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Abstract

We present an integrated method that exploits extended time-lapse automated imaging to quantify 

dynamics of cell proliferation. Cell counts are fit with a Quiescence-Growth model that estimates 

rates of cell division, entry into quiescence and death. The model is constrained with rates 

extracted experimentally from the behavior of tracked single cells over time. We visualize the 

output of the analysis in Fractional Proliferation graphs, which deconvolve dynamic proliferative 

responses to perturbations into the relative contributions of dividing, quiescent (non-dividing) and 

dead cells. The method reveals that the response of “oncogene-addicted” human cancer cells to 

tyrosine kinase inhibitors is a composite of altered rates of division, death and entry into 

quiescence, challenging the notion that such cells simply ‘die’ in response to oncogene-targeted 

therapy.

INTRODUCTION

Proliferation is a fundamental property of living cells. Altering or controlling cell—

proliferation often by chemical compounds—is a major goal of several disciplines, including 

oncology, tissue engineering, and developmental biology. Many current proliferation assays 

rely on surrogate measurements of cell number (e.g. total ATP or DNA content) rather than 

direct cell counts1. Moreover, since cells are not directly visualized in most proliferation 

assays, their states (dividing, quiescent, apoptotic) are unknown; a given proliferation curve 

could be the consequence of one of many combination of states. Proliferation assays are also 

typically performed with very few time points and rarely account for proliferation dynamics. 

Flow cytometry provides measurements at the single-cell level, including: cell cycle 

position 2, expression of proliferative markers, fractions of dead or dying cells 3, and 

division tracking by dye dilution 4. However, adherent cells must be detached for end point 

analysis and single cells cannot be tracked or individual cell histories recorded.

Here we describe a methodology to quantify dynamic changes in a proliferating cell 

population and to deconvolve fractional cell fates over time (Fig. 1). We label cells with a 
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nuclear fluorescent protein, carry out extended time-resolved automated microscopy 

(typically for ~96 h and as long as 10 days), segment nuclei in image stacks to directly count 

cells and track single cells for determining cell lifespans and fates (Methods). The large 

image datasets require analysis with computational tools and newly developed mathematical 

models (Supplementary Notes 1 and 2) that utilize information at both the population and 

single-cell levels and integrate them into a model of cell proliferation dynamics (Fig. 1). 

Briefly, we fit cell count data obtained from time-lapse automated microscopy with a novel 

Quiescence-Growth model, which incorporates rates of cell division, entry into quiescence 

and death. The model is constrained with experimental rates derived from tracked single 

cells and its output is visualized in Fractional Proliferation graphs. These graphs resolve the 

dynamic change in total cell numbers into fractions of dividing and quiescent (non-dividing) 

cells.

RESULTS

Quiescence-Growth model of cell population dynamics

We used our approach to monitor the proliferation dynamics of drug-treated cells. Cell 

counts extracted from the image data show that vehicle-and cycloheximide-treated PC9 cells 

exhibit linear proliferation (in log scale). In contrast, treatment with erlotinib, lapatinib, 

PLX-4720 or doxorubicin resulted in nonlinear effects on proliferation of PC9 cells (Fig. 

2a). We observed similar effects, in other cell lines (Supplementary Fig. 1). We analyzed the 

expression of a marker of S or G2 phase (mAG-geminin)5 in drug-treated cells: erlotinib, 

lapatinib and PLX-4720 induced arrest in G1 (or G0) and doxorubicin in S or G2 (Fig. 2b), 

suggesting a correlation between cell cycle arrest and nonlinear proliferation. We also 

observed this correlation in erlotinib-treated PC9 cells analyzed using flow cytometry 

(Supplementary Fig. 2a, b) and in MCF10A cells deprived of serum (Supplementary Figure 

2c). Nonlinear population dynamics are traditionally modeled using logistic or Gompertz 

equations 6,7, which have been applied to cultured cells as well as tumors 8–10. A major 

assumption of these models is the idea of a “carrying capacity” representing the maximum 

size a population can reach in a given environment. There is no clear relationship between 

carrying capacity and the biological processes that affect cell population size, such as cell 

division, quiescence and death.

