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Determining how a biomaterial interacts with cells (‘‘structure-function relationship’’) reflects its eventual clinical
applicability. Therefore, a fundamental understanding of how individual material properties modulate cell-
biomaterial interactions is pivotal to improving the efficacy and safety of clinically translatable biomaterial
systems. However, due to the coupled nature of material properties, their individual effects on cellular responses
are difficult to understand. Structure-function relationships can be more clearly understood by the effective
decoupling of each individual parameter. In this article, we discuss three basic decoupling strategies: (1) surface
modification, (2) cross-linking, and (3) combinatorial approaches (i.e., copolymerization and polymer blending).
Relevant examples of coupled material properties are briefly reviewed in each section to highlight the need for
improved decoupling methods. This follows with examples of more effective decoupling techniques, mainly
from the perspective of three primary classes of synthetic materials: polyesters, polyethylene glycol, and poly-
acrylamide. Recent strides in decoupling methodologies, especially surface-patterning and combinatorial tech-
niques, offer much promise in further understanding the structure-function relationships that largely govern the
success of future advancements in biomaterials, tissue engineering, and drug delivery.

Introduction

The tunability of chemical synthesis and material fab-
rication enables polymeric biomaterials to display di-

verse chemical and mechanical properties. This characteristic
is crucial in developing materials for advanced biomedical
applications, including tissue engineering, drug delivery,
and medical device development. However, significant
challenges remain in producing polymeric materials that can
provide tissue-specific therapeutic effects for repair and re-
generation by intricately controlling cell behavior in an ef-
fective manner, while minimizing adverse inflammatory and
immunogenic effects. Determining how a polymer interacts
with biological systems in vitro and in vivo reflects its clinical
applicability, and a fundamental understanding of how in-
dividual material properties modulate cell-biomaterial in-
teractions is essential for improving the efficacy and safety of
clinically translatable biomaterial systems.1,2

Control over cell behavior through the regulation of
cell-material interactions is a powerful approach for under-
standing how extracellular cues modulate the cellular re-
sponse, at both the single-cell and tissue levels. When a
biomaterial is in contact with a biological environment, wa-
ter molecules surround the material within nanoseconds;
and proteins are adsorbed to the surface in a surface
property-dependent manner.3 Cells then sense and attach

onto the adsorbed proteins4 by forming focal adhesion (FA)
through specific interactions between cell-surface receptors
(e.g., integrin) and extracellular ligands (e.g., arginine-
glycine-aspartic acid: RGD). The cell-adhesive motifs are
contained within extracellular adhesive proteins, such as fi-
bronectin, vitronectin, collagen, and laminin.3,5–7 Receptor-
ligand interactions direct cell motility, morphology, and
function8,9 by mediating complex bi-directional signaling
between cells and extracellular matrix (ECM)10 through
various chemo- and mechano-transduction pathways.11–13 It
is well established that biomaterial properties, such as che-
mical,14 mechanical,15,16 and topographical properties,17,18

modulate cell and tissue responses to the biomaterials (e.g.,
structure-function relationships).19,20 For example, hydro-
phobic materials tend to bind more proteins in a thermo-
dynamically favorable manner, resulting in improved cell
attachment and spreading, compared with hydrophilic ma-
terials.21 In addition, the intrinsic mechanical properties of
biomaterials have significant effects on cell attachment,22,23

spreading, migration, proliferation,24,25 and differentia-
tion.15,25–30 Cells respond to changes in the mechanical mi-
croenvironment in a cell type-specific manner, as the elastic
modulus of tissues in the body ranges over several orders
of magnitude from *100 Pa in the soft tissue of the brain
to *100 MPa in bone.31,32 Intracellular mechanical forces are
generated as cells adhere to and migrate across a surface,
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resulting in alternation of the structure and composition of
FAs.3,30,33,34 A polymeric substrate should be stiff enough to
resist these cell traction forces and maintain sufficient cell-
material interactions; on the other hand, substrates that are
too stiff hinder cell viability, presumably due to a lack of cell-
cell communication.3,30,35

It has become increasingly clear that material properties
influence one another and are, therefore, intrinsically cou-
pled. For example, the chemical composition of a polymer
largely determines the other resulting material characteris-
tics, including crystallinity, hydrophilicity/hydrophobicity,
and degradation. Improved crystallinity inherently correlates
with enhanced polymer chain packing, thereby resisting
water penetration and hydrolytic degradation. In addition,
tightly packed polymer chains usually result in increased
material stiffness. These facts indicate that the resulting cel-
lular behavior is actually in response to the coupled material
properties rather than individual ones. Therefore, there is an
unmet need to decouple the material properties so that the
effect of individual material properties on cellular functions
can be clearly understood and exploited for an enhanced,
precise regulation of cell behavior (Fig. 1).

