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Abstract
Background—The early repolarization pattern (ERP) is common and associated with risk of
sudden cardiac death. ERP is heritable and mutations have been described in syndromatic cases.

Objective—To conduct a meta-analysis of genome-wide association studies (GWAS) to identify
common genetic variants influencing ERP.

Methods—We ascertained ERP based on electrocardiograms in three large community-based
cohorts from Europe and the US: the Framingham Heart Study, the Health 2000 Study, and the
KORA F4 Study. We analyzed GWAS in participants with and without ERP by logistic regression
assuming an additive genetic model and meta-analyzed individual cohort results. We then sought
to strengthen support for findings that reached p≤1×10−5 in independent individuals by direct
genotyping or in-silico analysis of genome-wide data. We meta-analyzed the results from both
stages.
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Results—Of 7482 individuals in the discovery stage, 452 showed ERP (ERP positive: mean age
46.9±8.9 years, 30.3% women; ERP negative: 47.5±9.4 years, 54.2% women). After meta-
analysis, eight single nucleotide polymorphisms reached p≤1×10−5: The most significant finding
was intergenic rs11653989 (odds ratio 0.47; 95% confidence interval 0.36–0.61; p=6.9×10−9). The
most biologically relevant finding was intronic to KCND3: rs17029069 (odds ratio 1.46; 95%
confidence interval 1.25–1.69; p=8.5×10−7). In the replication step (7151 individuals), none of the
eight variants replicated, and combined meta-analysis results failed to reach genome-wide
significance.

Conclusions—In a GWAS, we were not able to reliably identify genetic variants predisposing
to ERP, presumably due to insufficient statistical power and phenotype heterogeneity. The
reported heritability of ERP warrants continued investigation in larger well-phenotyped
populations.

Keywords
Early repolarization; Sudden cardiac death; Arrhythmia; GWAS; Meta-analysis;
Electrocardiogram

Introduction
The electrocardiographic early repolarization pattern (ERP) has long been considered a
benign normal ECG variant.1, 2 Recent case-control studies, however, have demonstrated an
association of inferior and lateral ERP to idiopathic ventricular fibrillation,3, 4 and
subsequent large-scale community-based studies have suggested an increased risk of all-
cause and cardiac mortality, and sudden death.5, 6 Most recently, a subtype of ERP, defined
by horizontal or descending ST-segment morphology, was shown to confer the highest risk
for an arrhythmic death, whereas an ascending ST-segment morphology, common in young
male athletes, was associated with benign prognosis.7 The population prevalence of ERP
across recent studies ranged between 3 and 13%.5, 6, 8, 9

Mutations in KCNJ810, 11, CACNA1C, CACN2B, and CACNA2D112 have been reported in
individuals with ERP and sudden cardiac death, but the genetic determinants of ERP at the
population level remain undefined. ERP appears to be heritable. An investigation in families
from the UK reported a heritability estimate of 0.498 and an odds ratio (OR) of 2.5 for ERP
in the offspring of at least one affected parent.8 Findings from the Framingham Heart Study
(FHS) reported a sibling recurrence risk of 1.89 for ERP.9

Here we sought to identify common genetic determinants of ERP by performing a meta-
analysis of genome-wide association studies (GWAS) in individuals of European descent
followed by independent replication, comprising a total of 940 subjects with ERP and
13,693 controls drawn from population- and community-based study samples.

Methods
Description of Study Cohorts

All study procedures were approved by the local institutional review boards of each center.
Study participants provided written informed consent, including consent to use DNA for
genetic analyses of cardiovascular disease. Individuals were considered eligible for the
GWAS stage if they had both genome-wide genotyping data and electrocardiograms (ECGs)
available. We excluded participants of non-European ancestry, with a QRS-duration
>120ms, <18 years of age (and ≥80 years of age in the Health 2000 Study (H2K)),
presenting with non-sinus rhythm or with a heart rate >100/min. A summary of excluded
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subjects is presented in Supplemental Table 1. Detailed descriptions of cohorts can be found
in the Supplemental Methods.