To explain the nonlinear proliferation dynamics using biologically relevant parameters, we 

constructed a “Quiescence-Growth” model that includes two compartments, a dividing and a 

non-dividing (which we term quiescent) population, with death occurring from both 

compartments (Fig. 2c, Methods, and Supplementary Notes 1,2). The equation derived from 

this model incorporates three parameters (Fig. 2c), rates of division (d), death (a) and entry 

into quiescence (q). The term “quiescence” in the Quiescence-Growth model reflects arrest 

at any position in the cell cycle. We applied the Quiescence-Growth model to fit the cell 

count data obtained from drug-treated PC9 cells (Fig 2a). PC9 response to CHX was linear 

and best explained by decreasing the rate of division (d). In contrast, proliferation in 

response to erlotinib, lapatinib and PLX-4720 is nonlinear and can only be explained by 

varying the q parameter, rate of entry into quiescence (Fig. 2a). Varying the q parameter also 

best fits the response to doxorubicin (Fig. 2a), known to cause arrest in G2 (Fig. 2b).
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Data-derived Quiescence-Growth model parameters

Good fits of the cell count data with the Quiescence-Growth model may be achieved by 

different combinations of parameter values (Supplementary Fig. 3, Supplementary Table 1 

and Supplementary Software 1), particularly death and division rates, which oppose each 

other. We therefore constrained the model with experimentally measured rates from single 

cell tracking of time-lapse images.

We first tracked single cells across time lapse image stacks to quantify observed cell 

lifespans, which are defined as the time between an initial mitotic event and: 1) a death 

event, 2) another mitotic event (defining an intermitotic time; IMT), or 3) the end of the 

experiment (EoE) (Fig. 3a, Methods and Supplementary Video 1). Cell lifespans 

demarcated by an initial mitotic event and the EoE may belong to either dividing or non-

dividing (quiescent) fractions.

For death rates, we identified death events by shrinkage/disintegration of nuclei 

(Supplementary Fig. 4a), tallied these events and converted them directly to rates 

(Methods).

For division rates, we first determined the variability of IMT in the population by examining 

IMT distributions, which are non-Gaussian by visual inspection (Fig. 3b, c and 

Supplementary Figs. 5,6), fail several statistical tests of normality (Supplementary Tables 

2,3) and cause bias in the estimation of division rate if a simple mean value is used. We 

searched for model distributions that adequately capture the variability (Fig. 3b). Among 

several possible models we examined (Supplementary Table 2), an Exponentially Modified 

Gaussian (EMG) model 11 fits well the observed IMT distributions from a wide range of 

cells and conditions (Fig. 3, Supplementary Figs. 5,6), while minimizing the number of 

parameters to three. An additional benefit is that EMG model parameters are mathematically 

and biologically separable, i.e. their values are differentially affected by drugs 

(Supplementary Fig. 6).

We adapted a method of calculating division rates in bacterial cultures 12 to utilize all EMG 

parameters fit to the observed IMT distribution (Supplementary Notes 1,2). This method 

accounts for the dispersion of individual IMT, especially the slowly dividing cells in 

rightward skewed tails. In addition, this calculation of the division rate takes into account 

the age structure of an asynchronously dividing cell population under the assumption of 

exponential growth.

For quiescence rates, a crucial question is whether cells with lifespans demarcated by an 

initial mitotic event and the EoE are quiescent or whether they would have divided if the 

experiment had continued (Fig. 3a). We estimated the probability that a cell is quiescent by 

implementing a Likelihood of Quiescence Model based on a statistical survival formula 13 

(Methods and Supplementary Notes 1,2). The older the undivided cell relative to the 

distribution, the lower the likelihood that it would have divided after the EoE, and the higher 

the likelihood that it is quiescent. The rate of entry into quiescence is then calculated using 

the fraction of quiescent cells in the population and is relative to the calculated rate of 

division. Importantly, without properly accounting for the slowly dividing cells in the 
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population with a well-fit model (such as an EMG), the rate of entry into quiescence could 

be significantly overestimated.

We experimentally derived the three Quiescence-Growth model parameters from single cell 

tracking data of CA1d cells (Fig. 3c) treated with erlotinib (1 and 8 μM). Compared to 

control (DMSO), a large number of cells reached the EoE without dividing and were 

estimated to be quiescent by the Likelihood of Quiescence model (Table 1). The IMT 

distribution of cells treated with 8 μM erlotinib was flattened and elongated rightward (Fig. 