This article aims at providing a comprehensive review of
current methods for altering chemical and mechanical
properties of biomaterials, especially in a decoupled manner,
to design the most suitable micro-environment for control
over cell fate. Three promising decoupling strategies are
discussed: (1) surface modification, (2) cross-linking, and (3)
combinatorial approaches (i.e., copolymerization and poly-
mer blending). In each section, we first briefly review the
relevant literature regarding the cellular response to coupled
material properties to highlight the need for decoupling
strategies, and then discuss the current strategies for de-
coupling chemical and mechanical parameters in similar
systems. Although other types of material properties such as
topography play a role in cell-material interactions17,18,36–43

and some of the decoupling strategies can be extended to
handle such delineations, we focus primarily on two domi-
nant properties, chemical and mechanical. The purpose of
this article is to reveal the limitations and issues associated
with coupled polymer parameters, as they pertain to the
control of cell behavior and establish a benchmark for de-
coupling strategies to foster advancements in biomaterials,
tissue engineering, and drug delivery.

Necessity and Strategies of Decoupling
Material Properties

Studying cell behavior in response to coupled material
properties hinders the development of materials that can
actively control cell function, because individual material
properties could be more effectively optimized to modulate
cell functions if understood as separate components. De-
coupling strategies are, therefore, imperative to achieve a
better control over cell functions by incrementally varying
the chemical or mechanical properties while minimizing the
collateral effects on other properties in order to elucidate the
independent effects of each property. The decoupling ap-
proaches discussed next provide an insight for further im-
provement of these strategies and will enable the increased
isolation of the effects of individual material properties on
cell behavior, thereby providing a rational basis for the de-
sign and implementation of polymer scaffolds for specific
applications.

Surface modifications

Covalent conjugation or simple blending of bioactive
molecules into bulk polymer materials (e.g., scaffold) has
been widely used to improve cell functions. For example,
RGD can be covalently tethered to polyethylene glycol
(PEG) chains to improve cell attachment,44–46 and protease-
sensitive peptides originating from collagen or fibrinogen
can be conjugated to PEG cross-linkers for hydrogel degra-
dation and remodeling by matrix metalloproteases
(MMPs).47,48 It is usually assumed that the impact of such
peptide/protein modification on bulk scaffold properties is
negligible, and, therefore, the enhanced cellular response is
solely the result of chemical changes imparted by the surface
modification; however, there are often appreciable changes
in bulk scaffold properties.49–52 For example, Zustiak et al.
reported that the covalent attachment of ECM peptides (e.g.,
RGDS, IKVAV, and YIGSR) to PEG hydrogels changed the
modulus, mesh size, swelling ratio, and albumin diffusivity
of the bulk material.51 Blending poly(lactic-co-glycolic acid)
(PLGA) or poly-L-lactide (PLLA) with ECM-derived compo-
nents (e.g., collagen, gelatin, and elastin) has been shown to
improve cell adhesion and proliferation by changing the che-
mical composition, but resulted in changes to the mechanical
properties as well.53–57 In another example, collagen was in-
corporated into a poly(e-caprolactone) (PCL) scaffold at differ-
ent ratios to enhance human dermal fibroblast and epidermal
keratinocyte proliferation.58 Although similar morphological
properties were observed as the fiber diameters remained
constant for scaffolds containing 1% and 30% PCL, the stiffness
of the nanofibrous scaffolds increased from 8.4 · 10- 3 to
2.3 · 10 - 2 N/mm, while both cell proliferation and type IV
collagen synthesis decreased significantly, indicating coupled
chemical and mechanical effects on cell behavior.58

FIG. 1. Coupling and decoupling of polymer chemical and
mechanical properties determine cellular response.

DECOUPLING POLYMER PROPERTIES 397



One way to address this interdependency is to introduce a
coating of functional groups on the surface of a scaffold,
generating a thin, activated, superficial layer that can mini-
mize the alteration of bulk scaffold properties, as the modi-
fication only occurs at the surface. Chemical properties can
be further fine tuned on this surface to enable efficient de-
coupling while maintaining bulk scaffold properties. The
immobilization of bioactive molecules (e.g., ECM-derived
peptides or growth factors), addition of chemical groups, or
introduction of micro-patterns to the scaffold surface can, in
many cases, dramatically alter surface properties and cell
behavior without significantly changing bulk mechanical
properties, indicating the successful decoupling of the sur-
face chemical and bulk mechanical properties, as discussed
next (Fig. 2).

