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Abstract
Background—Basal cell carcinoma (BCC) is the most commonly diagnosed cancer in the
United States. In this research, we examine four different feature categories used for diagnostic
decisions, including patient personal profile (patient age, gender, etc.), general exam (lesion size
and location), common dermoscopic (blue-gray ovoids, leaf-structure dirt trails, etc.), and specific
dermoscopic lesion (white/pink areas, semitranslucency, etc.). Specific dermoscopic features are
more restricted versions of the common dermoscopic features.

Methods—Combinations of the four feature categories are analyzed over a data set of 700
lesions, with 350 BCCs and 350 benign lesions, for lesion discrimination using neural network-
based techniques, including Evolving Artificial Neural Networks and Evolving Artificial Neural
Network Ensembles.

Results—Experiment results based on ten-fold cross validation for training and testing the
different neural network-based techniques yielded an area under the receiver operating
characteristic curve as high as 0.981 when all features were combined. The common dermoscopic
lesion features generally yielded higher discrimination results than other individual feature
categories.

Conclusions—Experimental results show that combining clinical and image information
provides enhanced lesion discrimination capability over either information source separately. This
research highlights the potential of data fusion as a model for the diagnostic process.
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I. INTRODUCTION
Basal cell carcinoma (BCC), characterized as a slow-growing skin malignancy originating
within the basal layer of the epidermis, is the most commonly diagnosed cancer with an
estimated 3 million new cases annually in the US [1]. In the consultation process when a
patient exhibits a skin lesion, physicians gather patient information, determine general
information about the skin lesion, and may use devices such as a dermatoscope (3Gen LLC,
San Juan Capistrano, CA; Heine Optotechnik, Herrsching, Germany) for determining a
preliminary diagnosis. Currently, dermatopathology examination of a biopsy is used as the
diagnostic gold standard.

In this research, the diagnostic process, here characterized as BCC versus benign lesion
discrimination is examined based on information gathered from the patient, physician, and
the dermoscopic image of the lesion. There are several BCC structures identifiable using
dermoscopy that strongly suggest a BCC diagnosis. These have been incorporated into the
BASAL acronym: Blue-gray ovoids and globules, Arborizing telangiectasia,
Semitranslucency / Spoke wheel structures, Atraumatic ulcerations, and Leaf-like structures/
dirt-trails [2]. Figure 1(a–c) presents dermoscopic lesion image examples of these structures.

While there have been numerous studies based on dermoscopic image feature analysis for
pigmented lesion discrimination, few studies have specifically addressed BCC versus benign
lesion discrimination by a classifier [3–6]. In those studies, BCC lesion discrimination was
focused on the detection and analysis of particular dermoscopic features, including
telangiectasia [3,4], leaf-dirt trails [5], and semitranslucency [6]. This research explores the
efficacy of fusing clinical and dermoscopic features to enhance skin lesion discrimination
capability. Four categories of features were investigated in this research for BCC
discrimination: 1) patient personal profile descriptors, 2) general exam descriptors, 3)
common dermoscopic skin lesion image features associated with BCC, and 4) specific
dermoscopic skin lesion image features used for detecting uncommon BCC presentations.
Combinations of these feature categories are examined for skin lesion discrimination using
neural network techniques, including standard backpropagation neural networks, Evolving
Artificial Neural Networks (EANNs), and Evolving Artificial Neural Network Ensembles
(EANNEs).

The remainder of the paper is presented in the following sections: II) Description of Feature
Categories, III) Discrimination Algorithms, IV) Experimental Procedure, V) Results and
Discussion, and VI) Conclusion.