3c). Rates calculated from the single-cell tracking data, EMG parameters and estimated 

quiescence fraction confirmed a decreased rate of division, a slight increase in death rate and 

a 10-fold increase in the rate of entry into quiescence at either erlotinib concentration. These 

experimentally-measured rates were in agreement with the rates estimated from fitting the 

Quiescence-Growth model to the cell count data (Supplementary Fig. 3 and Supplementary 

Table 1), indicating that the Quiescence-Growth model provides an accurate description of 

cell proliferation and validating its prediction that the nonlinear proliferation response to 

erlotinib (Fig. 2a) is explained by alteration of the rate of entry into quiescence (Fig. 3c). We 

observed that very few cells die during the experiment and cells considered quiescent did 

not exhibit preapoptotic nuclear condensation (not shown).

Fractional Proliferation graphs

We then used the parameters obtained from single-cell tracking data (Supplementary Video 

2) in the Quiescence-Growth model to produce graphs of the total population deconvolved 

into fractions of dividing and quiescent cells (Fig. 3d and Supplementary Software 2). At 

~24 h the fractions of cells in the two compartments are equal (Fig. 3d); in contrast, at 80 h 

the quiescent fraction is 82% and the dividing fraction is 18%.

Drug response of oncogene-addicted cells

We applied this approach to investigate the dynamic response of PC9 cells to erlotinib (Fig. 

4 and Supplementary Fig. 1c). PC9 cells harbor activating mutations of the Epidermal 

Growth Factor Receptor (EGFR), are “oncogene-addicted,” and hypersensitive (GI50 <20 

nM) to EGFR tyrosine kinase inhibitors (TKI). These cells are representative of EGFR-

mutated tumor cells in lung cancer patients that respond favorably to treatment with erlotinib 

(or other EGFR-specific TKI). The prevalent view is that PC9 cells have a strong apoptotic 

response to EGFR TKI 14,15 but, to our knowledge, the relative contributions of cell death 

versus quiescence in the PC9 response to erlotinib remain uncharacterized.

From cell count data derived from image stacks, PC9 cells exhibit exponential proliferation 

with a rate = 0.0183 (doubling time = 38 h) in medium containing vehicle (DMSO); 

however, single-cell tracking data show that this value underestimates the rate of division 

and does not consider the contribution of quiescence and death (Fig. 4d). Proliferation 

decreases in a nonlinear fashion upon erlotinib treatment (Fig. 4a) and cells accumulate at 

the EoE (Fig. 3a and 4b). From single-cell tracking data, 53% and 73% of cells with initial 

mitotic events within the first 25 h entered quiescence in response to 15.6 nM and 62.5 nM 

erlotinib, respectively, compared to 4% in the control cells. The IMT distributions showed a 

rightward skew in response to erlotinib characterized by an increased k parameter value, 
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while all other parameter values remain essentially unchanged (Fig. 4c). We calculated the 

rates of division, death and entry into quiescence from the single-cell tracking data and 

produced Fractional Proliferation graphs (Fig. 4d). As for CA1d cells, using these rates in 

the Quiescence-Growth model correctly predicted the experimentally determined cell counts 

(Fig. 4d). The rate of cell death increased from 0.0015 in DMSO to 0.0048 in 62.5 nM 

erlotinib, but this cannot by itself explain the decreased proliferation seen after 30 h. The q 

parameter increased >40-fold from DMSO to 62.5 nM erlotinib-treated cells (Fig. 4d). These 

results indicate that in “oncogene-addicted” PC9 cells, the antiproliferative response to 

erlotinib is primarily due to increased entry into a non-dividing or quiescent state, and not to 

apoptosis as commonly assumed.

We verified that erlotinib treatment increased the fraction of quiescent PC9 cells by flow 

cytometry on Ki-67 (Supplementary Fig. 7) and p27-immunostained cells (not shown). We 

further confirmed these observations in another oncogene-addicted model cell line (A375, 

representing B-Raf V600E-mutated melanoma) (Supplementary Note 3 and Supplementary 

Figs. 7,8). The non-dividing quiescent state we observe is not equivalent to a preapoptotic 

state; after 96 h in 1 μM erlotinib, a drug washout experiment showed that proliferation 

resumed to pretreatment levels (Supplementary Video 1 and Supplementary Fig. 9). Also, a 

large fraction of cells remained viable (Ki-67-positive) after more than 90 h of erlotinib 

treatment (Supplementary Fig. 7). Determining the eventual fate of these cells (division, 

death or extended quiescence) would require longer duration studies.

