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Abstract
The goal of this paper is to examine the evaluation of interfacial stresses using a standard, finite
difference based, immersed boundary method (IMBM). This calculation is not trivial for two
fundamental reasons. First, the immersed boundary is represented by a localized boundary force
which is distributed to the underlying fluid grid by a discretized delta function. Second, this
discretized delta function is used to impose a spatially averaged no-slip condition at the immersed
boundary. These approximations can cause errors in interpolating stresses near the immersed
boundary.

To identify suitable methods for evaluating stresses, we investigate three model flow problems at
very low Reynolds numbers. We compare the results of the immersed boundary calculations to
those achieved by the boundary element method (BEM). The stress on an immersed boundary may
be calculated either by direct evaluation of the fluid stress (FS) tensor or, for the stress jump, by
direct evaluation of the locally distributed boundary force (wall stress or WS). Our first model
problem is Poiseuille channel flow. Using an analytical solution of the immersed boundary
formulation in this simple case, we demonstrate that FS calculations should be evaluated at a
distance of approximately one grid spacing inward from the immersed boundary. For a curved
immersed boundary we present a procedure for selecting representative interfacial fluid stresses
using the concepts from the Poiseuille flow test problem. For the final two model problems, steady
state flow over a bump in a channel and unsteady peristaltic pumping, we present an ’exclusion
filtering’ technique for accurately measuring stresses. Using this technique, these studies show
that the immersed boundary method can provide reliable approximations to interfacial stresses.
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1. Introduction
Fluid dynamical stresses are important in the regulation of many physiological phenomenon.
For example, the growth of atheroscrolatic plaques in small veins occurs in the presence of a
low and oscillatory wall shear stress (Ku et. al.) [17]. A second example is the function of
epithelial cells, which line the pulmonary airways - here potentially damaging normal and
shear stresses can arise in the reopening of airways during artificial ventilation of premature
neonates (Gaver et. al. [13]). A characteristic feature of modeling these fluid-structure
interaction problems is that the boundary motion is coupled to the motion of the fluid. A
numerical method which is designed for handling these complex problems is the immersed
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boundary method [22, 23, 20]. The essence of the immersed boundary method (IMBM) is to
represent boundaries by local forces in the Navier-Stokes equations, which are then solved
computationally on a regular grid. This eliminates the need to re-grid after every time step
for time dependent geometries, and it allows the exploitation of the superior performance of
fluid solvers on regular grids. A critical feature of the IMBM is the use of an approximate
Dirac delta function to communicate between the fluid domain and the immersed boundary.
In the discretization of the governing equations, this discrete delta function spreads
Lagrangian boundary forces onto an Eulerian fluid grid, and interpolates Eulerian fluid
velocities onto the Lagrangian boundary.

The immersed boundary method has been used for decades to simulate intriguing and
complex systems in biological fluid dynamics, spanning a wide range of Reynolds numbers
(e.g. [1, 4, 7, 8, 9, 14, 24]. Throughout these works the immersed boundary method has
successfully modeled the large-scale motion of the fluid and the elastic behavior of the solid,
and in many cases, solutions have been validated against experimental, analytical and other
computational results. However, with the exception of the brief excursion in Arthurs et. al.
[1], the issue of how accurately the immersed boundary method can predict the stresses at
elastic interfaces remains largely unexplored. The evaluation of interfacial stresses within
the immersed boundary method is complicated by two factors: first the interface is
represented by a smeared force; second, an immersed boundary imposes a spatially averaged
no-slip boundary condition as discussed in detail in §4.2.

Our goal is to determine how to evaluate interfacial stresses accurately using the immersed
boundary method. Our approach here is to compare interfacial stresses calculated using the
immersed boundary method with results available from other techniques for a set of
representative problems. In this paper, we limit ourselves to the investigation of low
Reynolds number flows so that we can compare our results to those provided by a clearly
independent technique – the Boundary Element Method (BEM), due to Ladyzhenskaya [18].
The boundary element method offers a ‘gold standard’ for calculating interfacial stresses, to
compare with immersed boundary calculations, and has been applied to many different
problems (for example, Pozrikidis [26]). The boundary element method proceeds by
reducing the n-dimensional Stokes flow equations to a n – 1 dimensional boundary integral,
in terms of boundary stresses and velocities; it is therefore suited to interfacial stress
evaluation. Furthermore, it is only necessary to discretize the solution domain boundary.
However, the boundary element method assumes that the flow is inertia-free.

