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Abstract
Oxygen-17 detected DNP NMR of a water/glycerol glass enabled an 80-fold enhancement of
signal intensities at 82 K, using the biradical TOTAPOL. The >6,000-fold savings in acquisition
time enables 17O-1H distance measurements and heteronuclear correlation experiments. These
experiments are the initial demonstration of the feasibility of DNP NMR on quadrupolar 17O.
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Recent years have seen an avalanche of new magic angle spinning (MAS) NMR methods
developed to determine structures of macromolecular systems that are not amenable to study
by either solution NMR or diffraction techniques, the two principle tools of structural
chemistry. In particular, with MAS NMR there are now established methods to assign
spectra and to perform distance and torsion angle measurements for the I=1/2
species 1H, 13C, 15N and 31P.1,2 This in-turn has enabled studies of protein and nucleic
structures and dynamics. Largely missing from the biomolecular NMR repertoire is oxygen,
a key element of water and a variety of other chemically and biologically important
functional groups. The difficulty is that the most abundant oxygen isotope, 16O, has no
magnetic moment and the next most abundant, 17O, has a quadrupolar nucleus (I=5/2), with
attendant spectral complications. On the other hand, 17O chemical shifts span ~1000 ppm
with the potential for chemically significant spectral resolution. Two recent examples
showed that the 17O shifts of carboxyl groups are dispersed over 60 ppm3 and that the –
C17O2 shift tensor elements are sensitive to H-bonding and span ~550-600 ppm4.

Progress in 17O NMR has been stymied primarily by the low sensitivity resulting from the
broad 2nd order powder patterns and low resolution of the spectra. This problem is further
exacerbated by the low efficiency of the techniques used to observe 17O. In more detail, 17O
MAS spectra display residual 2nd order broadening characteristic of a 4th rank tensor that is
not averaged to zero by MAS 5,6. To observe isotropic chemical shifts in the presence of and
convolved with the 2nd order interaction requires either special instrumentation, as in case of
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double rotation (DOR) and dynamic-angle spinning (DAS)7,8, or special spectroscopic
techniques, as in case of multiple-quantum magic angle spinning (MQMAS)9 and or
satellite-transition magic angle spinning (STMAS)10. However, when the quadrupole
coupling is large (> 5 MHz) the excitation efficiency of these approaches drops
dramatically; in the case of MQMAS spectra, to about ~5% 11,12. Thus, although there are a
number of exciting MQMAS studies of 17O labeled biological samples, the experimental
results are clearly limited by signal-to-noise3,13-20. In order to enable 17O NMR as an
important spectroscopic technique, a dramatic increase in sensitivity is required.

Recently, high frequency dynamic nuclear polarization (DNP) has provided immense gains
in NMR sensitivity via microwave-induced transfer of polarization from paramagnetic
centers to nuclei 21. In general, 1H's are polarized directly and then cross-polarization is used
to transfer the enhanced polarization to other nuclei (e.g., 13C, 15N, etc.), all at cryogenic
temperatures (~85 K).22-28 This approach has been successfully applied to membrane
proteins29-31 , peptides32,33, amyloid fibrils34 as well as surfaces35,36. Most of these studies
focus on I=1/2 nuclei (e.g., 13C, 31P, 29Si, etc.) and a few on the I=1 and 5/2 quadrupolar
species 35-37. The magnetization transfer yields enhancements ε = 30-250, and the low
temperature yields another gain of ~3.5 in Boltzmann polarization relative to ambient
temperature. In combination, ε†~105-875, which could dramatically improve the prospects
of performing 17O experiments in biological systems.

Here we demonstrate the feasibility of this approach in the simple case of H2
17O. We

observe for the first time an enhancement of ε~80 or ε†~280 for 17O using high field DNP
NMR and the polarizing agent TOTAPOL in a glassy glycerol/D2O/H2O matrix. In
particular we are able to polarize 17O for both echo and Carr-Purcell-Meiboom-Gill
(CPMG) 38 experiments and to use spin-echo double resonance (SEDOR) 39,40 experiments
to measure 1H-17O distances. The dramatic savings in acquisition time demonstrates a
potentially important approach to 17O spectroscopy that can be extended to studies of H2

17O
in other chemical systems and of 17O in other functional groups.