Application to primary cells

We assessed the performance of our approach on primary cells using a baculovirus-based 

transduction of a genetically-encoded fluorescent nuclear probe that is easy to use and 

commercially available (CellLight® Nucleus, Invitrogen). Labeled nuclei were detectable 

within 12 h, persisted for 5–6 days, and were amenable to automated counting and manual 

tracking. As an example, the proliferation of primary human squamous cell carcinoma cells 

is shown in Supplementary Figure 10 and Supplementary Video 3. It is worth noting that an 

EMG distribution also describes the distribution of IMT in primary cultured cells. 

Additional experimentation will be required to determine whether this distribution is 

applicable to all cell types.

DISCUSSION

The Fractional Proliferation method provides quantitative insight into cell proliferation in 

response to perturbations and permits deconvolution of the relative contribution of multiple 

cell fates to cell population dynamics. Using this approach, it is possible to capture the 

behavior of minor subpopulations of cells (e.g. stem or progenitor cells, clonal variants, drug 

resistant phenotypes) within perturbed populations. The importance of these subpopulations 

is increasingly appreciated, and methods to study them should be broadly applicable.

The integrated mathematical models we developed describe the emergence of population 

behavior from experimental data measuring single cell fates. We note that these models are 

not definitive; for example, they will need to be adjusted to more accurately accommodate 

age structure in asynchronously dividing populations; to apply them to stem cells, a rate of 
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entry into one or more differentiated state would have to be included. However, image data 

sets such as those described here can be analyzed by future models. Furthermore, the 

approach could be enhanced by the incorporation of other read-outs, such as 

immunofluorescence on molecular markers or live cell reporters of molecular activity.

Time-lapse video microscopy has been used for decades, but its high-throughput 

implementation has only recently been enabled by technological advances in automated 

microscopy instrumentation coupled to computation. Methods to automate the extraction of 

mitotic phases and duration from time-lapse movies were recently developed 16–18. These 

approaches mainly focus on extracting image features that correlate with mitotic events.

The labeling approach we employed involves the expression of a fluorescent nuclear protein 

(H2BmRFP) introduced by recombinant viral particles. Although other labeling techniques 

are feasible, and even phase contrast imaging can provide data amenable to this approach, 

the use of H2BmRFP overcomes limitations due to photobleaching, toxicity, low signal-to-

noise ratio in images, and fluctuating subcellular localization. In our hands, nuclear dyes 

(e.g. Hoechst 33342) demonstrate significant toxicity and cytoplasmic and membrane dyes 

(e.g. carboxyfluorescein diacetate succinimidyl ester and carbocyanine-based dyes) are 

prone to photobleaching, tend to aggregate in vesicles and pose challenges to identification 

of individual cells. The development of nontoxic fluorescent nuclear dyes would enable 

rapid cell labeling without genetic manipulation.

Observation of cells for several days permits study of the cell response to perturbations as 

they approach population steady state, which usually happens over many days of treatment. 

Our discovery that a major component of the PC9 response to TKI erlotinib is entry into a 

quiescent state challenges current views that the major response to erlotinib in oncogene-

addicted cells is cell death 15, but is consistent with previous reports that erlotinib and other 

EGFR TKI induce cell cycle arrest in G1 in many cancer cell lines 19–21.

Erlotinib is of special interest because it is currently used clinically as adjuvant or first-line 

therapy in subsets of lung cancer patients with sensitizing EGFR mutationsfor reviews on 

the subject see references 22,23. Questions remain as to the basis for erlotinib 

hypersensitivity (“oncogene addiction”) in EGFR-mutated cancer cells, and the inevitable 

rise of resistance 24. As we have demonstrated, application of the Fractional Proliferation 

method should help answer these questions.

