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Abstract

In this study we investigated the advantage of including network information in prioritizing disease genes of
type 1 diabetes (T1D). First, a naive Bayesian network (NBN) model was developed to integrate information
from multiple data sources and to define a T1D-involvement probability score (PS) for each individual gene. The
algorithm was validated using known functional candidate genes as a benchmark. Genes with higher PS were
found to be more likely to appear in T1D-related publications. Next a new network activity metric was proposed
to evaluate the T1D relevance of protein-protein interaction (PPI) subnetworks. The metric considered the
contribution both from individual genes and from network topological characteristics. The predictions were
confirmed by several independent datasets, including a genome wide association study (GWAS), and two large-
scale human gene expression studies. We found that novel candidate genes in the T1D subnetworks showed
more significant associations with T1D than genes predicted using PS alone. Interestingly, most novel candidates
were not encoded within the human leukocyte antigen (HLA) region, and their expression levels showed
correlation with disease only in cohorts with low-risk HLA genotypes. The results suggested the importance of
mapping disease gene networks in dissecting the genetics of complex diseases, and offered a general approach to

network-based disease gene prioritization from multiple data sources.

Introduction

YPE 1 DIABETES (T1D) 15 A POLYGENIC disorder that results

from the immune destruction of the insulin-releasing
pancreatic islet beta cells. It is one of the most common chronic
diseases in children. One of the major challenges in T1D re-
search, as is true for many complex disorders, is to dissect the
underlying genetic architecture. Identifying new disease genes
can be useful in advancing our understanding of disease
pathogenesis, and can be translated into new targets for ther-
apeutic interventions. Traditional linkage mapping offers too
many positional candidates, while the lack of an accurate un-
derstanding of the disease etiology makes it difficult to con-
struct a comprehensive list of functional candidate genes for
association analysis. Newer technologies such as the genome
wide association study (GWAS) and the next-generation se-
quencing hold the promise of surveying the whole genome for
sequence variants that are associated with disease risk. How-
ever, a lack of statistical power and multiple testing problems
prevent them from mapping out the complete picture of the
genetic predisposition of a complex trait.

In recent decades, advancements in high-throughput ge-
nomic technologies and bioinformatics have enabled the de-
velopment of new approaches to the genetic study of complex
disorders. Information from several data sources has been
utilized to supplement the traditional mapping and associa-
tion studies, including functional (ontological) annotation,
gene expression analysis, sequence information, protein-
protein interactions (PPI), phenotypic data, and text mining of
the literature (Botstein and Risch, 2003; Eaves et al., 2002;
Franke et al., 2006; Tiffin et al., 2006). Independently each type
of data possesses high noise. For example, Jones and associ-
ates estimated that the error rate for some computationally-
derived gene ontology (GO) annotations may reach 49%
(Jones et al., 2007). In gene expression studies most of the
differentially-expressed genes identified are likely not dis-
ease genes; therefore data integration is necessary. In an
obesity study, English and colleagues found that combining
49 genome-wide experiments had much better predictive
accuracy of obesity-associated genes than individual experi-
ments, demonstrating the advantage of information integra-
tion (English and Butte, 2007).
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A number of integrative genomics strategies have been
developed to predict and prioritize candidate disease genes
from multiple data sources (Oti and Brunner, 2007; Zhu and
Zhao, 2007). These approaches usually adopt the idea that
similar phenotypes are caused by genes with similar or related
functions (Goh et al., 2007; Jimenez-Sanchez et al., 2001; Smith
and Eyre-Walker, 2003). Prioritizer (Franke et al., 2006) and
Endeavour (Aerts et al., 2006) are two representative exam-
ples. Using a Bayesian network to integrate data of gene ex-
pression, PPI, and functional annotation, Prioritizer evaluates
functional similarities between positional candidate genes in
different linkage regions and prioritizes them accordingly.
Endeavour takes a set of user-provided training genes (pre-
sumably known disease genes), then builds models of their
characteristics according to sequence similarity, expression
data, PPI, functional and pathway annotation, and transcrip-
tion binding information. It then utilizes the models to rank
new candidate disease genes. The performance of these ap-
proaches is typically evaluated using the known disease genes
as a benchmark, and normally 5- to 10-fold enrichment over
random selection is observed. Nevertheless, it is still debatable
whether the enrichment observed at a high-throughput level is
meaningful to a specific disease (Oti and Brunner, 2007).