Surface biofunctionalization with peptides and pro-
teins. Several methods exist for chemically attaching pep-
tides and proteins to the surface of a biomaterial scaffold.
Chitosan and heparin have been covalently immobilized
onto the scaffold surface of PLGA films using N-(3-
dimethylaminopropyl)-N-ethylcarbodiimide (EDC) and N-
hydroxysuccinimide (NHS), which improved hepatocyte
adhesion and proliferation and decreased coagulation.59 In
another study, chitosan was immobilized to the surface of a
PLGA scaffold by a photochemical reaction of azide-chitosan
followed by the conjugation of gelatin, which strongly sup-
ported 3T3 fibroblast adhesion.60 The same group reported
that the surface modification of a PLGA scaffold with colla-
gen could also be achieved by reacting with 1,8-diamino-
octane and glutaraldehyde, which subsequently improved
porcine smooth muscle cell proliferation.61 Various growth
factors, such as basic fibroblast growth factor and vascular
endothelial growth factor (VEGF), can be further adsorbed to
surface-immobilized heparin and collagen to provide the
sustained release of these biomolecules.62–64 The surface of
PCL scaffolds has been functionalized with amine groups,
which are further used to conjugate RGD motifs for the im-

proved attachment of rat bone marrow stromal cells65 and
L929 fibroblasts.66 Similarly, RGD has been covalently
tethered to the surface of PEG scaffolds to improve cell at-
tachment.44–46 Polyacrylamide (PA), as an inert and anti-
adhesive hydrogel,67,68 can be used to decouple chemical and
mechanical effects on cell behavior via the copolymerization
of an active ester acrylate followed by the hydrolysis or re-
placement of the N-succinimidyl group with ECM-derived
peptides, such as RGD.69 Alternatively, ECM-derived
proteins immobilized to the PA hydrogel surface via sulfo-
SANPAH directed the osteogenic and myogenic differentia-
tion of mesenchymal stem cells.25

Scaffold surface functionalization by plasma and chemical
treatments. Instead of binding biofunctional molecules, the
scaffold surface can be modified by adding chemical groups
to improve cellular responses to biomaterial scaffolds. Various
plasma treatments (e.g., O2, Ar or NH3) have been applied to
change the surface-free energy and introduce hydroxyl, per-
oxyl, amine, or other functional groups to the surface of PLGA
films, each of which subsequently impacted cell adhesion and
proliferation.70–72 Similarly, adhesion and proliferation of
umbilical cord perivascular cells to a PCL scaffold was en-
hanced by increasing the density of surface carboxyl groups
by grafting with poly(acrylic acid) using low-pressure plasma
immobilization.73 Apart from plasma treatment, chemical
modification of the PCL scaffold surface using sodium hy-
droxide was shown to enhance surface hydrophilicity and
improved the proliferation of endothelial and smooth muscle
cells.74,75 Finally, hydroxyl, carboxyl, or anionic surfaces have
been introduced to derivatizable PA hydrogel surfaces to
study cellular response to chemical cues.76

Surface patterning. Cellular responses can also be con-
trolled by patterning the scaffold surface with cell-adhesive
or nonadhesive molecules. The inert nature of PEG makes it
an excellent substrate on which cell-adhesive or bioactive
molecules can be patterned to confine cell adhesion,

FIG. 2. Structures of polyethylene
glycol (PEG), polyesters (polylactic
acid, poly(lactic-co-glycolic acid),
poly(e-caprolactone)), and polyacryl-
amide (PA) as discussed in the article.
Among these polymers, PEG plays a
central role in copolymerization and
also in tuning the properties of poly-
esters and PA gel. Polymer chemical
properties can be further modified ei-
ther by chemical or plasma treatment
to introduce additional functional
groups, or by incorporating extracel-
lular matrix components, short pep-
tides, and growth factors onto polymer
chains.
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migration, and differentiation to patterned areas. For exam-
ple, RGD-modified islands were created by UV irradiation of
PEG diacrylate-casted film surfaces through a photomask.
Cells, therefore, only adhered and grew on the RGD-
modified islands surrounded by nonadhesive cross-linked
PEG.77 The spatial neurite extension of cortical neurons was
also controlled by confining the shape of cell-adhesive regions
of poly-D-lysine with cell-resistant PEG materials (e.g., PEG-
PDLA) lined up as barriers.78 Interestingly, glass surfaces
patterned with PEG dimethacrylate (PEGDMA) micro-wells
promoted the differentiation of preadipocytes with increasing
lipid accumulation, though it significantly increased the con-
tact angle and decreased surface energy, making the surface
less cell adhesive than unpatterned glass.79