The Framingham Heart Study (FHS) is a prospective community-based study started in
1948 to evaluate potential risk factors for coronary heart disease. In 2002, a third generation
of participants was recruited (Generation 3, n=4,095), and here, 3,726 participants with both
GWAS and ECG data were studied.

The Health 2000 Study (H2K) is an epidemiological survey conducted in Finland in 2000–
2001 and represents the Finnish adult population aged ≥30 years. Of the total H2K
population (n=8028), 2082 subjects with both GWAS data and ECGs were investigated
here.

The Cooperative Health Research in the Augsburg Region (KORA) F4 Study (KORA
F4) was conducted in 2006–2008 in men and women aged 32–81 years. After exclusions, of
3080 participants, we studied 1674 with available GWAS and ECG data.

Replication cohorts
Participants of H2K not contributing to the GWAS analysis were included in the replication
analyses. After exclusions, the replication sample consisted of 2996 individuals.

Participants of KORA F4 not included in the GWAS analysis, but with DNA samples
available (n=1226) were recruited for replication (n=1140).

Further individuals for replication were available from the MONItoring CArdiovascular
Disease (MONICA) / KORA S1 and S2 Study Subcohort (MONICA/KORA S1/S2).
Here, 1351 participants (644 from S1 and 707 from S2) were eligible for study.

Individuals were also included from the Young Finns Study (YFS), a population-based,
ongoing prospective multicentre study between five Finnish university hospitals. After
exclusions, the replication sample from YFS consisted of 466 subjects.

From the South Italian village of Carlantino, 1668 individuals had been recruited from
1998–2005, and 285 individuals were available for analysis. A second Italian cohort was
derived from the project Genetic Park of Friuli Venezia Giulia (FVG), where 913
individuals remained in the dataset for analysis.

Ascertainment of ERP
ERP was determined on 12-lead ECGs by specifically trained physicians experienced in
cardiac electrophysiology. The identical coding protocol was applied at each participating
site. Measurements were performed for each lead separately. From among the leads, the one
with the earliest offset of the QRS complex was defined as the reference point for J-point
elevations. Criteria for the diagnosis of ERP required a J-point elevation of ≥0.1 mV
compared to the baseline (defined as the T-P segment) in ≥2 leads within at least one
regional territory. ERP was considered in inferior (leads II, III, aVF) or lateral (leads I, aVL,
V4, V5, V6) regional territories, and was categorized as showing either slurring, notching,
discrete, or mixed morphology. We assessed the morphology and amplitude of the ST
segment at 100 ms after the J-point. ST-segments with an amplitude >0.1 mV were
considered ascending; for amplitudes ≤0.1 mV, we distinguished between horizontal and
descending morphologies.
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Genotyping and replication SNP selection
GWAS Genotyping platforms included: Affymetrix 5.0 and a 50,000 SNP custom Illumina
chip (FHS), Illumina Human610-Quad (H2K), and Affymetrix 6.0 (KORA F4). Cohort-
based information on the genotyping process and quality control criteria are provided in
Supplemental Table 2. Replication genotyping was performed using iPlex single base primer
extension with matrix-assisted laser desorption / ionization time-of-flight (MALDI-TOF)
mass spectrometry (Sequenom Inc, San Diego, California, USA) for H2K, KORA F4, and
MONICA/KORA S1/S2. All sites used identical genotyping assays. All genotyping was
performed according to the manufacturer’s instructions. For replication in Carlantino, FVG
and YFS, we used in-silico results available from previous genome-wide genotyping.

