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Abstract

We explore mode-locking of spontaneous oscillations of saccular hair cell bundles to periodic
mechanical deflections. A simple dynamic systems framework is presented that captures the main
features of the experimentally observed behavior in the form of an Arnold Tongue. We propose
that the phase-locking transition can proceed via different bifurcations. At low stimulus
amplitudes £, the transition to mode-locking as a function of the stimulus frequency w has the
character of a saddle-node bifurcation on an invariant circle. At higher stimulus amplitudes, the
mode-locking transition has the character of a supercritical Andronov-Hopf bifurcation.
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INTRODUCTION

Auditory organs of the inner ear provide exquisitely sensitive detection of sound [1]. The
human cochlea, for example, can detect over six orders of magnitude in sound intensity,
with a frequency selectivity that can be as high as Aw/w ~ 0.2% [2]. In the 1940s, Gold [3]
pointed out that hearing must involve active non-linear amplification to overcome viscous
damping by the fluid environment within the cochlea. Numerous experimental studies have
since verified that active amplification mechanisms reside in hair cells [4? ?, 5], mechano-
sensory cells embedded in the supporting tissue, and also that nonlinearity is crucial to the
acuity of hearing [6]. Mechanical detection by a hair cell is performed via an array of
stereocilia protruding from its surface that contain mechanically sensitive ion channels.
Motor proteins are believed to maintain tension in the tip links that interconnect these
stereocilia [4, 5]. When the tension exceeds a threshold value, mechano-sensitive ion
channels open, allowing an inflow of ionic current, a small fraction of which is carried by
Ca?*. Entry of calcium ions into the cell causes the motor proteins to slip, releasing the
tension and allowing the channels to close and the process to repeat. In non-mammalian
systems, active motility by the stereociliary bundle has been proposed to provide
amplification of incoming signals. In the mammalian cochlea, with higher frequencies

represented, somatic electromotility has also shown to be crucial to the active amplification
[??]

Studies performed /n vitro on the mechanical properties of individual hair cells obtained
from the bullfrog sacculus showed that stereociliary bundles exhibit spontaneous oscillations
[7-9] with amplitudes of 20—100 nm and frequencies in the 10-80 Hz range. These innate
movements significantly exceed thermal fluctuations and have been shown to require an
energy-consuming amplification process [7]. They frequently occur in irregular bursts, with
oscillatory behavior interspersed with quiescent intervals.

The role of spontaneous bundle oscillation in auditory detection is uncertain since it is not
known if they occur under /in vivo conditions, or at higher frequencies. Hearing organs have
been shown to produce spontaneous otoacoustic emissions [10], which may indicate that
spontaneous oscillations do arise /in vivo. Current theories of frequency-selective hearing
assume that hair cells self-tune to the onset point of the spontaneous oscillations, since at
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that point hair cells should exhibit pronounced, frequency-selective sensitivity to mechanical
stimulation [11-17].

Nonlinear biological oscillators, including neuronal, cardiac, and circadian pacemaker
circuits are known to respond sensitively to external signals through phase-locking, also
known as entrainment [18, 19]. Phase-locking of hair bundles to periodic mechanical
perturbations has likewise been reported in the literature [7]. This raises the possibility that
hair cells performing large-amplitude spontaneous oscillations might be able to detect weak,
periodic signals by phase-locking. In this paper we explore the phase-locking of
spontaneously oscillating hair bundles subjected to external stimuli over the full
physiological range of frequencies and amplitudes. We demonstrate that the amplitude of the
phase-locked component of the spontaneous oscillations exhibits a narrow, frequency-
selective response, which broadens with increasing drive amplitude. By comparison between
our experimental results with an analysis of the driven Normal Form Equation, we relate
stereociliary bundle phase-locking to the well-known Arnold Tongue of the theory of
dynamical systems [18]. For lower drive amplitude, phase-locking proceeds via an infinite-
period bifurcation and at higher amplitudes via a super-critical Hopf bifurcation [20].