Cross-linking

The degree of cross-linking can be varied to study the
effects of substrate stiffness on cell behavior. However, in
many cases, the manipulation of cross-linking often results in
the change of chemical properties as well as the physical and
topographical makeup of a material. For example, the con-
centration of EDC cross-linkers was varied to alter the elastic
modulus in poly-L-lysine/hyaluronan (PLL/HA) multi-
electrolyte films, but unexpected changes to surface rough-
ness and cell adhesion were observed in a coupled fashion.80

Modulating the stiffness of PA gels by changing the bis-
acrylamide cross-linker concentration has been used to create
substrates with a physiological range of stimuli to mimic the
stiffness of native tissue.15 It was demonstrated that soft PA
gels produced more dynamic, irregularly shaped FAs,
whereas stiff gel stabilized FAs and reduced the migration of
rat kidney epithelial and 3T3 fibroblast cells.81 However,
varying acrylamide and bis-acrylamide concentrations may
expose different amounts of chemical moieties to cells,
leading to unexpected cell responses (e.g., the cytotoxicity of
acrylamide in vivo82). In addition, as the cross-linking degree
increases, the pore size decreases within the gel network,83,84

indicating the coupling of cross-linking and structural
parameters.85 In parallel, the intrinsic properties of PEG-
containing hydrogels are coupled, as mesh size,85 modu-
lus,86,87 and degradation rates88,89 change with PEG content.
A previous study demonstrated that PEGylation of fibrino-
gen reduced the MMP production and altered the normal
spindle shape of neonatal human foreskin fibroblasts, which
was likely due to increased hydrophilicty and repellence in
coupling with reduced storage modulus.90 In addition,
changes in stiffness can be coupled with cell repellence and
hydration in PEG-based hydrogels, which can drastically
affect cell behavior.86,91 The degree of cross-linking, PEG
molecular weight (Mw),92 and the type of cross-linker (i.e.,
PEG diacrylate [PEGDA])85 can be altered to tune the mod-
ulus of PEG hydrogels. However, as stiffness increases, the
swelling and diffusivity of PEG hydrogel decreases.93 These
coupled effects have been shown to impact ECM production
and differentiation of mesenchymal stem cells,94 illustrating
another example of the need to decouple these properties for
studying cell behavior.

The chemical and mechanical properties of cross-linked
hydrogels can be decoupled by altering the types of the
cross-linkers or the Mw of the polymers. For example, algi-
nate hydrogels covalently cross-linked with adipic dihy-

drazide, methyl ester L-lysine, or PEG-diamine (1,000 Da)
showed similar shear moduli within 31.1 to 36.9 kPa.95 Al-
ternatively, relatively constant stiffness can be obtained by
varying the percentage of PEG monoacrylate (PEGMA)
cross-linkers or the Mw of PEGDA in PEG hydrogels.96 The
Mw and hydrophilicity of PEGMA cross-linkers further re-
fined this decoupling strategy to provide a tunable template
for the independent modulation of stiffness and mesh size.
Similarly, the incorporation of 4-arm PEG acrylate cross-
linkers at various concentrations with the simultaneous
tuning of the concentration and Mw of PEGDA enabled the
decoupling of either the gel modulus or mesh size from a
chemical composition.97 VEGF expression and viability of
fibroblasts was reported to be affected by both elastic mod-
ulus and mesh size, and the effect of the individual proper-
ties were identified through the aforementioned decoupling
methods.97 In another study, PEG methacrylate and poly(N-
hydroxymethyl acrylamide) were cross-linked with oxidized
methacrylic alginate (OMA) to control modulus and degra-
dation rates.98 Although degradation rate usually decreases
with increased modulus, varying the number of oxidized
uronic residues on OMA enabled controlled degradation
rates with a relatively constant stiffness. Protein-release rates
and subsequent angiogenesis in vivo were then regulated as a
function of the OMA cross-linking.98