Statistical Analysis
For GWAS, imputation of >2.5 million HapMap SNPs based on the CEU population was
performed using Mach v1.0.1x13 in all three cohorts (Supplemental Table 2). In each study,
we adjusted for population structure applying the principal components method,14 or
stratified by identity-by-descent cluster groups as implemented in PLINK.15 The primary
analysis was conducted separately at each site using logistic regression assuming an additive
genetic model. Models were adjusted for age at ECG, sex, and RR interval. Prior to meta-
analysis, we used genomic control methods to account for remaining population
stratification: site-specific results with a genomic inflation factor γ >1.0 were corrected by
multiplying the standard error of the SNP regression parameter with the square root of the
study-specific γ (Supplemental Figure 1). We used the ratio of the observed to expected
variance of the imputed SNP genotype counts as a quality control metric for imputed SNPs.
For each SNP, we included all studies with variance ratios >0.3. Only SNPs with a minor
allele frequency ≥0.01 (H2K, KORA F4) or ≥0.05 (FHS) were considered. After these
quality control procedures, we analyzed 2,523,555 SNPs. The meta-analysis of site-specific
association results was performed simultaneously in H2K and MONICA/KORA using the
meta-analysis tool METAL.16 We performed fixed-effects meta-analysis using inverse
variance weights. Results from both centers were compared and inconsistencies were
eliminated. Finally, one single version was used for all subsequent analyses. To account for
multiple comparisons, we applied a pre-specified Bonferroni adjustment for 1 million
independent tests (p<5×10−8). We attempted to replicate SNPs that did not reach genome-
wide significance: We included all SNPs with a p-value <1×10−5, if they had a minor allele
frequency ≥0.05 and showed homogeneity across individual studies as assessed by an I2

<0.5 and a non-significant p-value for heterogeneity. All SNPs were clustered into loci
according to their genomic position, and the top SNP of each locus was selected for
replication. Replication results were calculated separately by replication site. Site-specific
replication results were then meta-analyzed and this final result was used to assess positive
replication. For an overall effect estimate, results of the GWAS and replication stage were
finally combined. All reported p-values are 2-sided.

Results
The GWAS stage combined 7482 individuals. Their mean age across cohorts was 46.9±8.9
years in participants with ERP, and 47.5±9.4 years in participants without ERP. Women
accounted for 30.3% of ERP positive subjects and 54.2% of ERP negative subjects. Further
clinical characteristics by cohort are shown in Table 1. Details with respect to ERP and ST-
segment morphology in ERP-positive individuals are presented in Table 2. Overall, 452
(6.0%) individuals demonstrated ERP, of whom 57 (12.6%) showed ERP in >1 regional
territory. A horizontal or descending ST-segment morphology was noted in 70.9% of all
ERP-positive regional territories.
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Following genotyping and quality control measures (Supplemental Table 1; Supplemental
Figure 1), 2,523,555 SNPs were analyzed for association with ERP at the GWAS stage. The
association results of the GWAS stage are presented in Figure 1, and the eight most
significant SNPs, reaching p-values of <1×10−5 are shown in Table 3. We subsequently
attempted replication of our results in 7151 independent samples, in which the prevalence of
ERP was 6.8% (488 ERP-positive). None of the eight SNPs tested in the replication cohorts
reached significance when all replication cohorts were meta-analyzed (Table 4). In the final
meta-analysis, combining the results of the GWAS and the replication stages, none of the
SNPs reached genome-wide significance (Table 4, Figure 2).

Of the eight SNPs we initially identified, five are located in introns of genes (Table 3). The
initially most significant intronic SNP (rs17029069) is on chromosome 1p13.2, and maps to
intron 2 of KCND3. KCND3 encodes the voltage-gated potassium channel Kv4.3. Other
intronic SNPs are rs17012480 (intron 3 of LTBP1), rs1541064 (intron 6 of UBE2U),
rs6988260 (intron 3 of FAM110B), and rs1382629 (intron 2 of KIAA1211).