MODE-LOCKING OF STEREOCILIARY BUNDLES

We imaged bundle movement in an optical microscope, recording images at 1000 frames
per second [21]. We used a customized pipette puller to fabricate elastic glass fibers of
~0.5-1 um tip diameter. The probe was mounted on a piezoelectric stimulator and attached
to a stereociliary bundle (see the left part of Figure 1). Lateral sinusoidal displacements were
applied to the stereocilia, mimicking the mechanical stimulation evoked by sound in vivo.
The applied frequency (w) was varied in 1 Hz increments, spanning the range of 5-50 Hz,
with 10 cycles sent at each frequency. The full sweep was applied at stimulus amplitudes
from 4-120 nm. A 10 nm probe displacement corresponds to, approximately, a 1 pN force
on the bundle. A set of traces showing the response of a hair bundle to an evenly spaced
subset of the complete 2D scan is provided in the Supplementary Material.

Figure 1 illustrates the entrainment dynamics of the hair bundle at a low amplitude of
stimulation. The bottom trace shows the innate dynamics of free stereociliary bundles. The
oscillations are highly anharmonic, noisy, and occur in bursts. The middle trace shows the
spontaneous oscillations with a probe attached to the tip of the bundle, but with no applied
force. Bursting is largely suppressed, and the spontaneous oscillations are more regular. The
top trace shows the oscillations in the presence of a weak stimulus of increasing frequency
applied to the base of the probe. Decades of drive cycles are indicated by vertical dashed
lines. Complete mode-locking is observed over an interval of three decades. In this interval,
the frequency is in the vicinity of the characteristic frequency of the cell (between 20 and 25
Hz). This region is flanked by intervals where the number of bundle cycles is either 11 or 9.
The loss or gain of the 2 phase difference happens regularly, over one to several cycles.
These “phase-slip” events are indicated in the figure by arrows. The rate of phase-slip
production increases with distance between the stimulus frequency and the characteristic
frequency of the cell. Note that the system does not appear to exhibit resonance: the
amplitudes of oscillation are the same inside and outside of the mode-locked region. Due to
the production of phase slips, however, the phase-locked component of the large-amplitude
spontaneous oscillation decreases away from the characteristic frequency, with modest
frequency resolution.

To quantify this mode-locking, we plotted the phase-locked component of the response
across the physiological range of frequencies and amplitudes (see Figure 2). At low
amplitudes of stimulation, the system exhibits mode-locking around its characteristic
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frequency, as discussed above. The phase-locked frequency interval of Fig. 1 increases with
stimulus amplitude. In the vicinity of the characteristic frequency, the phase-locked
amplitude rises quite steeply as a function of the applied force, past some threshold. Away
from the natural frequency, the rise in the phase-locked amplitude with the drive becomes
increasingly gradual.

Figure 3 shows that as the force amplitude is increased, the nature of the mode locking
process changes qualitatively. At drive frequencies below the characteristic frequency, the
oscillation pattern shows variation from cycle to cycle. The top trace displays the bundle’s
oscillation entrained near the low-frequency boundary of the mode-locking interval, from 5-
8 Hz. In the frequency intervals on the left, extra spike-like excursions can be seen, an
example of which is indicated by an arrow, that does not amount to a phase slip. In this
region, a complex and incommensurate secondary spike pattern develops, superimposed on
a carrier wave that follows the drive. As one approaches the characteristic frequency, this
secondary pattern is diminished (full traces are shown in Supplementary Material). The
bottom trace shows the mode-locking of spontaneous oscillations to the stimulus. The
anharmonic oscillation pattern is repeated rather precisely from cycle to cycle.

BIFURCATION DIAGRAM

The triangular shape of the 1:1 mode-locking plot in Fig. 2 is a characteristic feature
observed in a variety of non-linear dynamical systems, and is known as an Arnold Tongue
[22]. The simplest description of bundle motion based on dynamical systems theory is the
“Normal Form Equation” (NFE) for the supercritical Andronov-Hopf bifurcation. It has
been extensively used to model the dynamics of hair bundle response at the critical point,
corresponding to the onset of spontaneous oscillation [12, 13]. Here, we examine whether
the NFE captures the mode-locking dynamics of hair bundle oscillations by an external
drive, away from the critical point.

The NFE for an Andronov-Hopf bifurcation in the presence of an external stimulus is
defined as:

2 =(utiwo)z—lzl z+Fe™ (1)

where zis the generalized complex displacement variable, wy the natural frequency, w the
control parameter, ~the stimulus amplitude, and w the stimulus frequency. We will briefly
summarize the different mode-locking bifurcations that are encountered.