Figure 1 shows a series of central transition (1/2 → -1/2) 1D spectra demonstrating DNP
enhancements of 17O. Spectra acquired with a cross polarization (CP) echo experiment with
and without microwave irradiation are shown in Figure 1b and 1e, respectively. The wave
on-signal was acquired with ~20 minutes of signal averaging and the wave off-signal was
acquired over a period of 14 hours with acquisition parameters identical to those for the on-
signal. Comparison of the two yields ε~80.

The shape of the static powder pattern shown in Figure 1b is characteristic of a second-order
quadrupolar coupling pattern 41-43. Chemical shielding anisotropy can also influence the
lineshape, although, for water at 5 T, this effect is negligible compared to that of the quadru-
polar interaction. The quadrupolar coupling constant, CQ = 6.8 ± 0.2 MHz, the asymmetry
parameter, • = 0.95 ± 0.05 and the isotropic chemical shift, δiso = 0 ± 50 ppm were
determined by simulating the non-spinning powder pattern (Figure 1a). The sizeable
quadrupolar coupling is reasonable for a frozen water environment. 44 The ~85 kHz breadth
of the central transition limits the ability to use magic-angle spinning (MAS). In particular,
the water/glycerol oxygen site at 5 T would require ωr/2π > 30 kHz to isolate the central
transition from a series of rotational sidebands. Current spinning frequencies with 4 mm
rotors at cryogenic temperatures are limited to ~7 kHz due to the density of the N2 drive and
bearing gases being near the liquefaction point (T = 77 K). As DNP NMR instruments are
developed for higher fields, lower spinning frequencies could suffice due to the inverse
relationship between the breadth of the second-order quadrupolar interaction and B0. For
example, at 14 T, ωr/2π = 10 kHz would be sufficient for 17O MAS DNP experiments.
Simulations illustrating this point are included in the Supporting Information.
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CPMG experiments can provide higher signal-to-noise ratios by splitting the broad
quadrupolar powder pattern into a series of sharp spikes,38,45-49 and Figure 1c shows that
DNP-enhanced CPMG can further accelerate the acquisition of 17O spectra. A standard echo
provided sufficient signal-to-noise with enrichment on the order of 10% or more; however
CPMG proves to be useful for natural abundance (0.038%) H2O/D2O/glycerol glasses
(Figure S1). This may enable future studies using low-levels of enrichment. DNP and
CPMG might usefully be coupled to other sequences for quadrupolar nuclei and species that
show large chemical shielding anisotropies if T2's are sufficiently long. Care must be taken
when multiple sites are present, as different T2's could complicate spectral interpretation.
Radical concentration can also compromise the CPMG method by paramagnetic relaxation.
In Figure 1c, a train of 128 echoes, provided a signal beyond 11 ms. This indicates that, in
this system, 20 mM of the biradical TOTAPOL50,51 (or 40 mM electrons) had little effect on
the spectrum (i.e., the breadth of the central transition is dominated by the quadrupolar line-
shape). The build-up time constant (τB) for the water/glycerol glass was experimentally
determined to be 4.1 s.

The low sensitivity of 17O NMR often requires weeks of acquisition time, rendering
multidimensional structural experiments impractical. In consequence, most distances
measured between 17O and either 1H or 13C by NMR are indirect, applying a dephasing
pulse on 17O and observing 1H or 13C. 47,48,52,53 In Figure 2 we show the results of a
SEDOR experiment used to measure the average 1H-17O distance in the glycerol/water
glass. A 1D stepped-SEDOR experiment was used to acquire a 17O54 (1-S/So) curve
characteristic of the dipolar coupling (Figure 2a).

The SEDOR curve was simulated using SIMPSON 52 and SPINEVOLUTION 55 software
and is compared in Figure 2a with the experimental curve determined from the peak areas.
Various spin models included a single oxygen site with 2-5 1H's between 0.8 and 1.2 Å and
<HOH angles between 1000 to 1100 (values were chosen based on upper and lower limits of
the experimental data). These inputs were adjusted until a reasonable model of the glass was
obtained. A three-spin model (one - O and two – H's) indicated an average H---O bond
distance of 1.1 ± 0.1 Å, a value that agrees well with X-ray and neutron diffraction data
from various crystalline ice structures where H--O distances are found between 0.86 and
1.15 Å. 56-58

A second Fourier transformation of the evolution dimension of the same SEDOR
experiment yields a 2D dipole-quadrupolar correlation spectrum (Figure 2b) similar to those
reported previously 59,60. This spectrum is sensitive to the relative orientation of the dipole
and quadrupolar tensors, and this information, in principle, can be extracted by fitting the
experimental data. 59