Describing IMT distributions with an EMG model provides value beyond calculating the 

rates of division and quiescence in the Quiescence-Growth model. The EMG model is 

mathematically separable into two components, Exponential and Gaussian. Intriguingly, 

erlotinib primarily affects the exponential (k) while CHX primarily affects the mean of the 

Gaussian (μ) (Supplementary Fig. 6). The possibility that these separable components reflect 

distinct biochemical mechanisms is currently under investigation. The EMG can be 

interpreted biologically as a combination of a Gaussian process (several random variables 

that are additive such as protein accumulation) and an exponential process (e.g. a checkpoint 

process such as the G1/S transition with a chance of passing at each check). Other 

descriptive distributions offer no simple interpretation biologically 25. The EMG may be 
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more common in time-dependent cellular processes due to the mathematical properties of 

the chemical master equation which can have an exponential distribution of halting times 

after a well mixing time has passed 26,27.

It has long been known that antiproliferative responses are not limited to a single fate but the 

lack of methods to deconvolve behaviors has forced assumptions of linearity. The Fractional 

Proliferation method provides a means to accommodate nonlinear antiproliferative responses 

and to separate the underlying cellular fates that shape the population-level response.

METHODS

Software

We provide: i) an interactive Mathematica CDF Player file to explore the effects of altering 

Quiescence-Growth model parameter values on cell proliferation plots (Supplementary 

Software 1); ii) an ImageJ28,29 macro for automated cell counting (enumeration of nuclei) 

(Supplementary Note 2); and iii) fracprolif, an extension of the freely available statistical 

software package R30 (http://www.R-project.org) that incorporates all of the code 

(Supplementary Software 2) used to analyze single-cell tracking and cell count proliferation 

data and generate Fractional Proliferation Graphs (described in Supplementary Note 2).

Cell culture and labeling

The following cell lines were used: MCF10A, MCF10A-CA1d (abbreviated as CA1d), 

SQ20B, and PC9. MCF10A and CA1d cells were cultured in DMEM/F12 medium 

containing 10% equine serum, 5% fetal bovine serum, 20 ng/ml epidermal growth factor, 10 

μg/ml insulin, 500 ng/ml hydrocortisone, and 100 ng/ml cholera toxin. SQ20B cells were 

cultured in DMEM containing 20% fetal bovine serum and 400 ng/ml hydrocortisone, and 

PC9 cells were cultured in RPMI 1640 medium containing 10% fetal bovine serum. Primary 

human tumor-derived cells were obtained from a patient with squamous cell carcinoma of 

the tongue and grown continuously in culture in keratinocyte (serum-free) growth medium 

(Invitrogen). Cell lines were engineered to express the histone H2B/monomeric red 

fluorescent protein (H2B-mRFP) fusion protein using lentivirus-mediated transduction as 

previously described 31. Brightly fluorescent single-cell clones were expanded and 

compared to parental populations using traditional proliferation measurements to ensure 

they were representative of the initial population. Primary cells were induced to express 

H2B-mRFP using recombinant baculoviral particles (CellLight® Nucleus, Invitrogen) at 20 

particles per cell, according to the manufacturer’s instructions.

Imaging with extended temporally-resolved automated microscopy (ETRAM)

Imaging was performed on 96-well plates (BD cat# 353219) using a BD Pathway 855 with a 

20X (0.75 NA) objective in a CO2- and temperature-controlled environment. Images were 

acquired every 6–30 min using BD Attovision 1.6.2 software with the instrument in confocal 

mode (spinning disk). Nine adjacent images were captured at 0.4 s exposure and 2X2 

binning to comprise a single 3X3 montage (approximately 800 μm2) from each of 

approximately 40–60 wells per experiment, and images were acquired for at least 72 h. 

Example montaged images are shown in Supplementary Figure 1a. Assays minimally 
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included duplicate or triplicate wells and complete experiments were performed at least 

twice. Cells were seeded at 2,500–5,000 cells per well and allowed to grow overnight 

yielding approximately 200–600 cells at the onset of imaging. Cells were imaged until 

confluence (approximately 3,000 cells in an image) was achieved in control wells. Erlotinib 

concentration-response curves on PC9 cells were performed more than five times.

Enumerating nuclei

Nuclei were counted from ETRAM-generated image stacks sampled at approximately 1 h 

intervals. Images were imported into the freely available ImageJ (http://rsb.info.nih.gov/ij/) 

program and subjected to a macro optimized for images obtained from a BD Pathway 855. 