In §2 we describe the formulation of the immersed boundary method and the numerical
implementation using a discrete delta function. In §3 we examine the stress balance on an
immersed boundary; this shows two possible methods for stress evaluation - one method
using flow-field information, and another using boundary information. In §4 we consider
stress evaluation on a straight wall using Poiseuille flow as an example. This motivates our
subsequent algorithm for stress evaluation on curved boundaries, as described in §5. In the
next two sections, we compare the IMBM fluid stress for two low-Reynolds number test
flows with zero-Reynolds number boundary element solutions. First, in §6, we compare the
stresses for the steady-state flow over a bump in a channel; Gaver & Kute [12] have
computed BEM solutions for this flow. Second, in §7, we compare the stresses for the
peristaltic pumping of a fluid. These test problems do not illustrate the best or most efficient
use of the immersed boundary method. However, these caricature problems do provide
useful insight into stress evaluations at interfaces in non-zero Reynolds number, fluid-
structure interaction simulations, where the positions of the immersed boundaries are not
prescribed, but result from the coupled system.
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2. The Immersed Boundary Method
2.1. A fluid-structure interaction problem

Consider the motion of an immersed elastic boundary X(s, t), which is parameterized by s
over the range , through a viscous incompressible Newtonian fluid. Let the
immersed boundary exert a force density per unit length f(s, t) on the fluid. The equations of
motion governing the fluid-structure interaction are:

(1)

(2)

(3)

(4)

where u is the fluid velocity, x = (x, y) is a two-dimensional Cartesian coordinate system, ρ
is the fluid density, p(x, t) is pressure, and μ is the fluid viscosity. Here, the force density F
exerted by the immersed boundary on the fluid assumes the boundary is the source of a
continuous distribution of Dirac delta point forces f(s, t)δ(x – X(s, t)). The incompressible
Navier-Stokes equations (2-3) describe the response of the fluid to the force exerted by the
immersed boundary and any imposed driving-force density FD. The no-slip condition is
imposed by advecting the immersed boundary at the local Eulerian fluid velocity (4).

The force f may be due to elastic restoring forces, bending forces or other constitutive
properties of the boundary. For the problems tackled herein, the ideal position of the
boundary will be specified and may be time-dependent. In these examples we impose forces
due to stiff ’tether’ springs that connect the immersed boundaries to prescribed spatial
locations:

(5)

where X* (s, t) is the ideal location of the immersed boundary, and A is the spring constant.
We choose this stiffness constant to be very large (A ≫ 1) so that the immersed boundary
deviates little from the ideal position.

2.2. Numerical implementation: The Immersed Boundary Method
Here we present the standard finite difference implementation of an immersed boundary
method, where the fluid domain is discretized by a uniform, rectangular periodic grid with
fluid quantities such as pressure and velocity defined at grid points. We remark that there are
many methodologies employing an immersed boundary framework, where the fluid
equations are solved using a variety of treatments, including finite element methods [31] and
grid free particle methods [6]. In the standard formulation, the immersed boundary is
represented by a finite collection of discrete Lagrangian points , where the superscript n is
the time step and the subscript k is the particle number. These immersed boundary points, in
general, do not coincide with fluid grid points. Therefore we distribute the local boundary
force to neighboring grid-points using a discrete approximation to the Dirac delta function.
Herein, we use the discrete delta function as in Peskin [22]:
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(6)

Note that the support of the spreading is proportional to the grid spacing h.

The algorithm for the numerical solution of this coupled system may be summarized as
follows: at the beginning of the time step n, we have the fluid velocity field un and the
locations of the immersed boundary points . In order to update these values:

1. calculate the elastic force  using (5);

2. spread the elastic force to determine the force-density Fn using (1);

3. solve the Navier-Stokes equations (2-3) for the Eulerian flow field un+1 and pn+1;

4. interpolate using the Eulerian velocity field to each immersed boundary point, and

advect each Lagrangian point using (4), to obtain .

For the solution of the Navier-Stokes equations in step (3), we use the projection method of
Chorin [5] with periodic boundary conditions, which is second-order in space and first-order
in time. Herein we use the modified divergence operator, which enhances volume
conservation (Peskin & Printz [25]). Since the explicit IMBM algorithm is modular, another
fluid solver with higher-order accuracy may be easily substituted; for example Bell et al [2],
Lai & Peskin [19], or Griffith et al. [15]. Nevertheless, our goal here is to examine how
accurately the IMBM can be used to calculate interfacial stresses at boundaries using a fluid-
solver that was traditionally adopted by the immersed boundary community. We expect the
results to only improve as the accuracy of the fluid solver increases.

The discrete delta function given above is used to communicate force information from the
immersed boundary to the grid (step 2), and to interpolate the fluid velocity to the immersed
boundary (step 4). In two-dimensions, the force density acting on an immersed boundary is
distributed over 16 neighbouring grid points. Likewise, the fluid velocity at an immersed
boundary point is interpolated from the same 16 grid points. The particular delta function
used herein (6) was introduced by Peskin [22]; however, some higher-order discrete delta
functions are given by Beyer & LeVeque [3]. As mentioned above, the spreading of the
boundary force strongly influences the stress calculation near immersed boundaries. Below
in §3 we identify two approaches for calculating these stresses. In §4 we use a simple model
problem to illustrate the application of these techniques, and describe an algorithm for the
accurate prediction of stresses on the boundaries.

