seed region projected onto a characteristic brain slice. A–C,C orrelations (orange and
red) and anticorrelations (dark blue) with PCC are seen for CDR 0 (A) CDR 0.5 (B), and CDR 1 (C). Reduced correlations (less orange
and red) and anticorrelations (blue) were seen with increasing disease severity. D, E, Random effects contrast of CDR 0 versus CDR
0.5 ( p � 0.01; D) and CDR 0.5 versus CDR 1 ( p � 0.01 (E).
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nodes of the DMN showed significant dif-
ferences with higher CDR. Within these
affected node pairings, several patterns as-
sociated with disease severity emerged.
Between the PCC and mPFC, a reduction
in correlation occurred between CDR 0
and CDR 0.5 but not between CDR 0.5
and CDR 1. This was in contrast to LP
regions where correlations were preserved
at early stages but decreased at CDR 1.
Finally, within iTMP, correlation was sys-
tematically reduced at successively higher
CDR stages. Correlations between the
PCC and other nodes of the DMN (in-
cluding thalamus and cerebellum) were
not significantly affected by CDR stage,
although a trend was observed.

All RSNs were affected with increasing
AD severity
We next investigated the effects of AD
severity across a wider set of expanded
seed–ROI pairs (Table 2). Each network
showed a distinctive pattern (Fig. 3). To
assess the changes in all ROIs for all net-
works, 36 � 36 matrices were computed
(Fig. 4). In Figure, 4 intranetwork corre-
lations are arrayed in blocks along the di-
agonal; cross-network correlations appear
in off-diagonal blocks. The CDR 0 matrix
(Fig. 4A) shows positive correlations
within each network and negative correla-
tions between networks. The CDR 0.5 ma-
trix (Fig. 4B) and, to an even greater
extent, the CDR 1 matrix (Fig. 4C), show
generally reduced correlations within net-
works as well as reduced anticorrelations
between networks. The effects of higher
CDR are displayed as difference matrices
in Figure 4, D and E. For a majority of ROI
pairs, the sign of the correlation difference
(earlier stage minus later stage) matches
the sign of the correlation itself. Thus, warm hues in Figure 4, D
and E, predominantly indicate reduced positive correlations
while cool hues predominantly indicate reduced anticorrelations.

Intranetwork correlations versus CDR stage
As assessed by composite scores, all networks showed significant
decreases with higher CDR stage, except for the SAL (Fig. 5A; Table
4). A slight but significant increase in the composite SAL score was

seen between CDR 0 and CDR 0.5. All intranetwork composite
scores were lower at CDR 1 compared with CDR 0.5. In particular,
the SAL composite score was lower at CDR 1. This decrease was
nearly significant when compared with CDR 0 (t(416) � 1.79, p � 0.07).

Internetwork correlations versus CDR stage
We next investigated cross-network composite scores across
CDR stage (Table 5). A significant effect of CDR status was seen

Figure 3. rs-fcMRI maps for each of the four non-DMN networks obtained in the CDR 0, CDR 0.5, and CDR 1 groups. Each row
shows the correlation map obtained for a given network using a representative seed ROI. For these maps, the left MT� was used
as a seed region for the DAN; the dorsal mPFC for the CON; the dorsal anterior cingulate cortex for the SAL; and the supplementary
motor area for the SMN.

Table 3. Effect of CDR status on correlations between the PCC and DMN nodes

PCC–X

ANOVA

CDR 0* t † CDR 0.5* t † CDR 1*F p

mPFC 6.65 0.0014 0.21 t � 3.30, p � 0.001, d � 0.42 0.16 t � 0.12, p � 0.90, d � 0.07 0.16
lLP 1.16 0.32 0.26 t � 0.45, p � 0.65 0.27 t � 1.46, p � 0.15 0.23
rLP 4.4 0.013 0.21 t � 0.021, p � 0.98, d � 0.02 0.21 t � 2.73, p � 0.0073, d � 0.55 0.14
liTMP 8.68 0.00019 0.13 t � 3.30, p � 0.001, d � 0.39 0.084 t � 0.77, p � 0.45, d � �0.18 0.064
riTMP 3.93 0.0203 0.097 t � 1.82, p � 0.069, d � 0.23 0.071 t � 1.20, p � 0.23, d � 0.26 0.045
mdTHAL 0.28 0.76 0.08 t � 0.29, p � 0.77 0.08 t � 0.71, p � 0.48 0.066
lpCBLM 3.46 0.032 0.094 t � 1.79, p � 0.075, d � 0.23 0.068 t � 0.88, p � 0.38, d � 0.21 0.046
rpCBLM 2.27 0.1 0.096 t � 1.60, p � 0.11 0.074 t � 0.52, p � 0.61 0.062