II. Description of Feature Categories
Table 1 provides an overview of the four overall feature groups. The personal profile
descriptors used are patient age, gender, race/ethnicity, and geographic location. Age was
given in a binary format for either older than or younger than (and including) 50 years of
age. Race/ethnicity is quantized as either non-Hispanic or Hispanic. The geographic location
is based on clinic location, either above (Missouri, Connecticut) or below (Florida) the
Tropic of Cancer. The final general exam attribute was lesion location. The third category of
features are basic and common basal cell carcinoma dermoscopic descriptors BASAL
features including blue-gray ovoids, vessels, pink veil (a more general form of
semitranslucency), atraumatic ulcerations, and leaf-dirt trails. The fourth category of
features comprises more specific dermoscopic features found to be present in this set of 350
BCCs. For both the common and specific dermoscopic features, a dermatologist (W.V.S.)
identified the presence or absence of each feature within the lesion. Two of these specific
features have been previously described and have high specificity: arborizing telangiectasia
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and semitranslucency [2,7]. We have determined in this research other features with high
specificity found in BCC that have not been previously described. These features are
developed here to detect unusual BCC presentations such as white areas, pink areas, purple
blotches, pale areas, large (majority of lesion) ulcer/crust plus pink regions, and majority
white and pink regions. The common and specific dermoscopic features in each feature
group are shown in Table 1.

The experimental data examined to evaluate the discrimination capability of the different
feature categories includes images acquired from four clinic locations across the United
States: The Dermatology Center (Rolla, MO), Drugge & Sheard (Stamford, CT), Skin &
Cancer Associates (Plantation, FL) and Columbia Dermatology & Mohs Skin Cancer
Surgery. (Columbia, MO). 350 lesions with a BCC diagnosis and 350 benign lesions were
used as the test set. Benign lesions consisting of 80 acquired nevi, 71 seborrheic keratoses,
60 actinic keratoses, 51 lentigines, 15 congenital nevi, 10 lichen planus-like keratoses, 9
sebaceous hyperplasia, and 54 lesions of miscellaneous types constituted the competitive set.

Table 2 presents the different feature group combinations examined for BCC versus benign
lesion discrimination based on the four feature categories. Column 1 gives the feature
combination, Column 2 provides the feature categories included in the feature combination,
Column 3 lists the total number of features for the feature combination, and Column 4 gives
the multilayer perceptrons (MLP) neural network architecture used for lesion discrimination
for the different feature combinations.

III. Discrimination Algorithms
Using the different combinations of feature categories given in Table 2, Evolving Artificial
Neural Networks (EANN’s) and Evolving Artificial Neural Network Ensembles (EANNE’s)
are examined for BCC versus benign lesion discrimination. The implementation for each
algorithm is given in this section.

A. Evolving Artificial Neural Networks (EANN’s)
EANN’s refer to a class of artificial neural networks (ANN’s) in which both evolution and
learning are fundamental forms of adaption. Evolutionary algorithms (EAs) can be used to
train the connection weight, design the architecture, and select the input features of the
ANN’s. In this research, EAs using particle swarm optimization (PSO) [8] and genetic
algorithm (GA) [9] for neural network training are investigated.

PSO is the study of swarms of social organisms such as a flock of birds, in which each
particle in the swarm moves toward its previous best location (Pbest) and global best
location (Gbest) at each time step [8]. The PSO algorithm utilized in this study is presented
in detail in [10] and is overviewed as follows. We initialize M particles, where each particle
is a D-dimensional vector () with each element of the vector representing a connection
weight and D being the total number of weights. For example, feature combination 1 from
Table 2 has an architecture of 5×5×1. The total number of weights (D) is 11 (5+5+1) and
each element in this D-dimensional vector is the connection weight. Furthermore, the M
particles represent M ANNs.

The connection weights in each ANN are updated when the elements in each particle are
trained as follows. The initial value for each element of the vector is randomly set at a value
from −0.1 to 0.1. In each training time step, the element’s value of each particle is updated
toward Pbest and Gbest. Pbest is the particle of the M particles that gives the least root mean
square error (RMSE) between the current training epoch and the previous training epoch.
Gbest is the particle among the M particles which generates the minimum RMSE, where the
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RMSE is calculated based on the difference between the ground truth and the actual ANN’s
output. The details for the updating process are given in [8]. The same process is repeated
for N epochs. The final Gbest particle is selected for the final ANN weights for the test
vector.