The macro: i) corrects for uneven illumination using a 50 pixel diameter rolling ball filter; ii) 

converts images to binary using a predefined threshold intensity value; iii) segments 

individual nuclei using a watershed algorithm; and iv) quantifies objects within specified 

range of areas and circularity. Example images and resultant cell population plots are shown 

in Supplementary Figure 1a, b. The ImageJ macro is provided in Supplementary Note 2, and 

an example image sequence showing nuclei enumeration by ImageJ is shown in 

Supplementary Figure 4.

Quantifying rates of cell death

An example of a region of a manually tracked ETRAM-generated image stack is shown in 

Supplementary Video 1. Cell death was identified by nuclear shrinkage to less than 50% of 

average nuclear area and subsequent nuclear dispersion or detachment (no longer detectable) 

(Supplementary Fig. 4). Rates of cell death were determined by dividing the number of 

events (cell deaths) detected across all frames by the total cell observation time (number of 

cell nuclei in each frame multiplied by the time interval between frames); this rate does not 

require individual cells to be tracked over complete lifespans.

Quantifying intermitotic times and rate of division

For most cell lines, ETRAM was performed at 12 min intervals to minimize light exposure 

and phototoxicity, and for highly motile cells at 6 min intervals to eliminate bias against 

faster moving cells.

Intermitotic times were measured by manually tracking individual nuclei through the series 

of ETRAM-generated images, identifying mitotic events (metaphase chromosomes), and 

determining the number of frames between mitotic events for each individual cell lifespan. 

Lifespans of cell nuclei that divided once during the experiment but reached the EoE were 

also determined. 100 nuclei were tracked for each condition, and more if too many cells 

reached the EoE without having divided, since a minimum of 50 individual IMT represented 

a distribution.

Model of proliferation kinetics (Quiescence-Growth Model)

The Quiescence-Growth model is formulated as a pair of coupled ordinary differential 

equations where x represents the dividing cell number, y the quiescent cell number and x + y 

equals the total cell population. The rates are described by the three parameters: d for 

division or birth rate, q for quiescence rate and a for death rate.
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which has an analytical solution of the following form:

On a log scale the model is nonlinear due to the quiescence compartment (y). Also of note, 

when d=q the following solution applies.

When d is greater than or equal to q + a, the following asymptotic behavior is observed:

This shows that the model approaches exponential growth as long as the division rate 

exceeds the sum of the rates of death and entry into quiescence and mathematically proves 

that the observation of exponential proliferation of a population does not exclude the 

possibility of quiescence and death. Thus, only in the absence of any death or quiescence 

does the rate of cell division reflect the rate of proliferation of the population. On the other 

hand, note that the population could grow exponentially even if nearly half of the cells enter 

quiescence or die. Furthermore, entry into the quiescent compartment (with rate q) provides 

the only mechanism by which nonlinear proliferation curves can be achieved. An alternative 

of the model has been produced in which a different rate of death from each compartment is 

provided (Supplementary Note 1). However, since measuring these different rates from the 

single-cell data with sufficient statistical power is not yet feasible, the alternative model 

reverts to the form used in this method.

Statistical methods

To determine whether a model could describe the observed data with sufficient statistical 

accuracy, a one-sided Kolmogorov-Smirnoff test was performed with a two-sided test being 

the null hypothesis. This test determines the probability that the data and the model are 

sampled from the same distribution, and a P value of less than 0.05 was assumed to be 

statistically significant evidence that the data and the model represent different distributions.

The Shapiro-Wilk test was used to test for normality. The likelihood of one of two specific 

models (e.g. a linear model compared to the Quiescence-Growth model) correctly fitting the 

data was determined using Akaike’s Information Criteria <http://en.wikipedia.org/wiki/

Akaike_information_criterion>.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Fractional Proliferation methodology
The principal inputs are cell population counts and metrics of single-cell fate obtained by 

automated time-lapse imaging. The Quiescence-Growth Model is fit to cell count data to 

estimate rates of cell division, death and entry into quiescence. These estimated rates are 

statistically bound and can be evaluated with the Quiescence-Growth model to provide 

initial insights into the underlying biology without requiring experimental determination of 

the rates. The EMG model of IMT distribution and the Likelihood of Quiescence models 

extract experimental rates of division and entry into quiescence from single-cell tracking 

data. Incorporating experimentally derived rates constrains the Quiescence Growth Model 

and produces Fractional Proliferation graphs that dynamically resolve the change in cell 

counts into fractions of dividing and quiescent cells.
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Figure 2. The Quiescence-Growth model explains nonlinear proliferation
(a) The number of population doublings of PC9 cells treated with vehicle (DMSO) or the 

indicated drugs is shown as circles (see Methods for details). Cycloheximide, 250 ng/ml; 

erlotinib, 4 μM; lapatinib, 4 μM; PLX-4720, 16 μM; doxorubicin, 31 nM. The lines indicate 