*Mean z-transformed correlation values. †Results of t test between CDR stages. Bold indicates significance (false-discovery rate corrected, q � 0.05). Effect size is reported as Cohen’s d. See Figure 2 for abbreviations and coordinates.
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for the DMN–DAN, DMN–SMN, and CON–SMN pairs (Fig.
5B). In these three cases, anticorrelations were consistently
weaker (trend toward 0) comparing CDR 1 to CDR 0.5 (Table 3).
The other seven RSN pairs did not show significant difference
between CDR status (Fig. 5C, Table 5). Of these, three were anti-
correlated and four were positively correlated. It should be noted
that, despite increases in SAL correlations at CDR 0.5, no in-
creases were seen in internetwork composite scores involving the
SAL at any stage.

Intranetwork correlations versus sum of box scores
The CDR is a clinically useful tool but is categorical rather than
continuous. A better estimate of decline of resting state func-

tional connectivity with increasing AD se-
verity may be obtained by comparing
composite scores using the sum of boxes
(CDR-SB) (Morris et al., 2001). We per-
formed an ANCOVA on CDR-SB versus
RSN composite scores. In this analysis, we
only included participants with a CDR-
SB � 0 (i.e., only CDR 0.5 and CDR 1
subjects). We did not include subjects
with a CDR-SB � 0 (i.e., subjects with a
CDR of 0), as the large number of individ-
uals within this group would impose a
floor effect and violate the assumptions of
most statistical tests. We modeled the di-
rect effect of CDR-SB (i.e., the correlation
between composite scores and CDR-SB
across networks), the main effect of net-
work (i.e., the difference in absolute mag-
nitude differences in composite scores
across different RSNs), and the interac-
tion between network and CDR-SB (dif-
ferences in the slope of the CDR-SB vs
composite score relationship across net-
works; Fig. 6). The composite scores gen-
erally were significantly correlated with
CDR-SB within RSNs (F(1,595) � 34, p �
0.0001); however, the slopes did not sig-
nificantly vary across networks (F(4,595) �
1.39, p � 0.24).

Analysis at the level of ROI pairs
Composite scores (Fig. 5) achieve data re-
duction but do not address potentially fo-
cal effects at the individual ROI pair level.
To examine this question, we plotted cor-
relation difference versus correlation
mean (across CDRs) for all ROI pairs (Fig.
7). In this representation, lower positive
correlation between ROI pairs in the more
advanced CDR group appears in the top
right quadrant while lower magnitude an-
ticorrelation between ROI pairs (trend to-
ward 0) appears in the bottom left
quadrant. Similarly, greater positive
correlations appear in the bottom right
quadrant and greater magnitude anticor-
relations appear in the top left quadrant.
In the CDR 0.5 versus CDR 0 comparison
(Fig. 7, left), systematically greater corre-
lations were seen for ROI pairs within the

SAL (blue) and DAN (red). This result is consistent with the RSN
composite score analysis (Fig. 5A). The CDR 0.5 versus CDR 1
plot (Fig. 7, right) demonstrates no convincing evidence of
greater correlation magnitude in any RSN at more advanced dis-
ease stage.

The points in Figure 7 cluster around a central tendency, but
considerable variability is evident. To better understand this vari-
ability, we assessed CDR 0 versus CDR 0.5 and CDR 0.5 versus
CDR 1 differences in individual ROI pairs within RSNs (Fig. 8).
Figure 8 represents the same data in the same manner as Figure 7
except that the ROI pairs in each of the two comparisons are
connected, and only within-network effects are plotted. The ma-
jority of trajectories are vertical and to the left. The vertical com-

Figure 4. A–C, ROI pair correlation matrices for CDR 0 (A), CDR 0.5 (B), and CDR 1 (C). The ROIs are grouped by RSN. Intranetwork
correlations appear on diagonal bocks; internetwork correlations appear in off-diagonal blocks. D, CDR 0 � CDR 0.5 difference
matrix. E, CDR 0.5 � CDR 1 difference matrix. Colors denote network membership: blue, DMN; red, DAN; green, CON; purple, SAL;
teal, SMN. Units are z-transformed correlation coefficients.