3. Calculation of fluid dynamical stress
3.1. The interfacial stress balance

The tangential and normal stress balances on the immersed boundary have previously been
derived by Peskin & Printz [25]; we extend their result to include the effect of a driving-
force density. We integrate the governing equations using an arbitrary control volume Ω(t)
surrounding the immersed boundary with outward normal n and arclength dl. If the driving
force density is to reproduce the effect of an isotropic pressure we must restrict FD = ∇ ·
(αI), where α is a scalar quantity, i.e. we assume there is no deviatoric contribution as found
in σ. Combining (1) into (2) and integrating over Ω(t) and applying the divergence theorem,
we obtain
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(7)

Now take the limit as the region Ω(t) collapses to form an infinitesimally thin strip
surrounding the immersed boundary. It can be shown that

(8)

(9)

where t is the anti-clockwise tangential vector, σ = –pI + μ(∇u + (∇u)T) and [ ] denotes the
jump in a quantity across the immersed boundary. The factor |∂X/∂s| accounts for the
interfacial stretching.

Equations (8-9) motivate two fundamental methods for calculating the jump in stress across
the immersed boundary. The left-hand-side involves evaluation of fluid velocity gradients
and pressures at each side of the interface. The right-hand-side involves the evaluation of
force densities on the interface. We term these methods of evaluation the fluid-stress (FS)-
calculation and the wall-stress (WS)-calculation respectively.

3.1.1. Calculating fluid stress using wall stress f (WS)—Equations (8-9)
demonstrate the wall stress is equivalent to the jump in fluid stress across the immersed
boundary. We can evaluate the force density along the immersed boundary to directly
calculate this jump in stress. In the special case where the fluid stress on one side is zero, the
jump in wall stress is equivalent to the fluid stress on the other side.

3.1.2. Calculating fluid stress using stress tensor σ (FS)—Let XEk be the point
where the fluid stress is evaluated for wall particle k, which may not coincide with the
boundary point Xk. To calculate the fluid stress (FS) of wall particle k, we use the values of
pressure and velocity available at grid locations surrounding the evaluation point XEk. We
employ finite differences to calculate derivatives of velocities at these grid points with
central differences used for x-derivatives (since boundaries in our examples will lie mostly
in the x-direction), and one-sided differences for y-derivatives, because this uses information
in the interior of the flow . We then interpolate the velocity gradients and pressures using
bicubic interpolation [27] to obtain their values at the evaluation point XEk, from which we
calculate the fluid stress tensor σ at XEk.

Because the immersed boundary method represents the immersed boundary as a mollified
singular force distribution, the fluid stress calculated at the boundary (XEk = Xk) may be
significantly affected by the nature of the discrete delta function. In the next section, through
analytical and computational investigations, we examine the effect that representing a
boundary by a locally spread force has on the evaluation of the fluid stress (FS).

4. Poiseuille flow: an example of stress evaluation on a straight boundary
In order to begin our investigation, we focus on the very simple problem of Poiseuille flow
in a channel. Here we examine carefully the implications of the distributed boundary forces
on determining the near-wall velocities and stresses. As such, we will study an analytical
solution of the immersed boundary problem, with a continuous smoothed delta function
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layer of force at the wall, equivalent to that used in the numerical implementation (1-4). We
will also compute the numerical solution to this problem using IMBM and compare the
results. The analysis sheds light on the fundamental approximations used in the immersed
boundary method, and their implications on flow-field behavior near the boundaries, and
will motivate our stress-evaluation procedure.

To simulate Poiseuille flow, we introduce two immersed boundaries parallel to the x-axis at
y = H/2 and y = 3H/2 within the rectangular domain that is L × 2H, as shown by setting R =
0 in Figure 1. The immersed boundaries run the entire length L = 2H of the fluid domain.
Herein, we refer to H/2 < y < 3H/2 as the interior (or inner) channel, and 0 ≤ y < H/2 and
3H/2 < y < 2H as the exterior channel. Periodic boundary conditions will be imposed on the
fluid domain. Because of this, we do not impose a pressure drop ΔP, but we specify an
equivalent body force to drive the flow. This driving-force density FD(x) = (ΔP/L, 0) is
always applied within the interior channel. We examine two options for the driving-force
density applied to the exterior channel: one-way flow where no driving-force is applied (FD
= 0), or same-way flow where the same driving-force is applied throughout the fluid
domain, both interior and exterior to the channel.

4.1. Analytical solution of model problem
Although we will perform computations for both the same-way and one-way flows, our
analytical model problem will be restricted to the case of same-way flow, where the driving
force FD(x) = (ΔP/L, 0) is applied throughout the fluid domain.