Quiescence-Growth model fits to the data. (b) PC9 cells treated as in Fig. 2a (except 250 

ng/ml doxorubicin) were analyzed for their expression of a marker of S or G2 phase (mAG-

geminin) 5. (c) The Quiescence-Growth model considers two cellular compartments, 

dividing and non-dividing (quiescent). The dividing cell compartment is depleted at the rate 

of entry into quiescence (q), and replenished at the rate of division (d). A rate of death (a) 

depletes both compartments. The differential equations derived from the model are shown in 

Methods.
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Figure 3. Interpretation of tracked single-cell data with mathematical models
(a). Schematic example plot of tracked single cell lifespans. The data used in this example 

plot are shown in Fig. 3c (CA1d cells treated with 8μM erlotinib). Time of first mitotic event 

(birth time) is along the x-axis and cell lifespan along the y-axis. O, live cells; X, dead cells. 

Cells born during the experiment but reaching the end of experiment (EoE) without a second 

mitotic event are above the dashed line and are not included in IMT distributions. (b) 

Representative intermitotic time (IMT) distributions of untreated populations of the 

indicated cell types (shown as a density histogram). Distributions were fit to an EMG model. 

n = number of IMT in the distribution; μ =mean of the Gaussian component of EMG; σ = 

deviation of the Gaussian component of EMG; k= the mean of the exponential component of 

EMG. Values ± 95% confidence intervals. (c) Plots of single cell lifespans (top) and IMT 

distributions (bottom) of CA1d cells treated with indicated concentrations of erlotinib or 

vehicle (DMSO). (d) The plots show proliferation of CA1d cells treated with 16 μM 

erlotinib. The left panel shows single cell lifespans, the middle panel is the IMT distribution 
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and the right panel is the Fractional Proliferation graph. The Fractional Proliferation graph 

(Methods) shows total cells (green), the fraction of dividing cells (blue) and the fraction of 

non-dividing or quiescent cells (red) over time. Arrow, time at which quiescent and dividing 

fractions are equal. Note that the death rate is not explicitly represented but is applied to 

both quiescent and dividing fractions.
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Figure 4. Application of Fractional Proliferation to a model of oncogene-addicted tumor cells
(a) The plots show PC9 cell counts obtained by automated quantification of cell nuclei from 

time-lapse images of cultures treated as indicated. Data were normalized and plotted (open 

circles) on a log2 scale (Population Doublings). (b) Lifespan plots of tracked PC9 cells 

treated as indicated; observed birth time is on the x-axis and observed lifespan on the y-axis. 

Only cells born within the first 25 h of the experiment are shown. fQ, quiescent fraction; n = 

number of lifespans examined. (c) IMT distributions of PC9 cells treated as indicated. The 

EMG model was fit with the parameters shown within each graph. The P-value of the 

Kolmogorov-Smirnoff (ks) test indicates that the EMG model cannot be excluded as an 

explanation of the data (P>0.05). (d) Fractional Proliferation graphs of erlotinib-treated PC9 

cells, as in 3d. The dashed line indicates calculated proliferation without the contribution of 

death and quiescence (based on DTd; see Fig. 3c). Parameter values fitting these data are 
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indicated in the boxes and were applied after a delay (vertical dotted line) to account for lag 

time in drug action.
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Table 1

Quiescence-Growth Model parameters obtained from single-cell tracking data. The following parameter 

values were calculated from the data shown in Figure 3c: Fraction of live cells reaching the end of experiment, 

fEoE; fraction of quiescent cells, fQ; division rate, d; doubling time of dividing cells alone, DTd; and rate of 

entry into quiescence, q. The death rate (a) was obtained directly from analyzed image stacks

DMSO 1μM 8μM

fEoE 0.04 0.26 0.47

fQ 0.04 0.26 0.41

d 0.0379 0.035 0.0241

DTd 18.3 h 19.8 h 28.8 h

q 0.0015 0.0123 0.0167

a 0.0012 0.0013 0.0018
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