Figure 5. Mean composite z scores for intranetworks and internetworks across CDR status. A, Mean composite scores for the five
investigated networks. All network composite scores tended toward 0 with increasing disease severity. A transient increase in
functional correlations was seen in the SAL between CDR 0 and CDR 0.5. Thick solid line, DMN; dashed line, DAN; dotted line, CON;
dashed and dotted line, SAL; thin solid line, SMN. B, Mean composite scores for internetwork pairs that showed a significant effect
of CDR. Note that the anticorrelations for three network pairs also tended to move toward 0. Solid line, DMN–DAN; dashed line,
DMN–SMN; dotted line, CON–SMN. C, Mean composite scores for internetwork pairs that did not show a significant effect of CDR.
Thick solid line, DMN–CON; thick dashed line, DMN–SAL; thick dotted line, DAN–CON; dashed and dotted line, DAN–SAL; thin solid
line, DAN–SMN; thin dashed line, CON–SAL; thin dotted line, SAL–SMN.
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ponent of the trajectory indicates that the difference between
CDR 0.5 and CDR 1 is larger than the difference between CDR 0
and CDR 0.5. The horizontal component indicates that the mean
correlation value decreases with increasing CDR. Further, the
trajectories of the individual ROI pairs parallel the trajectory of
the composite scores. These results suggest that, within RSNs, the
effect of higher CDR stage manifests approximately uniformly
over ROI pairs.

Discussion
Our principal finding is that cross-sectionally measured differ-
ences in intranetwork correlations were overwhelmingly in the
direction of loss with advancing disease stage. Within the SAL,
transient increases were observed between CDR 0 and CDR 0.5,

but these effects were overtaken by significant losses at mild AD
(CDR 1; Figs. 4 – 6). Loss of cross-network correlations was also
observed predominantly in RSN pairs that were anticorrelated at
CDR 0. These effects were overwhelmingly in the direction of
reduced anticorrelation (movement to zero) with advancing
CDR stage. Intranetwork and internetwork correlations declined
at different rates. These results suggest that AD is characterized by
widespread loss of RSN integrity throughout the brain, occurring
in a particular spatial and temporal sequence. It has been sug-
gested that the effects of AD may manifest focally in certain ROI
pairs but not others. Our results suggest that functional connec-
tivity changes approximately uniformly across ROI pairs within
networks (Figs. 7, 8). Hence, composite scores capture the critical
phenomenology.

To date, this is the largest rs-fcMRI study to assess the effects
of AD severity on functional connectivity. Only participants with
a probable diagnosis of AD were included in CDR � 0 groups.
The large sample size enabled us to distinguish between three
groups (CDR 0 vs CDR 0.5 and CDR 0.5 vs CDR 1). Stringent QA
reduced the impact of head motion on rs-fcMRI results.

Our technique included global signal regression during pre-
processing (Shulman et al., 1997; Raichle et al., 2001; Greicius et
al., 2004; Seeley et al., 2007; Fox et al., 2009; Zhou et al., 2010;
Sestieri et al., 2011). Algebraically, this is approximately equiva-
lent to computing partial correlations treating the global signal as
a nuisance regressor (Raichle et al., 2001; Alexander et al., 2002;

Table 4. Effect of CDR within individual RSNs

RSN

ANOVA

CDR 0* t † CDR 0.5* t † CDR 1*F p

DMN 14.049 0.0000012 0.17 t � 2.59, p � 0.0099, d � 0.31 0.15 t � 3.18, p � 0.0019, d � 0.66 0.13
DAN 4.13 0.017 0.24 t � 0.44, p � 0.66, d � 0.07 0.23 t � 2.18, p � 0.032, d � 0.46 0.2
CON 8.017 0.00037 0.24 t � 2.26, p � 0.024, d � 0.29 0.22 t � 1.91, p � 0.059, d � 0.37 0.19
SAL 2.14 0.14 0.17 t � 2.70, p � 0.0071, d � �0.32 0.19 t � 2.72, p � 0.0075, d � 0.58 0.15
SMN 14.86 0.00000053 0.22 t � 2.15, p � 0.032, d � 0.28 0.21 t � 3.80, p � 0.00022, d � 0.83 0.16

*Mean z-transformed correlation values. †Results of t test between CDR stages. Bold indicated significance ( p � 0.05, Bonferonni corrected). Effect size is reported as Cohen’s d.