In this model problem, we assume that a constant force density f, the immersed boundary
force, is distributed in a layer surrounding the channel boundaries. Also, a spatially averaged
no-slip boundary condition will be applied as in the immersed boundary computational
algorithm. The force distribution and velocity interpolation will both use the approximation
to the two-dimensional delta function (2.3), which has a support width of 2h in each
coordinate direction.

We partition the velocity field u = (u(y), 0) into two regions: an interior flow ua(y) for H/
2+2h ≤ y ≤ 3H/2–2h and a near-boundary flow ub(y) for 3H/2 – 2h < y ≤ 3H/2 + 2h. In this
analytical model problem (as well as in our implementation of IMBM), we impose the
periodic boundary condition u(y) = u(y + 2H), but due to the symmetry of this specific
problem, we also have u(y) = u(y + H). The immersed boundary force (1), Navier-Stokes
equations (2) and incompressibility condition (3), with FD = ΔP/L and dp/dx = 0, reduce to
the system of ordinary differential equations:

(10)

We impose a symmetry condition dua/dy = 0 at the channel center y = H. Matching
conditions between the interior and near-wall flows are also imposed such that ua(3H/2 – 2h)
= ub(3H/2 – 2h) and dua/dy = dub/dy at y = 3H/2 – 2h. In addition, the spatially-averaged
no-slip condition (4) is given by:

(11)

This analytical solution is the limit of the numerical solution under grid refinement with a
fixed-width delta-function support of 2h in each direction. Solving (10,11) for ua(y), ub(y)
and f while assuming H > 2h > 0 gives:
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(12)

(13)

(14)

Observe that the force f exerted by the immersed boundary (14) in the analytical solution is
identical to the stress jump across the interface predicted by Poiseuille flow, which can be
found from a macroscopic momentum balance. Most interestingly, we note that f is
independent of h so that reducing the physical width of the delta function (4h) does not
change the WS.

The expression for the velocity at the center of the channel is given by

(15)

and the velocity at the edge of the channel is given by

(16)

These equations (15–16) demonstrate that for h → 0 the classical Poiseuille flow and a
traditional point-wise no-slip boundary condition are recovered. However, for h ≠ 0 a slip
velocity exists due to the no-slip condition being satisfied in only an average sense through
(4).

We now have an analytical solution to the model problem that represents the IMBM
formulation, and will examine the stress behaviour imposed near the wall from this solution.

4.2. Comparison of Analytical and Numerical solutions
In all examples below in this section and §6, we choose H = 0.1m; L = 0.8m; Δp/L = –105kg
· m–2 · s–2; μ = 25kg · m–1 · s–1; ρ = 1kg · m–2.

The immersed boundary equations (1 - 4) were time-stepped from a motionless initial
condition to a steady state for same-way flow using a 256 × 64 grid. The ideal locations of
the immersed boundary walls are at y = H/2 and y = 3H/2 and extend the length of the
computational domain. The stiff tether spring constant was chosen to be A = 109kg · m–3 ·
s–2 .

In Figure 2, we show the velocity and shear stress profiles obtained near the boundary at y =
3H/2. This figure shows data from classic Poiseuille flow, the analytical solution (12 – 13),
as well as the computational solution. The IMBM solution approximates the analytical
solution, where the velocity and jump in stress across the interface at y = 3H/2 are smoothed
in comparison to the Poiseuille flow solution. Here we see the implication of the no-slip
boundary condition being applied in an averaged sense using equation (4). This results in a
reverse flow in the vicinity of the interface.
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The shear stress calculations are shown in Figure 2b. Classic Poiseuille flow shows a linear
profile, with a discontinuity at the interface. The discontinuous behavior is smoothed by the
force spreading that is imposed by the distributed delta-function used in the analytical model
problem. At the interface the smoothed solution estimates a zero shear stress. Even if one
uses a one-sided difference to compute the shear-stress at the wall using the analytical
solution, the shear stress is

which is independent of h. The correct shear stress for Poiseuille flow is τ = –5000 kg · m–1

· s–2 . This shows that even under grid refinement FS calculations taken precisely at the
interface cannot accurately determine the stress. In Figure 2b, we see that the same-way
analytical shear stress is much closer to the Poiseuille shear stress an O(h) away from the
wall; i.e. at y/H=1.53125. This motivates our procedure for stress calculation in the IMBM
computations given in the remainder of this paper.