Discussion
In our GWAS, we included almost 15,000 individuals from community-based cohorts of
European ancestry. Close to 1000 participants were identified to be ERP-positive applying
the identical, standardized diagnostic criteria by investigators at all contributing sites. While
the initial results of our GWAS stage suggested promising association signals, none of the
signals could be replicated.

Several independent investigations have suggested that ERP is a heritable ECG phenotype.
In 1877 individuals from 505 UK families, the prevalence of ERP was 5.9%, and thus in
keeping with the ERP prevalence in our current analysis.8 The authors reported a heritability
estimate of h2=0.49 and an OR of 2.5 for offspring to demonstrate ERP, if ≥1 parent
presented with ERP.8 Another investigation in FHS and H2K found an ERP prevalence of
6.1%.9 Heritability estimates for ERP fall within a similar range as other heritable ECG
parameters such as the PR interval,17 the QT interval,17 or diseases identifiable by ECG,
such as atrial fibrillation.18 GWAS have been successful in identifying chromosomal loci
associated with each of these heritable phenotypes.19–22 Our inability to replicate even our
pathophysiologically promising initial findings warrants some exploration.

A first explanation may be false-positive initial findings, which failed to replicate. In our
study, <10% of the 15,000 participants were ERP-positive. A post-hoc power analysis
revealed that we had 80% power to detect an OR of ≥1.68. We anticipate that with an
increased sample size and thus increased statistical power, susceptibility loci for ERP will
eventually be identified. While increased sample size can help to identify true loci
associated with disease, it was still worth pursuing the current analysis as loci for other traits
have been identified with similar sample sizes. Specifically, the first GWAS for the QT
interval consisted of an initial stage of only 200 individuals, yet it successfully identified the
locus most significantly associated with the QT interval.23 Similarly, for atrial fibrillation a
cohort of only 636 cases and 804 controls identified the 4q25 locus for the arrhythmia.24

A second explanation for the non-replication of genetic loci might be that ERP is a more
heterogeneous phenotype than initially anticipated. The prevalence of ERP appears variable.
Despite a very homogeneous definition across participating cohorts, our prevalence ranged
from 3%–13%. In a Japanese study, the prevalence reached almost 24%.25 ERP can be sub-
classified based on the affected regional territory, ST segment morphology, amplitude, and J
point morphology, a process that results in fragmentation of the phenotype into distinct and
individually rare patterns. Also, there may be interactions with other clinical factors such as
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sex and race. Community-based investigations in Europe and Japan indicated that ERP in
inferior or lateral territories is associated with the highest risk of mortality.5, 6, 25 A Finnish
study found that only a horizontal or descending ST-segment was associated with adverse
outcomes.26 Subsequently, in patients with idiopathic ventricular fibrillation a combination
of ERP and a horizontal ST segment was associated with a markedly increased odds of
arrhythmias compared to the presence of ERP alone.27 Higher ERP amplitudes also
conferred an increased risk of death.5 The importance of sex has been controversial; one
study suggested that the ERP-effect on mortality is more pronounced in males,6 whereas
others have shown that women are particularly at risk.28 An increased SCD risk has been
demonstrated in white, but not in black individuals.28 ERP might be subjected to temporal
changes as well.29 In conclusion, the non-replication of our GWAS findings could be due to
a too un-specific definition of ERP. Future investigations will need to focus on the subtypes
with the strongest heritability and the strongest evidence for clinical implications. Presently,
we lacked sufficient statistical power to adequately examine subtypes.

Although not genome-wide significant, one particularly interesting locus was on
chromosome 1 intronic to KCND3. The gene encodes the voltage-gated potassium channel
Kv4.3, a key channel underlying the cardiac transient outward current Ito.30 The current is of
great importance for the early phase of repolarization,31 and reported to be the predominant
contributor to phase I of the cardiac action potential.32 Its transmural dispersion leads to
different shapes of the cardiac action potential in endo- vs. epicardial layers, and results in
the ERP notch or slur on the surface ECG.32 Genetic variants in KCND3 possibly lead to
altered channel properties that could underlie an increased arrhythmogenic potential. A
mutation in KCND3 has been described to cause the Brugada syndrome, in which the early
phase of cardiac repolarization is critically involved as well.33 In contrast, KCND3
mutations were described to be rare in patients with long QT syndrome, where late phases of
cardiac repolarization are important.34 However, since the association of common variants
at this locus to ERP was not significant considering the burden of testing, these potential
functional links remain purely speculative.