We found it to be difficult to achieve acceptable agreement between the experimental and
simulated spectra. This difficulty can be attributed to the following two reasons. First, the
samples used for all experiments were in the glassy state. Therefore, there must be a certain
degree of structural disorder present (e.g., distance, angle and possibly coordination).
Second, mobile protons were significantly diluted with deuterons, which come from
deuterated glycerol and D2O used for sample preparation. Therefore, the observed 1D and
2D experiments have contributions from 17O sites with varying number of neighboring
protons. In the 2D SEDOR, the 17O-1H heteronuclear dipolar coupling can be estimated
from the dipolar dimension61. The observed splitting of 16.3 ± 0.3 kHz, corresponds to a
one bond distance of ~1 Å.

DNP NMR enables SEDOR experiments to measure single 17O bond lengths within hours.
This could be extended to 17O-13C or 17O-15N bond distances with appropriate hardware

Michaelis et al. Page 3

J Phys Chem Lett. Author manuscript; available in PMC 2013 August 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and to other sequences, such as rotational echo double resonance (REDOR) and transferred
echo double resonance (TEDOR), with higher field DNP. Experimental times for the
identical experiments without DNP are projected to require >1.4 years.

Multidimensional experiments also enable the extraction of structural information by
correlating resonance(s) from one NMR nucleus to another, through either the dipolar or J-
coupling interactions. Figure 3 shows a 17O-1H heteronuclear correlation spectrum
(HETCOR) for a water/glycerol glass. A projection along the 17O dimension yields the
quadrupolar pattern similar to Figure 1b. The indirect dimension (1H) exhibits a broad
resonance dominated by 1H-1H homonuclear dipolar coupling. 1H chemical shielding and
heteronuclear dipolar coupling are also present, although they contribute minimally to the
observed lineshape.

For quadrupolar NMR, a 16-phase cycle is often used during acquisition of one- and two-
dimensional data often leading to improved quadrupolar lineshapes. With the sensitivity
boost from DNP and CPMG, a HETCORCPMG spectrum of the water/glycerol glass was
also acquired using a 8 scan, 8-phase cycle acquisition scheme (not shown). The reduced
phase cycle (versus 16) provided similar results, with only minor variations within the
discontinuities. With the use of hard pulses, increased field (Bo) strength and studying
systems with lineshapes below 80 kHz, this could provide an alternative for
multidimensional experiments. Further reducing acquisition time for broad resonances and
low sensitivity.

In summary, DNP in the simple case of H2
17O provided an enhancement of 80. Water is of

great importance in both biological and chemical processes, but is challenging to study using
conventional 17O solid state NMR. The ability to polarize protons by microwave irradiation
followed by cross-polarization to oxygen has enabled a suite of multi-dimensional NMR
experiments of this low-gamma, quadrupolar nucleus within hours. 17O-detected
multidimensional spectra were acquired between three and 10 hours using DNP NMR. By
enhancing the signal-to-noise ratio, DNP provides an ~6,000-fold gain in time at cryogenic
temperatures, and, in the absence of relaxation, a >18,000-fold gain in time compared to
room temperature (298 K). These gains should be transferable to other difficult quadrupolar
nuclei, providing a savings in acquisition time. The significant gain in sensitivity and
reduction of experimental time from months to hours is extremely beneficial and provides
new possibilities for further exploration of heteronuclear correlations and distances in
multidimensional experiments. Extensions to MAS experiments for site assignments are
currently in progress 62.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Central transition 17O-1H cross-polarization-echo of a static glycerol/D2O/H2

17O (60/30/10
% by weight) recorded at T = 82 K in which the water was originally 74% enriched in
H2

17O. The final concentration of H2
17O was ~7.4%: (a) lineshape simulation, (b) wave on

with ε~80 (128 scans), (c) μwave on using a CPMG (16 scans), (d) wave off scaled by 10
and (e) wave off (4864 scans).
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Figure 2.
Central transition 17O-1H SEDOR experiment recorded at T=85 K using 74% enriched
in 17O: (a) SEDOR curve with SIMPSON simulation and (b) 2D SEDOR spectrum. The
sample composition is as in Figure 1.
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Figure 3.
Central transition 17O-1H HETCOR-CPMG spectrum of water/glycerol glass using solid-
state DNP NMR, T=85 K. The sample composition is as in Figure 1.
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