In table 1 we show the shear stress computed with IMBM using fluid-stress (FS) and wall-
stress (WS) algorithms for both the same-way and one-way flows at different grid
resolutions. For the (FS) evaluations, one-sided differences are used to calculate velocity
gradients at fluid grid points, where the stencil resides entirely within the interior channel.
Interpolating these velocity gradients at the exact wall point locations XEk = Xk gives poor
stress values as discussed above. Notice that with the same-way flow, grid-refinement does
not improve the prediction of shear stress at the immersed boundary, and gives a value of τ
= –1250 kg · m–1 · s–2 an approximation to the prediction of τ = –1013 kg · m–1 · s–2 above.
Alternatively, we find that if we interpolate the velocity gradients and pressures at virtual
points a distance h inward from the channel wall points XEk = Xk – hnk, the agreement to
Poiseuille flow stress is vastly improved. Here nk is the unit normal pointing out of the
interior channel. In comparison, Arthurs et al. [1] evaluated fluid stresses two grid points
inwardly normal at XEk = Xk – 2hnk.

As described above, an alternative measure of the jump in stress at the immersed boundary
interface is given by the wall stress (WS). Calculations involving (WS) rely solely upon the
configuration of the Lagrangian immersed boundary and the force density defined on that
boundary. There is no need to interpolate fluid quantities from the grid. An important
observation is that this information only gives the jump in stress across the boundary. Table
1 shows the computed values for both the same-way and one-way flows, in comparison to
the Poiseuille flow. The same-way flow exerts equivalent stresses on each side of the
channel wall, and hence the jump in stress is twice that expected for Poiseuille flow. For
one-way flow, a slight overestimate of the jump in wall stress occurs because the immersed
boundary wall forces also drive a weak reverse flow in the exterior channel due to the
averaged no-slip condition.

5. Evaluation of stresses on curved boundaries
In the previous section we demonstrated that evaluating the fluid stress one fluid grid-point
inwardly-normal from a straight wall, at XEk = Xk – hnk, produced a consistent and
representative result. The stress was representative because the interpolation box (which
defines the four fluid-grid stress-values used for interpolating) was not directly influenced
by the flow on the opposite side of the boundary, as illustrated in Figure 3(a). For an
arbitrarily curved immersed boundary, which can transect fluid cells, the four fluid-grid
stress-values used for the interpolation may either be on different sides of the immersed
boundary or be unrepresentative of the flow on the chosen side if they are too close to the
immersed boundary. To elucidate this idea examine Figure 3(b,c).
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In case (b) the interpolation box surrounding the evaluation point XEk overlaps the
immersed boundary, hence one of the interpolation box grid points is in the exterior flow.
Consequently the stress interpolation is significantly influenced by the exterior flow and
therefore unrepresentative of the interior flow. Conversely for case (c) in Figure 3, the
interpolation box resides entirely on one side of the boundary and sufficiently far from the
immersed boundary that the stress evaluated at XEk will be almost entirely representative of
the interior flow. Therefore to recover a stress which represent the physics of the interior
flow, we must exclude the unrepresentative stresses. We undertake this ‘exclusion filtering’
for each wall particle based on the minimum distance between the center of the interpolation
box XCk and the immersed boundary, this is given by

(17)

where Dkr is the distance between the center of the interpolation box for particle k and wall
particle r on the same immersed boundary, as shown in Figure 3. num is the total number of
particles in the immersed boundary. A sufficient condition for an interpolation box not to
overlap an immersed boundary is √2h < M Dk ≤ 3h/2. Physically, M Dk is a measure of how
much the interpolation box has been influenced by the force spreading. For M Dk close to
3h/2, the influence is minimized.

Our exclusion principle is based on three criteria for accepting interpolated results as
physically representative of the interior flow:

1. if M Dk is at a local maximum, the interpolation box is locally at its furthest
possible distance from the immersed boundary and therefore under the least
influence from the locally distributed force;

2. if M Dk and M Dk+1 are identical for consecutive wall points, accept both values.
This keeps all points which are on a straight line parallel with one of the orthogonal
axis used by the fluid solver (x or y axis).

3. if the interpolation box has been used previously for the evaluation of an interfacial
stress, we reject the stress. This keeps the resolution equivalent to the finite-
difference fluid solver.

A comparison of representative and unrepresentative stresses is shown in §7 justifying the
necessity of this exclusion filtering. In the next two sections we apply the above procedures
to two test problems.

6. Flow over a bump on a channel wall
This test problem is the steady-state pressure-driven flow of a fluid of viscosity μ and
density ρ through a channel with a bump on the lower wall (see Figure 1). Boundary
element solutions were previously reported by Gaver & Kute [12], hereinafter referred to as
GK. The exact bump geometry used by GK consists of a semi-circle, radius 9R/10, centered
at (L/2, H/2 + R/10) with two quarter-circle fillets, each radius R/10, centered at (L/2 ± R,
H/2 + R/10); to leading-order, the bump behaves like a semi-circle of radius R. The purpose
of the fillets in their work was to ensure the domain had a continuous normal vector. They
solved the zero Reynolds number Stokes equations