Strengths and limitations
Strengths of our study are the highly standardized assessment of ERP status and a large
collaborative effort to provide maximally achievable statistical power. However, sample size
considerations limited our ability to explore the heterogeneity of ERP in subgroup analyses.
Also, successful replication of variants predisposing to ERP might have been prevented by
residual confounding. It will require further studies to refine ERP phenotype in more detail.
Despite our intention to increase statistical power, our study still did not yield enough
participants to reliably identify common genetic variants associated with ERP. All
investigated ECGs stem from a single time point. As ERP showed temporal variability in
prior studies, we cannot exclude that we have missed ERP positive individuals. All
participants were of European descent. We therefore cannot comment on genetic
predisposition to ERP in different ethnicities. Carlantino and FVG are isolated populations
that could have influenced our genetic analyses if genetic substructure exists. However, the
heterogeneity of the results of these two cohorts appeared to be similar to other cohorts in
our study.

Conclusion
In conclusion, we have performed a multicenter meta-analysis of GWAS attempting to
identify SNPs associated with ERP. Limited statistical power and potentially unrecognized
phenotypic heterogeneity are potential explanations for our non-replication results. Future
investigations will require many collaborating centers and high phenotype resolution based
on unified diagnostic criteria to adequately identify common variant associations to ERP.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-wide association results from GWAS meta-analysis for association with ERP
The physical chromosomal position of each SNP is plotted on the x-axis; the −log10(p value)
of the SNP-ERP association is plotted on the y-axis. chr – chromosome.
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Figure 2. Association results by cohort for SNPs selected for replication
For each SNP we attempted to replicate, ORs and 95% CIs are plotted by cohort and for the
meta-analyzed results. For each SNP panel, the upper section represents cohorts included in
the GWAS stage, the middle section those included in the replication stage, and the lower
section depicts meta-analysis results. CI – confidence interval; META – meta-analysis; OR
– odds ratio.
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Table 2

Early repolarization pattern by GWAS cohorts

FHS H2K KORA F4

ERP positive ECGs, n (%) 227 (6.1%) 61 (2.9%) 164 (9.8%)

ERP positive regional territories, n 243 66 200

Regional territories

 Inferior, n (%) 81 (33.3%) 19 (28.8%) 109 (54.5%)

 Lateral, n (%) 162 (66.7%) 47 (71.2%) 91 (45.5%)

ERP morphology across regional territories

 Notching, n (%) 85 (35.0%) 23 (34.8%) 33 (16.5%)

 Slurring, n (%) 73 (30.0%) 18 (27.3%) 70 (35.0%)

 Discrete, n (%) 24 (9.9%) 3 (4.5%) 0 (0%)

 Mixed, n (%) 61 (25.1%) 22 (33.3%) 97 (48.5%)

ST-segment analysis across regional territories

 Ascending, n (%) 87 (35.8%) 38 (57.6%) 23 (11.5%)

 Horizontal, n (%) 156 (64.2%) 28 (42.4%) 146 (73.0%)

 Descending, n (%) 0 (0%) 0 (0.0%) 31 (15.5%)

In an ERP-positive ECG, ERP can occur in more than one regional territory (inferior or lateral). A mixed ERP morphology indicates different
morphologies across leads. ERP morphologies and ST-segment information is provided across regional territories. GWAS – genome wide
association study; ERP – early repolarization pattern; FHS – Framingham Heart Study; H2K – Health 2000 Study; n – number.
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