Table 5. Effect of CDR on RSN pairs

RSN

ANOVA

CDR 0* t † CDR 0.5* t † CDR 1*F p

DMN–DAN 8.52 0.00023 �0.1 t � 1.88, p � 0.060, d � �0.23 �0.091 t � 2.53, p � 0.013, d � �0.53 �0.065
DMN–CON 3.068 0.047 0.043 0.056 0.037
DMN–SAL 0.51 0.48 0.0050 0.0035 0.00
DMN–SMN 9.62 0.000079 �0.098 t � 0.93, p � 0.35, d � 0.12 �0.092 t � 3.69, p � 0.0003, d � �0.81 �0.058
DAN–CON 0.13 0.88 0.027 0.026 0.022
DAN–SAL 1.89 0.067 �0.033 �0.026 �0.027
DAN–SMN 1.53 0.22 0.077 0.081 0.06
CON–SAL 0.12 0.73 0.038 0.043 0.029
CON–SMN 7.43 0.00066 �0.095 t � 1.34, p � 0.18, d � �0.16 �0.085 t � 2.62, p � 0.0098, d � �0.61 �0.051
SAL–SMN 3.16 0.043 �0.032 �0.022 �0.0081

*Mean z-transformed correlation values. †Results of t test between CDR stages. Bold indicated significance ( p � 0.05, Bonferonni corrected). Effect size is reported as Cohen’s d.

Figure 6. Scatter plots of mean composite z scores versus CDR-SB. Linear fit lines are shown. Both p and r values for each correlation are shown.

Figure 7. Scatter plots of CDR stage-dependent correlation difference vs correlation mean.
Left, CDR 0 and CDR 0.5. Right, CDR 0.5 and CDR 1. Red, DAN; blue, SAL; black, other RSNs. The
bottom right quadrant shows positively correlated ROI pairs that are more correlated at more
advanced CDR.
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Seeley et al., 2007; Hampson et al., 2010). Global signal regression
effectively reduces nonneuronal physiological noise (Raichle et
al., 2001; Alexander et al., 2002; Macey et al., 2004; Seeley et al.,
2007). Concomitantly, negative correlations are markedly en-
hanced (de Zubicaray et al., 2001; Raichle et al., 2001; Dosenbach
et al., 2007; Seeley et al., 2007; Fox et al., 2009). The merits of this
strategy have been debated (for discussion, see Raichle et al.,
2001; Johnson et al., 2002; Dosenbach et al., 2007; Seeley et al.,
2007; Cole et al., 2010), but it is generally acknowledged that
global signal regression enhances the spatial specificity of ob-
tained results (Raichle et al., 2001; Johnson et al., 2002; Dosen-
bach et al., 2007; Seeley et al., 2007; Fox et al., 2009;
Weissenbacher et al., 2009).

Loss of BOLD signal correlations within the DMN, as found
here, is a well established finding in AD (Casey et al., 1998; Gre-
icius et al., 2004; Rombouts et al., 2005; Fox et al., 2006; Sorg et al.,
2007; Sylvester et al., 2007; Hedden et al., 2009). The principal
novelty of our work is in extending these observations to other
RSNs at two levels of disease severity. For each of five RSNs, we
demonstrate reduced intranetwork correlations at CDR stage 1.
Intranetwork effects were RSN-dependent. Most RSNs showed
significant decreases in composite scores, relative to CDR 0, even
at CDR 0.5, except for the DAN, which remained relatively
spared, and the SAL, which showed a significant increase. These
results are generally consistent with several other recent studies
(Casey et al., 1998; Fox et al., 2006; Sylvester et al., 2007; Supekar
et al., 2008; Sanz-Arigita et al., 2010; Zhou et al., 2010; Agosta et
al., 2011).

Previous works have reported greater functional connectivity
in the SAL of participants with mild dementia (primarily CDR 1)
relative to controls (Büchel et al., 1998; Mazoyer et al., 2001; Fox
et al., 2006; Dosenbach et al., 2007; Sylvester et al., 2009; Zhou et
al., 2010). This discrepancy with respect to the present results
may be related to the following differences in methodology. First,
in the previous studies, an ICA analysis was performed, while this
study used a seed-based approach. Second, a smaller sample was
studied (n � 12 for CDR � 0 vs the present n � 124). Third, our
studies applied greater stringency in the application of rs-fcMRI
QA inclusion criteria.