(1)

with no-slip and no-penetration conditions on the upper and lower (including the bump)
walls u(x, y = ywall) = 0. A pressure drop was imposed across the ends of the channel by
setting p(0, y) = ΔP and p(L, y) = 0.
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Using the immersed boundary method, the channel walls (and bump), shown in Figure 1, are
forced to behave rigidly by choosing A = 109kg · m–3 · s–2 and X* = (x, y = ywall). The
immersed boundaries consist of three parts (two parallel walls and the bump with fillets, as
shown in Figure 1). This combination of walls prevented the driving force-density
(described above) acting inside the bump from generating a fluid flow in the exterior
channel. Here we use the equivalent one-way forcing, as in §4, FD(x) = (FD, 0). There is
negligible flow in the exterior channel and inside the bump at high resolution (512 × 128);
therefore the jump in fluid stress is virtually identical to the wall stress. The channel length
was set to be L = 0.8m. A Reynolds number based on the channel height and Poiseuille
centerline velocity U = ΔpH2/8μL is Re = ρΔH3/8μ2L = 0.02. Therefore, inertial effects are
small and the immersed boundary solutions may be compared with the Re = 0 BEM
solutions found by GK. This was justified by repeating the calculation with a reduced
Reynolds number. In our simulations the time step is chosen using Δt = 4ρh2/25μ s. Criteria
governing the time step size in IMBM calculations are discussed in Stockie & Wetton [29].
Despite choosing very small time steps it was not possible to completely eliminate high-
frequency small-scale instabilities in the wall behaviour. It was necessary to smooth the wall
stresses in the post-processing stage using nearest neighbour averaging to remove this noise.
We remark that in these test problems, rigid walls are modeled using very stiff tether springs
and this, in turn, makes the problems numerically stiff. We expect that these small-scale
instabilities will be less prevalent in simulations where the immersed boundary is elastic and
flexible.

In Figure 4, for R/H = 1/2, we compare the immersed boundary FS (left column) and WS
(right column) with boundary element results for the: x-stress (x̂ · σ · n); y-stress (ŷ · σ · n);
shear stress (t · σ · n); and normal stress (n · σ · n). In general, there is good agreement
between FS and BEM calculations for x- and y-stresses, and the shear stress. Away from the
bump there is excellent agreement between the immersed boundary FS and WS, and the
boundary element stress. WS calculations show local oscillations where the bump joins the
wall at x = L/2 ± R as seen in Figures 4f-h. The relative magnitudes of these oscillations
decreased by half when the flat section of immersed boundary between x = L/2 – R and x =
L/2 + R was removed. However, this section of wall was necessary to prevent the one-way
driving force density from creating a circulation inside the bump. Without this section,
however, the entrained recirculation modifies WS throughout the bump by introducing a
fluid stress inside the bump.

Close to the top of the bump, the WS in Figure 4g shows spatial oscillations. These
oscillations occur where the fluid velocity has reached steady-state but the wall particles
continue to diverge slightly from their steady-state displacements. This induces noise that
may be due to a combination of numerical stiffness from large spring constants and explicit
time-stepping of the wall-particle positions. This might be remedied by using a semi-implicit
or fully-implicit implementation of the immersed boundary method, as described by: Tu &
Peskin [30], Fauci & Fogelson [10], Stockie & Wetton [29], and more recently by Newren et
al. [21].

An additional explanation of the oscillations in the WS computation of stresses may come
from the following observation. Suppose we can write the immersed boundary force f(s, t) =
f0(s, t) + f1(s, t) where f0(s, t) is the physically realistic component and f1(s, t) is an unsteady
perturbation (not necessarily small). Then,

(2)

Any unsteady perturbation f1(s, t) which satisfies the constraint
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(3)

will also give rise to the spread force field. Functions f1 that are highly oscillatory (with
period less than 2h) may be found that satisfy this constraint. The lack of uniqueness in f
shows that computing stresses using the WS technique should first filter out these
unphysical, oscillatory forces. This will be the focus of future analysis. Nevertheless, as
Figure 4 shows, the general behavior of WS is in good agreement with FS and BEM
calculations.

Above, we have identified the small-scale behavior of this system. We now assess the large-
scale responses induced by the flow. We examine the non-dimensional fluid-exerted x-
component of force  and fluid-exerted torque  on the bump, and volume flux and
maximum shear stress, defined by GK, respectively as

where Γ(x(s), y(s)) is the immersed boundary and Max returns the maximum value.

In table 3, the evaluation of x-force , torque  and maximum shear stress τmax on the
bump using FS and WS is compared, under grid refinement, with BEM results. This table
shows that in all cases WS > BEM > FS calculations. Note that in all cases the maximum
WS predictions for maximum shear stress occurred at the top of the bump. The shear stress
at the wall predicted by WS exceeds that predicted by FS and BEM because WS represents
the jump in shear stress. A small retrograde recirculation appears within the bump due to the
spread force, which induces the increase in WS. The volume flux  using IMBM is also
lower than expected, which correlates with the reduction in FS. This reduced  arises
because the spreading of the immersed boundary forces ‘thickens’ the boundaries and
actually simulates a narrower channel.