Genetic algorithms use the “survival of the fittest” concept where the weak may die and
elites are able to progress to the next level [9]. The GA approach investigated here is
presented in detail in [10]. We initialize M parents, where each parent is a D-dimensional
vector with each element of the vector representing a connection weight, with D being the
total number of weights. In a similar fashion defined for the PSO configuration, M parents
represent M ANNs. The initial value for each element of the vector is randomly set from
−0.1 to 0.1. In each training step, these M parents generate M offspring after implementing
random selection, uniform crossover and a mutation operation. Then, the next M parents are
selected based on whether the parents or their offspring minimize the RMSE. The same
process is repeated for N epochs. From the final parent pool, the parent which minimizes the
RMSE is selected for the final ANN weights for the test vectors.

B. Evolving Artificial Neural Network Ensembles (EANNEs)
Neural network ensembles provide an approach for using and combining the outputs from
several networks, with each ANN having the same inputs and generating its own outputs
[11]. The purpose of EANNs is to make use of the whole population of ANNs rather than a
single one. Training the network ensembles and determining the final output from the
network ensembles are two main components for EANNEs design.

Negative correlation learning [12,13] is implemented to train neural network ensembles in
order to minimize the mutual informal among the networks. We initialize an ensemble with
M ANNs with the initial weights in each ANN randomly set to a value from −0.1 to 0.1. In
each training time step, each ANN in the ensemble is trained for a certain number of epochs
using negative correlation learning firstly. Then, M offspring ANNs will be created by using
selection, crossover, and a mutation operation in GA and replacement of the worst ANNs.
The same process is repeated for N times.

For the final output determination, there are several criteria such as averaging, winner-
taking-all and voting for combining the outputs. Here we simply choose averaging to deliver
the final output as shown in Equation 1.

(6)

where M is the number of the individual ANNs in the ensemble and Fm is the output for
each ANN.

IV. Experimental Procedure
Fifteen different feature combinations were investigated as inputs to the neural network
architectures. The feature combinations and the neural network architectures for the EANN
approach trained using the GA algorithm, the EANN approach trained using the PSO
algorithm, the EANNE approach, and standard backpropagation ANN are given in Table 2.
Each neural network architecture includes the total number of features for the feature
combination and one bias as the inputs to each classifier algorithm. Each neural network
architecture from Table 2 includes five nodes in a hidden layer and one node in the output
layer. The input and output layers use linear transfer functions, and the hidden layer utilizes
sigmoid transfer functions. A ten-fold cross validation methodology is used for generating
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training/test sets for each neural network’s architecture [13]. The same training/test sets
from the cross-validation process are applied to all feature combinations and classification
algorithms presented. The ten-fold cross validation process is repeated five times for each
feature combination. Classification results are based on averaging the area under Receiver
Operating Characteristic (ROC) curves [14] generated for each of the ten test sets over the
five separate ten-fold cross validation sets. The area under the ROC curve was utilized as the
classification measure in this research because the area under the ROC curve does not
require selecting a decision boundary or threshold to determine detection accuracy.

V. Results and Discussion
Table 3 presents the average area under the ROC curve results over the five sets of ten-fold
cross validation test sets for the different feature combinations and discrimination algorithms
examined. BP denotes the standard backpropagation ANN algorithm. EANN-GA and
EANN-PSO represent the EANN neural network approaches using the genetic algorithm
and particle swarm optimization methods for neural network training, respectively.

Several conclusions can be obtained from Table 3.. First, the EANN algorithm using PSO
neural network training typically yielded the highest overall area under the ROC curve
results from the four discrimination algorithms investigated. Second, using all features
(Feature combination 15) gave the highest overall discrimination results, with an area under
the ROC curve of 0.981 for the EANN-PSO approach. Feature combinations 13, 14, and 15
yielded comparable results for the EANNE, EANN-GA, and EANN-PSO classification
methods, with Feature combination 14 (general exam descriptors, common dermoscopic
lesion features, and specific dermoscopic lesion features) providing slightly higher results
than using all features (Feature combination 15). This is not a surprising result since the
personal profile descriptors (Feature combination 1) yielded the overall lowest BCC
discrimination results compared to the other individual feature groups. Third, inspecting the
individual feature categories, the common dermoscopic lesion features yielded higher
discrimination results than the other feature categories, except for the standard back
propagation method. The personal profile descriptors gave consistently lower discrimination
results than the other feature categories. Size and location information (general exam
descriptors) and specific dermoscopic lesion features gave more discerning discrimination
information than personal profile descriptors for all classification algorithms examined.