Combinatorial approaches: copolymerization
and polymer blending

Altering the polymer composition is considered an im-
portant strategy that is employed for modulating matrix
stiffness. However, a significant challenge still remains, as
changing the polymer composition often results in simulta-
neous changes to hydrophobicity, crystallinity, and water
uptake. For example, varying the blending ratio of PLGA
and PLLA created a mechanical gradient to determine a
‘‘threshold stiffness’’ for optimal cell organization, myotubule
formation, and myoblast differentiation.30 The two polymers,
however, have inherently different chemical properties that
change simultaneously with the blending ratio, indicating
coupling between chemical and mechanical properties. Simi-
larly, PCL was blended with poly(ether sulfone) (PES) to
study the influence of polymer stiffness on the differentiation
of embryonic mesenchymal progenitor cells. A stiffer PES-PCL
scaffold (modulus = 30.6 MPa) promoted osteogenesis, while a
softer, pure PCL scaffold (modulus = 7.1 MPa) promoted
chondrogenesis.99 However, the change in chemical compo-
sition via altering the blending ratio was coupled with stiff-
ness and should also be considered.

Although copolymerizing and blending different mono-
mers or polymers often leads to simultaneous changes in
other properties, these techniques can be used to decouple
the chemical and mechanical properties by creating a com-
binatorial library of polymers and selecting compositions
that display similar mechanical properties. Our recent study
demonstrated that the wet elastic moduli of polymeric na-
nofibrous scaffolds were maintained within a tight range
while altering the chemical compositions of co- or ter-
polymers through combinatorial synthesis and electrospin-
ning techniques.100 This unique approach enabled the
synthesis of six polymer formulations with unique chemical
characteristics but similar wet moduli. When cultured with
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murine embryonic stem cells, they induced different levels of
expression of intracellular hydrogen peroxide and cardio-
myocyte markers, suggesting the effect of polymer compo-
sition on cell behavior, as the mechanical strength was
maintained constant and decoupled. In addition, the copo-
lymerization of PCL with other polyesters, such as poly-
glycolic acid and polylactic acid, have been shown to alter
degradation, hydrophobicity, and crystallinity, while main-
taining the elasticity exhibited by the pure PCL scaffold.101–104

These examples demonstrate that the combinatorial synthe-
sis of polymers is a promising approach for decoupling
scaffold properties. The scale of the combinatorial library can
be expanded to further tune a particular type of material
property while minimizing the changes in other properties.
A library of combinatorial polymers with 112 different
compositions was produced from copolymerizing 14 differ-
ent tyrosine-derived diphenols and eight aliphatic diacid
monomers.105 Changes in their chemical compositions were
found to affect modulus, glass transition temperature (Tg),
and contact angle. Polymers with a similar property (e.g.,
stiffness or Tg) could be grouped to study the cell response
affected by chemical composition, demonstrating the effec-
tive decoupling of these properties.105 Similarly, a library of
poly(b-amino esters) (PBAEs) provided tunable mechanical,
degradation, and adhesion properties. Degradation and
mechanical properties were decoupled by varying Mw and
branching structure.106,107 Selected PBAE macromers were
also cross-linked during electrospinning to improve the tun-
ability of mechanical and degradation properties.108 Such an
approach was used to elucidate polymer structure-function
relationships, thereby improving the safety and efficacy of
their applications for gene delivery.109,110 Similar approaches
have been adapted to fine tune cellular responses to PCL
acrylates111 and methacrylate terpolymers.112 An excellent
review of combinatorial polymer synthesis techniques, high-
throughput assessment of material properties, and material-
cell interactions is thoroughly covered elsewhere.113

These combinatorial synthesis techniques offer distinct
advantages over the traditional synthesis used for ‘‘one-
measurement for one-sample’’ in terms of time, resources, and
information to be obtained. However, there are still drawbacks
and challenges associated with these methodologies, including
the preservation of sample purity, data handling, and avail-
ability of such resources.114 It is more challenging to use high-
throughput schemes for sophisticated syntheses that require
purification, and, in many cases, it is more worthwhile to test
discrete polymer ratios to obtain data by a potentially more
reliable method. Polymer blends can be used to circumvent
such issues with synthesis, for instance, by observing cellular
responses to gradient changes of polymer properties in a two-
dimensional combinatorial library (e.g., temperature and
polymer composition). For example, Sung et al. reported that a
large library of PCL/PLGA blends with different stiffness,
surface roughness, and/or crystallinity has been generated by
varying the PCL-to-PLGA ratio and the annealing tempera-
ture, which provides an applicable approach for decoupling by
selecting a group of blends similar in one property (e.g., stiff-
ness) while differing in another (e.g., chemical composition).
This study further demonstrated that a mid-to-high relative
composition of PCL in a PCL/PLGA blend was ideal for
smooth muscle cell adhesion, proliferation, and protein pro-
duction.115 Similarly, biomaterial microarrays can be used to
decouple stiffness, cross-linking density, and crystallinity (Fig.
3)116 and examine other chemical and topographical influences
on various cell functions.117–120 These combinatorial ap-
proaches offer much promise in elucidating the distinct
mechanisms that govern cell-material interaction to further
advance biomaterials and tissue-engineering technologies.