We look for solutions of the form z= A(He@* (), with (#) denoting the amplitude and ¢(2)
the phase difference between drive and displacement. Mode-locking corresponds to the case
when both are time-independent. Substituting into Eq. 1 leads to two coupled first order
differential equations:

F=r(u—r*)+Fcosp (2)
. F
[ =—(w—w0)—7sm¢. 3)

At zero forcing (F= 0) and for positive , the solution yields harmonic oscillation with
amplitude 7= /2 and with a constant rate of change of the phase ¢ = —(w—ay), with
oscillation frequency ay. For weak external drives, with stimulus amplitude ~small
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compared to 1372, retaining 7~ ©1/2 yields a good approximation. The remaining equation
for the phase

¢ =(wo—w)—(F/u"*)sing  (4)

is familiar both from the driven pendulum and the theory of Josephson Junctions [20, 23]. If
the dimensionless stimulus amplitude A2 exceeds the detuning parameter | — |, then
the phase equation admits a static solution:

sing=(wo—w)/(F/u'?)  (5)

which corresponds to mode-locking. If AuY/2 is less than |w — |, there is no static
solution. The phase angle remains most of the time near /2, but periodically, the phase
sweeps rapidly over 2. The time-averaged rate of change of the phase

<@ >=[(wo-w’-F* /1" ©)

can be viewed as the production rate of 2 phase-slips. The phase-slip production rate goes
to zero when the detuning parameter | — wyp| equals A2 at the onset of mode-locking.
This form of mode locking is known either as an “infinite-period bifurcation”, since the
period of precession diverges at the critical point, or as a Saddle-Node on an Invariant Circle
(“SNIC™) bifurcation, because two fixed points, a saddle and a node, coalesce and annihilate
on a limit-cycle [20].

To analyze mode-locking at higher levels of the stimulus amplitude, one must locate all the
fixed points of the system. Define

g(r,@)=r(u—r*)+Fcosp (7)

and

F .
h(r, <p)=—(w—wo)—7smso- ®)

Fixed points are determined by the conditions g(7*, ¢") = /", ¢") = 0. These two conditions
combine to yield a cubic equation for 72 that has either three real roots, with at least one of
them a saddle point, or one real root and two complex conjugate roots. Mode-locking
corresponds to a stable fixed point, hence the real root of the equation. The stability of the
fixed points is determined by the Jacobian matrix:

— or dp
A=\ w o ©)
o B¢ J(re")

The nature of the bifurcation depends on the eigenvalues of this matrix. For a mode-locking
transition occurring via a SNIC bifurcation, Det[A] must change sign at the critical point. If,
on the other hand, the transition occurs via a supercritical Andronov-Hopf bifurcation, then
Tr[A] must change sign at the critical point, while Det[A] remains positive. It should be
noted that these are necessary but not sufficient conditions for SNIC and Andronov-Hopf
bifurcations; we follow conventions established for the forced Kuramoto model [24]. Figure
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4 shows the locus of the SNIC bifurcations in the (~w) plane as a black border and that of
the Andronov-Hopf bifurcations as a yellow border, both computed in the above manner.
The computed amplitude of the phase-locked component, in response to sinusoidal forcing,
is displayed in a color-coded manner.

The enclosed region marked | contains three fixed points: a stable node and a saddle point
occurring on an invariant circle, as well as an unstable fixed point. The stable node
corresponds to mode-locking. The stable node merges with the saddle point along the SNIC
border. The region marked Il contains only a single real fixed point, a stable node. Region
I11 encloses an unstable fixed point at the center of a limit cycle.

Figure 4 is a simplified bifurcation diagram of the driven Normal Form Equation. The full
bifurcation diagram is more complex. It contains additional bifurcations, such as the co-
dimension 2 Bogdanov-Takens bifurcation that separates the SNIC and supercritical Hopf
bifurcations and a line of so-called “crisis” bifurcations.