In Figure 5 we assess the accuracy of the IMBM predictions of volume flux, maximum
shear stress, torque and x-force in comparison to the BEM over a range of R/H. Figure 5a
shows that the IMBM volume flux is always smaller than the BEM value. Figures 5(b-d)
show that, in general the WS estimate is always greater than the FS estimate, while for the
maximum shear stress and torque we again find the boundary element result is intermediate.

7. Peristaltic pumping flow
The last test problem is the peristaltic pumping of a viscous fluid by two moving walls.
Solutions using the immersed boundary method were previously presented by Fauci [9].
However, fluid dynamical stresses on the moving walls were not calculated. Here we
compare the fluid dynamical stresses calculated by the immersed boundary method with
those computed by the boundary element method. The boundary element formulation makes
use of the fact that for a symmetric peristaltic channel, a steady-state formulation may be
obtained by moving to the wave frame of reference. The immersed boundary solutions were
computed by prescribing the motion of the top and bottom walls using
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(7.1a)

(7.1b)

where the wave amplitude is Φ; wavelength λ; and wave speed c = ωλ/2π. Here we do not
impose a driving-pressure gradient so FD = 0. Again we use stiff ’tether’ springs to prescribe
the motion of the immersed boundary channel walls. Now, the positions of the ideal points
which the immersed boundary points are tethered to are functions of time as in Equation (5).

We choose the same parameters used by Fauci [9]: spring constant A = 104 kg · m–3 · s–2 ;
kinematic viscosity μ = 0.01 kg · m–1 · s–1 ; mean channel width H/2 = 0.1 m; channel
length L = 0.2 m; wave speed c = 0.08 m · s–1; wave amplitude Φ = 0.008 m; and
wavelength of peristaltic wave λ = L. A Reynolds number (defined in Shapiroet al. [28]) for
this flow is given by Re = cH2/4νλ = 1.0. To ensure that Reynolds-number effects were
sufficiently small the calculations were repeated with Re = 0.5. The results presented in this
section were computed on a 256 × 256 grid with time step Δt = 0.16Δx2.

Unlike the prior test problems, the boundary drives the motion and there are comparable
strength fluid flows on both sides, as illustrated in Figure 6. Because the flow is periodic in
all directions, peristaltic pumping occurs in both the interior and exterior. Finally, because
the amplitude of the boundary wave is small, we shall only compare the shear and normal
stresses, the x- and y-stresses are respectively very similar.

In Figure 7a,b the tangential and normal fluid stresses (FS) for the interior side of the bottom
wall are shown to be in good agreement with the BEM predictions. In Figure 7c,d the jump
in FS across the immersed boundary is compared to WS (this is a consistency check of 8-9).
Figure 7e demonstrates that the WS overestimates the BEM prediction of the jump in shear
stress across the interface. This overestimation was also observed in the problems studied in
§4 and §6. Figure 7f compares the WS and BEM predictions of the normal stress jump.

Figure 8 illustrates the effect of exclusion-filtering. The normal stress (a) and shear stress (b)
on the top side of the bottom wall are shown for all wall points (unfiltered) and for the
filtered points. In both cases exclusion-filtering retains the dominant features of the stress
but discards the high frequency oscillations. The wavelength of the oscillations was
observed to be proportional to the fluid grid size.

8. Discussion
While the evaluation of interfacial stresses in immersed boundary calculations is
conceptually simple, we have demonstrated that good results are not achieved by direct
interpolation of the fluid stress tensor to immersed boundary locations. This is because:

• the point forces that represent the immersed boundary are distributed to the
underlying fluid solver grid, which ‘smears’ the representation of the wall, and
modifies the flow-field that is local to the wall;

• the immersed boundary velocity is calculated using the discretized delta function to
perform a weighted average of the local flow field in the vicinity of the wall.

To investigate the importance of these two effects, we first examined simple Poiseuille
channel flow. We demonstrate with both analytical and numerical solutions of the immersed
boundary formulation that with only internal driving forces, the discretized delta function
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induces a weak external flow. In addition, the weighted-average velocity near the wall
satisfies the no-slip condition, while the velocity precisely at the wall location only satisfies
the classical no-slip condition as the fluid grid spacing becomes infinitesimal. We
furthermore show that the discrete delta function causes the jump in the shear stress across
the boundary to be smoothed. Using the results of this model problem, we demonstrate that
accurate predictions of the stresses at the boundary can be calculated using the fluid stress
tensor (FS) information approximately one grid point inward of the boundary to negate the
smoothing of the stress-field near the boundary. Furthermore, if the external stress field is
insignificant, then the wall stress (WS) information can be derived simply from forces
imposed by the wall.