Our work also demonstrates reduced
anticorrelations in three specific internet-
work relationships (DMN–DAN, DMN–
SMN, CON–SMN). All three network pairs
showed strong anticorrelations within CDR
0 subjects, which became progressively at-
tenuated with increasing CDR. In particu-
lar, the DMN–DAN pair showed a nearly
significant difference in the magnitude of
the anticorrelations between CDR 0 and
CDR 0.5, but all of these RSN pairs showed a
significantly weaker anticorrelations at
CDR 1 compared with CDR 0.5. We believe
that these effects are not an artifact of signal
processing. While it is true that whole-brain
signal regression mandates that, for every
decreasing positive correlation, there be in-
creases in negative correlations (Büchel et
al., 1998; Mazoyer et al., 2001; Fox et al.,
2005, 2006; Dosenbach et al., 2007; Murphy
et al., 2009; Sylvester et al., 2009), the topog-
raphy of these differences is not constrained
(for an extended discussion, see Fox et al.,
2009).

Why these three network pairs were
preferentially impacted in AD remains a question. We hypothe-
size that this result relates to the high level of anticorrelation at
CDR 0 (Figs. 4C; 5B,C). Indeed, the three most highly anticorre-
lated RSN pairs demonstrated the greatest reduction in negative
correlation with increasing AD severity. This result suggests that
these anticorrelations reflect relationships predisposed to loss of
functional connectivity via as yet not understood mechanism(s).
Two of the three involved RSN pairs are members of the DMN,
which is known to be a connectivity hub, both anatomically
(Hagmann et al., 2008) and functionally (Buckner et al., 2009;
Sperling et al., 2009; Zuo et al., 2011). Our results suggest that if
one RSN of an RSN pair is abnormal, that dysfunction may then
spread and cause synaptic dysfunction within the unaffected RSN
of the pair (Drzezga et al., 2011).

A� is an early marker of AD, with the deposition of amyloid
plaques and possibly oligomers playing an early and pivotal role
in synaptic dysfunction. In addition, tau aggregation, which in-
dependently occurs during normal aging and in the early stages of
AD, is further accelerated by the presence of concomitant amy-
loid pathology (Morris et al., 2001; Fagan et al., 2009). Further-
more, A�1– 42 deposition preferentially occurs within the DMN
(Buckner et al., 2005; Bero et al., 2011) and has been correlated
with changes in rs-fcMRI (Sheline et al., 2010). The mechanism
whereby pathology spreads from the DMN to other RSNs re-
mains a question. One recently advanced hypothesis is based on
the finding that misfolded tau can spread transsynaptically
through neural networks, where it can induce tau misfolding in
the postsynaptic neuron (de Calignon et al., 2012).

Another possibility is suggested by the present results. Pro-
ceeding with caution, as we are considering a fundamentally cel-
lular–molecular question on the basis rs-fcMRI, we first note that
loss of functional connectivity within the DMN is one of the
earliest findings in AD (Greicius et al., 2004). We suggest that
disordered neural communication may be a mechanism whereby
AD pathology spreads from the DMN to the rest of the brain.
Accordingly, loss of anticorrelations should be evident in the
CDR 0 versus CDR 0.5 contrast, as presently observed (Figs. 2D,
4D, 5; Table 3). This model also is generally consistent with ob-

Figure 8. CDR stage-dependent correlation difference versus correlation mean. The plot axes are the same as in Figure 7 but ROI
pairs are evaluated at CDR 0 and CDR 0.5 (empty circles) and at CDR 0.5 and CDR 1 (filled circles) and connected by lines. Network
composite scores are represented by the larger symbols. Subscripts in the axis labels refer, respectively, to earlier and later CDR
stages.
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served nonuniformity over space and CDR stage. Moreover, the
model predicts that spread of pathology is self-reinforcing. This is
consistent with the presently observed acceleration of change
(Figs. 4, 5). This essentially informational view of pathology
spread is entirely compatible with molecular mechanisms involv-
ing amyloid or tau or both (Fagan et al., 2009).

This study has limitations. First, all presented data are cross-
sectional in nature. Additional longitudinal studies are needed to
assess the progression of disease in the same participants. Longi-
tudinal studies would enable investigation of which network
properties predict AD progression. Second, our results reflect the
particular selection of seeds chosen for investigation. Some de-
tails in the presently reported results might be different with
another selection of a seeds or different analysis strategy [e.g.,
dual-regression (Zuo et al., 2010)]. The set of ROIs used in our
analyses represents a good faith effort to survey five major RSNs
in a principled manner while keeping the total number manage-
able to minimize the multiple-comparisons burden. Third, our
sampling of participants with more advanced AD is relatively
limited. Finally, we did not perform partial volume correction of
rs-fcMRI data; consequently, possible effect of regional atrophy
on our results cannot be excluded.
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de Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH,
Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones
TL, Hyman BT (2012) Propagation of tau pathology in a model of early
Alzheimer’s disease. Neuron 73:685– 697.

de Zubicaray GI, McMahon K, Wilson SJ, Muthiah S (2001) Brain activity
during the encoding, retention, and retrieval of stimulus representations.
Learn Mem 8:243–251.

Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA,
Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE
(2007) Distinct brain networks for adaptive and stable task control in
humans. Proc Natl Acad Sci U S A 104:11073–11078.

Drzezga A, Becker JA, Van Dijk KR, Sreenivasan A, Talukdar T, Sullivan C,
Schultz AP, Sepulcre J, Putcha D, Greve D, Johnson KA, Sperling RA
(2011) Neuronal dysfunction and disconnection of cortical hubs in non-
demented subjects with elevated amyloid burden. Brain 134:1635–1646.

Ellermann JM, Siegal JD, Strupp JP, Ebner TJ, Ugurbil K (1998) Activation
of visuomotor systems during visually guided movements: a functional
MRI study. J Magn Reson 131:272–285.

Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H (2011) Neuro-
imaging markers for the prediction and early diagnosis of Alzheimer’s
disease dementia. Trends Neurosci 34:430 – 442.

Fagan AM, Head D, Shah AR, Marcus D, Mintun M, Morris JC, Holtzman
DM (2009) Decreased cerebrospinal fluid Abeta(42) correlates with
brain atrophy in cognitively normal elderly. Ann Neurol 65:176 –183.

Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity ob-
served with functional magnetic resonance imaging. Nat Rev Neurosci
8:700 –711.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME
(2005) The human brain is intrinsically organized into dynamic, anticor-
related functional networks. Proc Natl Acad Sci U S A 102:9673–9678.

Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontane-
ous neuronal activity distinguishes human dorsal and ventral attention
systems. Proc Natl Acad Sci U S A 103:10046 –10051.

Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and
observed anticorrelated resting state brain networks. J Neurophysiol
101:3270 –3283.

Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectiv-
ity in the resting brain: a network analysis of the default mode hypothesis.
Proc Natl Acad Sci U S A 100:253–258.

Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode net-
work activity distinguishes Alzheimer’s disease from healthy aging: evi-
dence from functional MRI. Proc Natl Acad Sci U S A 101:4637– 4642.

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ,
Sporns O (2008) Mapping the structural core of human cerebral cortex.
PLoS Biol 6:e159.

Hampson M, Driesen N, Roth JK, Gore JC, Constable RT (2010) Functional
connectivity between task-positive and task-negative brain areas and its
relation to working memory performance. Magn Reson Imaging
28:1051–1057.

Hedden T, Van Dijk KR, Becker JA, Mehta A, Sperling RA, Johnson KA,
Buckner RL (2009) Disruption of functional connectivity in clinically
normal older adults harboring amyloid burden. J Neurosci
29:12686 –12694.

Henke K, Mondadori CR, Treyer V, Nitsch RM, Buck A, Hock C (2003)
Nonconscious formation and reactivation of semantic associations by
way of the medial temporal lobe. Neuropsychologia 41:863– 876.

Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the chal-
lenge of the second century. Sci Transl Med 3:77sr1.

Hyvärinen A (1999) Fast and robust fixed-point algorithms for indepen-
dent component analysis. IEEE Trans Neural Netw 10:626 – 634.

Johnson SC, Baxter LC, Wilder LS, Pipe JG, Heiserman JE, Prigatano GP
(2002) Neural correlates of self-reflection. Brain 125:1808 –1814.

Jones DT, Machulda MM, Vemuri P, McDade EM, Zeng G, Senjem ML,
Gunter JL, Przybelski SA, Avula RT, Knopman DS, Boeve BF, Petersen

8898 • J. Neurosci., June 27, 2012 • 32(26):8890 – 8899 Brier et al. • AD and Resting State Functional Connectivity



RC, Jack CR Jr (2011) Age-related changes in the default mode network
are more advanced in Alzheimer disease. Neurology 77:1524 –1531.

Kjaer TW, Nowak M, Lou HC (2002) Reflective self-awareness and con-
scious states: PET evidence for a common midline parietofrontal core.
Neuroimage 17:1080 –1086.

Macey PM, Macey KE, Kumar R, Harper RM (2004) A method for removal
of global effects from fMRI time series. Neuroimage 22:360 –366.

Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houdé O, Crivello F, Joliot
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