NUMERICAL FITS

We now compare the results of this analysis to the experimentally measured phase-locked
response. The dimensionless theoretical mode-locked amplitude was scaled to match the
data, and the characteristic frequency was chosen to correspond to that of the hair cell in Fig.
2. The Bogdanov-Takens points were selected to match the points of inflection seen in the
experimental plot (F= 40 nm, =12 Hz, and £ = 21 Hz). Apart from this scaling, the only
fitting parameter used was the control parameter x.. The specific choice of the Bogdanov-
Takens point is rendered somewhat ambiguous by the noise inherent in a biological system.
We tested the sensitivity of the fits to the specific choice of the Bogdanov-Takens point, as
the noise inherent in a biological system broadens the inflection region. The quality of the
fits was not substantively affected by small variation in the location of this multi-critical
point (see Supplementary material)

In Fig. 5, we compare the measured (blue dots) and computed (red lines) responses at
selected slices in the horizontal direction, corresponding to frequency sweeps at specific
stimulus amplitudes. The best choice for the ratio of wy and g was found to be 1.3, which
produced the optimal fit over the whole phase space. This method thus provides us with a
route to estimate the control parameter w for hair cells. At low stimulus levels (bottom
panel), the phase-locked amplitude has a well-defined maximum around the natural
frequency. This resembles a resonant response, but it should be recalled that the plot
displays only the component mode-locked to the stimulus frequency. The degree of
broadening of the frequency selectivity under increasing amplitude of stimulation is well
reproduced by the simulation.

Figure 6 compares the experimental and theoretical phase-locked response along vertical
slices, corresponding to stimuli of increasing amplitudes at fixed selected frequencies. The
ratio of wp and u was kept the same as in Fig. 5. The slope of the curves shown in the panels
can be viewed as a measure of the susceptibility of the system to mechanical perturbation.
Slices that correspond to transitions through the supercritical Andronov-Hopf bifurcation (a,
g, and h in the Figure) show a more gradual increase in the mode-locked amplitude than
those that transition through a SNIC bifurcation (c, d, €), which exhibit a sudden onset of
phase-locking. The traces b and f pass through the vicinity of the Bogdanov-Takens point,
and hence show intermediate characteristics.

We note that some features apparent in the data are not fully reproduced by the model: the
computed curve overestimates the phase-locked amplitude at low frequencies and the
sharpness of the onset of mode-locking. Further, the exact oscillation profiles are not
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reproduced by the numerical simulation. Inside a phase-slip, the computational model
predicts a decrease in amplitude, that is not seen in the data. Near the supercritical Hopf
bifurcation, the measured secondary pattern is considerably more spiky than the theoretical
prediction.

DISCUSSION AND CONCLUSION

The NFE captures the main features of the mode-locking dynamics of hair bundles poised in
the spontaneously oscillatory regime. With only one fitting parameter, the numerical model
yields remarkable agreement with the measured data, across frequencies and amplitudes that
span the physiological range of amphibian saccular hair cells.

We explored the question of how hair bundles that exhibit large-amplitude spontaneous
oscillations detect weak external signals. The innate oscillations mode-lock, in a frequency-
selective manner, to periodic external deflection in the pN range. A general conclusion of
this study is that mode-locking to a low-amplitude external drive proceeds via a SNIC
bifurcation. As the spontaneous oscillations phase-lock to the applied signal, phase-slip
events are observed that are reminiscent of similar events in condensed-matter systems, such
as Josephson Junctions. At the center of a phase-slip event, the applied signal and the bundle
response are out of phase by . The out-of-phase condition could lead to an increase or
decrease in the tension of the tip link that connects the stereocilia and thus rapidly modulate
the opening probability of the mechano-sensitive ion channels.

We note that the NFE is a simplified model equation. More complex biological phenomena,
including myosin-mediated adaptation and other calcium-dependent mechanisms, are not
described by this formalism. However, it does capture the generic features associated with
mode-locking, including the experimentally observed Arnold Tongue. Other model
equations that describe mode-locking, such as the driven van der Pol oscillator, the Chirikov
Map, the Circle Map, and the forced Kuramoto model, all have similar mode-locking
bifurcation diagrams [22].

The parameter i determines the location of the bundle in the Arnold Tongue phase diagram,
and hence controls the dynamics of its mode locking to external signals. A biological hair
cell could have a feedback mechanism whereby it modulates this internal parameter and thus
self-tunes to the vicinities of different bifurcations. As the various transitions in the phase-
locking diagram display different characteristics, the hair bundle could thus adjust its
susceptibility, frequency selectivity, and/or mode-locking dynamics.