VI. Conclusion
In this research, BCC versus benign lesion discrimination was explored using four types of
clinical and dermoscopic lesion image features: patient personal profile, general exam,
common dermoscopic image features associated with BCC, and specific dermoscopic image
features with uncommon BCC presentations. Lesion discrimination was performed for
different combinations of these features using Evolving Artificial Neural Networks and
Evolving Artificial Neural Network Ensembles architectures. Experiment results showed an
area under the receiver operating characteristic curve as high as 0.981 when all features were
combined. Common dermoscopic lesions features generally gave higher discrimination
results than other individual feature categories. Overall, experimental results highlight that
combining clinical and image information enhances lesion discrimination capability over
either information source separately, demonstrating the potential of data fusion in aiding the
lesion diagnostic process.
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Figure 1.
Examples of BCC BASAL structures visible using dermoscopy, all images are contact
dermoscopy images except b. a) Blue-gray ovoids, Arborizing telangiectasia, and dirt trails
(rudimentary Leaf-like structures, b) Semitranslucency, non-contact dermoscopy (inset—
contact dermoscopy), c) Atraumatic ulceration, with similar ulcer-crust.
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Table 1

Overview of feature groups examined for lesion discrimination.

Patient Personal
Profile Descriptors

General
Exam
Descriptors

Common
BCC Features

Specific
BCC Features

Age Size Blue-gray ovoids Arborizing telangiectasia

Gender Lesion Location Pink veil White/pink areas

Race/Ethnicity

     Non-Hispanic Vessels Semitranslucency

    Hispanic Leaf-Dirt Trails Purple Blotches

Atraumatic ulcerations Pale Areas

Geographic Location
Majority of Lesion Ulcer/Crust plus Pink Regions

    Above Tropic of Cancer

    Below Tropic of Cancer Majority Pink/White Regions
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Table 2

Feature combinations for lesion discrimination.

Feature
Combination

Feature Groups Included Total Number
of Features

Neural
Network
Discrimination
Algorithm
Architecture

1 Personal profile descriptors 4 5×5×1

2 General exam descriptors 2 3×5×1

3 Common lesion features* 5 6×5×1

4 Specific lesion features* 6 7×5×1

5 Personal profile descriptors, general exam descriptors 6 7×5×1

6 Personal profile descriptors, common lesion features 9 10×5×1

7 Personal profile descriptors, specific lesion features 10 11×5×1

8 General exam descriptors, common lesion features 7 8×5×1

9 General exam descriptors, specific lesion features 8 9×5×1

10 Common dermoscopic lesion features, specific lesion features 11 12×5×1

11 Personal profile descriptors, general exam descriptors, common lesion features 11 12×5×1

12 Personal profile descriptors, general exam descriptors, specific lesion features 12 13×5×1

13 Personal profile descriptors, common lesion features, specific lesion features 15 16×5×1

14 General exam descriptors, common lesion features, specific lesion features 13 14×5×1

15 Personal profile descriptors, general exam descriptors, common lesion features, specific
lesion features

17 18×5×1

*
Common and specific lesion features determined by dermoscopy
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Table 3

Average area under the ROC curve discrimination results for different feature and discrimination algorithm
combinations.

Feature Combination Discrimination Algorithm

BP EANNE EANN-GA EANN-PSO

1 0.612 0.613 0.604 0.607

2 0.670 0.704 0.739 0.746

3 0.667 0.823 0.812 0.818

4 0.841 0.774 0.799 0.712

5 0.632 0.794 0.815 0.837

6 0.830 0.924 0.909 0.928

7 0.809 0.890 0.879 0.894

8 0.822 0.927 0.928 0.941

9 0.830 0.909 0.910 0.941

10 0.710 0.853 0.888 0.937

11 0.828 0.934 0.918 0.950

12 0.842 0.913 0.901 0.942

13 0.890 0.970 0.946 0.974

14 0.904 0.973 0.954 0.977

15 0.897 0.972 0.948 0.981
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