Conclusion and Future Direction

The field of biomaterials has witnessed a drastic expansion
over the last few decades, but significant hurdles remain in
clearly understanding structure-function relationships. A

FIG. 3. Human mesenchy-
mal stem cells grown on a
microarray of combinatorial
polymer blendings with var-
ious ratios of different poly-
mers (adapted from reference
116). (A–C) cells on polymer
microarray were fixed, and
immunohistochemistry stain-
ing was performed for actin
(green). Nuclei were stained
with Hoechst (blue). (B)
Close view of triplicates of
polymer blendings high-
lighted in yellow squares in
(A), scale bar = 500 mm (C)
Close view of polymer spots
highlighted in yellow squares
in (B), scale bar = 100 mm.
Color images available online
at www.liebertpub.com/teb
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major reason is that coupled material properties limit our
understanding of how individual properties influence cellular
response. For example, when the chemical composition of a
polymer scaffold is changed by grafting biomolecules or al-
tering the cross-linking density, other material properties such
as stiffness, hydrophobicity, crystallinity, mesh size, and to-
pography change simultaneously. Cellular responses to a
material are regulated by the coupled effects of these interre-
lated material properties, making it difficult to interpret
structure-function relationships. The decoupling of material
properties is critical in determining how a change of a material
property influences cell behavior. Although we primarily fo-
cus on decoupling chemical and mechanical properties, other
influences such as physical and topographical properties are
also vital to our understanding of cell-biomaterial interactions.

Promising approaches that are involved in decoupling
chemical and mechanical properties are discussed and eval-
uated, which include (1) surface modification to create a
superficial layer of functional groups, bioactive molecules, or
micro-patterns; (2) cross-linking to specifically control che-
mical, mechanical, or physical properties independently; and
(3) copolymerization to produce a library of combinatorial
polymers with various chemical compositions, or blending of
multiple polymers to create an array. Surface modification
through chemical alternation (e.g., plasma or sodium hy-
droxide treatment) or the conjugation of bioactive molecules
(e.g., ECM-derived ligands or growth factors) to create a
superficial layer with distinct chemical properties compared
with the bulk material often allows for the conservation of
stiffness to isolate specific chemical influences on cell be-
havior.59–61,70–75 Surface patterning, in addition to the de-
coupling of chemical and mechanical properties, provides a
promising strategy to further alter the topography of the
interface in cell-biomaterial interactions.77,78 By incorporat-
ing additional cross-linkers, relatively constant stiffness can
be obtained with PEG hydrogels, demonstrating the decou-
pling of chemical and mechanical properties.98,121 Copoly-
merizing multiple polymer units in varying ratios provides
another way for decoupling by producing more than one
polymer type that exhibits the same mechanical properties
but different chemical compositions.100,105–108,111,112 The co-
polymerization and polymer blending combinatorial library
techniques enable a high-throughput approach that is uti-
lized in elucidating cell-material relationships.115–120 Other
strategies such as using nanomaterials of different chemical
compositions to achieve similar mechanical properties100

could be considered as further alternatives to the decoupling
approaches discussed here.

Although significant progress has been made, it should be
understood that elucidating structure-function relationships
is not easy, because decoupling two properties often results
in an unexpected change of another property due to the
highly interdependent nature of material properties. It
should also be noted that the cellular response can also alter
the material properties, effectively creating a complex feed-
back mechanism (‘‘function-structure relationship’’) that
changes in real time as the biomaterial interacts with the
surrounding cells and tissues in a highly dynamic fash-
ion.19,122 It is, therefore, of great importance to keep im-
proving the methods to more precisely and accurately
decouple material parameters and to thoroughly verify the
improvement by investigating how the strategies affect

scaffold properties and cellular responses before and after
decoupling. This effort will provide a broader insight into
structure-function and function-structure relationships, as
well as property-property relationships, thereby establishing
a whole-picture view of cell-biomaterial interactions. This is
an urgent task for modern biomaterial scientists and tissue
engineers in order to advance the development of instructive
scaffolds for tissue engineering, regenerative medicine, and
drug delivery.
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