In summary, we explored both experimentally and theoretically the dynamics of mode-
locking exhibited by hair bundles subjected to a periodic stimulus. The mode-locked region
in the (~w) plane is well described by the driven Normal Form Equation, yielding the
Arnold Tongue bifurcation diagram that captures the main features of the dynamic response.
We found that hair-bundles performing large-amplitude spontaneous oscillations are capable
of rapidly mode-locking to external signals, with signatures of different bifurcations
apparent at increasing amplitudes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1.

Left panel: Bottom image: scanning electron microscope image of a stereociliary bundle, in
a top-down view. Top image: optical image of a glass fiber attached to the row of tallest
stereocilia. The space bars in both images denote 1 um. Right panel: Mode-locking at a
drive amplitude of 20 nm. Bottom trace: spontaneous oscillations of a free stereociliary
bundle. Middle trace: spontaneous oscillations of a stereociliary bundle with an elastic glass
probe attached to its tip with a stiffness of 100 N/m with no imposed deflection. Top trace:
sinusoidal deflections are imposed on the bundle with a 20 nm amplitude and with
increasing frequency from 17 to 23 Hz (red trace). The displacement of the base of the probe
is shown overlaid in black, which has been arbitrarily scaled for visibility. Frequency
increases by 1 Hz every ten cycles. Decades of drive cycles are indicated by vertical dashed
lines. Events of phase slip between bundle and probe are indicated by arrows. The magnified
portion shows a “phase-slip” event.
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FIG. 2.

Phase-locked component of the response (in nm) of a stereociliary bundle subject to
sinusoidal deflection, over a range of drive frequencies (5-50 Hz in 1 Hz increments). Each
stimulus frequency is presented for ten periods. The corresponding bundle motion trace is
split into ten segments and then averaged. A single sine wave of fixed frequency is fit to the
averaged response and its amplitude is extracted to obtain the phase-locked component.
Linear interpolation was applied along the stimulus amplitude direction. Stimulus was
applied at 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 60, 80, 100 and 120 nm (amplitudes refer to
the base of the probe).
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8Hz

AR

FIG. 3.

Mode-locking at a drive amplitude of 120 nm. The drive frequency of the top trace is near
the low-frequency boundary of the mode-locking interval (from 5 to 8 Hz). The arrow
indicates a spike-like event. The bottom trace displays the progression of the mode-locking,
with a reduction of the secondary pattern. The scale bar to the left indicates excursion of the
hair bundle; the overlaid stimulus trace (black) has been arbitrarily scaled for visibility.
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FIG. 4.

Phase-locked amplitude as computed from Eq. 1, using scaled variables Au3/2 and w/u. The
black lines indicate Saddle Node on an Invariant Circle (“SNIC”) bifurcations and the
yellow lines Andronov-Hopf bifurcations. They meet at a Bogdanov-Takens (BT)
bifurcation. The intersection of the phase-locked region with the horizontal axis at the tip of
the triangle is wp/pe. Tr[A]=0 along the yellow dashed line, and Det[A]=0 along the black
dashed line. These additional bifurcations are not detected experimentally as the system
remains mode-locked in both regions I an I1.
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FIG. 5.

Data and numerical fits to slices through the Arnold Tongue, taken along the horizontal axis.
The data are indicated with blue dots, and the red lines show the numerical fits. The
Bogdanov-Takens boundary point was selected to correspond to the point of inflection seen
in the experimental plot, and the characteristic frequency wp to match the peak in the
response (Fp:= 40 nm and ;= 12 Hz, with characteristic frequency fy = 21 Hz). The
scaling factor u for the overall response was varied to optimize the fits; no additional free
parameters were introduced. (Fpae = 24.09 = F(0.53 p3/2), fopap0=7.52 = (fy — £,)/(0.56
M), =214 eyl = Rl focqpd it = 1.3) Note: We fixed the intersection between the two
curves, trace = 0 and det= 0, to be at the above points. This falls in the close vicinity rather
than exactly at the Bogdanov-Takens point [24]. As these are indistinguishable
experimentally, we refer to this as the BT point for conciseness.
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FIG. 6.

Data and numerical fits to slices through the Arnold Tongue, taken along the vertical axis.
The data were binned into 5 Hz intervals, with blue dots (indicating the average of five
neighboring frequencies), and the error bars showing the standard deviation of the phase-
locked amplitude. The red lines show the numerical fits. (Scaling an fitting parameters are
the same as for figure 5.)
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