To identify appropriate protocols for calculating stresses on more complex problems, we
examined two additional test problems with curved boundaries - channel flow over an
immersed semi-circular bump, and peristaltic pumping. Here we calculated the interfacial
stresses using the immersed boundary method and compared the results to those from the
boundary element method. While the WS technique was the simplest method for finding
stresses, it can only be used when external flows were insignificant, since it provides
the ’jump’ in stress across the boundary, and does exhibit unphysical oscillations. Future
work will address the filtering out of small scale forces that are unresolved at the scale of the
discretized delta function, as discussed previously in §6.

We confirmed that the calculation of interfacial stress by direct evaluation of the fluid stress
tensor (FS) one grid point inward of the boundary produces good results. However, post-
processing is necessary for this procedure. First, an exclusion filter is implemented to decide
which immersed boundary points yield a representative stress. Then for these representative
immersed boundary particles, the stress tensor is calculated one grid point inwardly normal
using bicubic interpolation, as described in §3.

In conclusion, we have demonstrated by use of these simple test problems that interfacial
stresses may be evaluated as part of an immersed boundary simulation. We hope that these
test problems provide insight, and a good starting point, towards a complete robust
methodology for computing interfacial stresses in fully 3D immersed boundary simulations
that capture fluid-structure interactions. This will be of vital importance in the modeling and
understanding of physiological systems, where the spatial distributions of stresses are central
to the system's response.
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Figure 1.
A schematic of the computational domain (bounded by the dashed lines) used by the
immersed boundary method, for computing the left-to-right pressure-driven viscous flow
through a channel of length L and height H (solid lines). In §4, we study Poiseuille flow
where R = 0, however in §6 , we assume R > 0.
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Figure 2.
The near-boundary u-velocity (m · s–1 ) and shear stress (kg · m–1 · s–2 ) profiles for the
same-way flow. The analytical solution is compared with classical Poiseuille flow and the
IMBM solution. The position of grid points in the immersed boundary solution is indicated.
H = 1/10 and h = H/32.
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Figure 3.
Illustration of three cases where interpolation one grid-point inwardly normal from the wall
point k, for a two-dimensional problem, produces a stress representative of the interior fluid
flow (a,c) and where the stress is unrepresentative (b). The shaded area is the interpolation
box, which has center XCk, it contains the evaluation point XEk = Xk – hnk of wall particle
k, where h is the fluid grid spacing and nk is the outward normal vector of the k’th particle.
Dkr is the distance between the center of the interpolation box surrounding evaluation point
XEk and nearest wall particle r (shown only in b and c).

Williams et al. Page 17

Discrete Continuous Dyn Syst Ser B. Author manuscript; available in PMC 2012 September 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Comparison of dimensionless fluid stresses on the lower channel wall for R/H = 1/2 and H/L
= 1/8 computed using the immersed boundary fluid stress (FS) and the immersed boundary
wall stress (WS). The solid line in each figure is the BEM solution. For the IMBM, a 512 ×
128 grid with one-way flow was used, with the FS evaluated one grid-point inwardly normal
from the wall at X – nh.

Williams et al. Page 18

Discrete Continuous Dyn Syst Ser B. Author manuscript; available in PMC 2012 September 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Comparisons of four quantities: x-force, torque, maximum shear stress and volume flux
using the IMBM and BEM, in non-dimensional units. For (b-d) the IMBM has two results
obtained by using the fluid stresses (FS) and the wall stress (WS). The calculations were
performed on a 512 × 128 grid with H/L = 1/8. The fluid stress was evaluated one grid-point
inwardly normal from the wall at X – nh.
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Figure 6.
A velocity vector field, in the laboratory frame of reference, of a peristaltic pumping flow
generated using the IMBM at t = 7.5s, after two complete cycles. The computational domain
is periodic in both orthogonal directions.
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Figure 7.
A comparison for each of the two orthogonol components of stress (kg · m–1 · s–2 )
calculated using the IBM at t = 7.5s (after two complete cycles) with results from the BEM
on the lower boundary. In (a,b) the fluid stress evaluated on the interior side of the immersed
boundary is compared with the BEM prediction. In (c,d) the IMBM prediction of fluid stress
jump across the wall is compared with the WS prediction. In (e,f) the BEM prediction of the
fluid stress jump is compared with the WS. The IMBM results were computed using a 256 ×
256 grid.

Williams et al. Page 21

Discrete Continuous Dyn Syst Ser B. Author manuscript; available in PMC 2012 September 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
For the peristaltic flow fluid stresses (kg · m–1 · s–2 ), FS calculation, shown in figure 7, we
demonstrate the effect of exclusion filtering.
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