Most of the candidate gene prioritization approaches are
based on individual genes. On the contrary, complex traits
result from interactions of multiple genes. In fact, most cellular
functions are carried out by groups of highly interconnected
proteins that form modular networks. Phenotypic traits are
properties that emerge from the interactions in these networks.
A disease trait normally correlates with the inability of a par-
ticular functional network module to carry out its basic func-
tion, and the pathogenesis of a complex disease can involve
perturbations to multiple modules. On the other hand, dif-
ferent combinations of gene variants may incapacitate a
functional module in the same way, and lead to the same
clinical phenotype. Gene expression studies show that disease
genes do not always exhibit high differential expression; ra-
ther, they tend to interact with and regulate many genes that
show significant changes (Nitsch et al., 2009). In T1D, in ad-
dition to the major genetic determinant the human leukocyte
antigen (HLA) locus, recent studies have identified over 50
non-HLA regions that significantly affect disease risk (http://
www.tldbase.org; Pociot et al., 2010; Rich et al., 2009). The
majority of novel variations are in intronic and/or regulatory
gene regions, which highlights the importance of mapping
disease gene networks (Pociot et al., 2010; Rich et al., 2009).

Recently several studies defined cancer phenotype-
associated PPI subnetworks by their correlative changes in
gene expression to phenotype variations (Chuang et al., 2007;
Dao et al., 2010; Su et al., 2010). The PPI subnetworks pro-
vided insights into pathways involved in tumor progression
and were more reproducible markers of cancer prognosis than
individual genes selected without network information
(Chuang et al., 2007; Dao et al., 2010; Su et al., 2010). Other
studies have utilized disease association measurements to
identify PPI subnetworks of interest (Luo et al., 2010; Wang
and Xia, 2008; Wang et al., 2007). For instance, Wang and Xia
(2008) used predicted gene-disease association confidence
scores to identify type 2 diabetes-relevant PPI subnetworks.
They found that the subnetworks might be better biomarkers
than single proteins. In the analysis of genome wide associa-
tion data, inclusion of interaction network information has
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facilitated the identification of likely disease genes from a
large number of candidates with moderate p values and high
false-positive rates (Baranzini et al., 2009; Zhong et al., 2010).

In initial studies to identify trait-relevant networks, whole
network modules were scored through the sum or mean of the
individual gene measurements (Ideker et al., 2002), without
considering network structure. However, the interaction pat-
tern is important in determining the outcome of interactions,
and structure defines function (Gao and Wang, 2007; Massa
et al., 2010; Thomas et al., 2009). Efforts have been made to
incorporate network topology in the evaluation of a gene net-
work (Carter et al., 2004; Liu et al., 2006; Massa et al., 2010;
Thomas et al., 2009), such as ranking the contributions by in-
dividual genes by their topological positions in the network
(Hung et al., 2010; Thomas et al., 2009). More recently, several
groups proposed to dissect network measurements into con-
tributions from nodes and edges, and developed metrics to
score each separately (Ideker et al., 2002; Ma et al., 2011; Smoot
et al., 2011; Wang and Xia, 2008). Previously, we showed that
proteins encoded by known T1D genes interact with one an-
other significantly more often than expected by chance, even
after adjustment for their high network degrees (p <0.0001). We
subsequently utilized this enhancement to identify novel can-
didate disease genes (Gao and Wang, 2009). In a separate effort,
we proposed a new network metric, the Pathway Connectivity
Index (PCI), to describe the collective state of genes in a path-
way (Gao and Wang, 2007). It not only accounts for activity
(such as expression) of individual genes, but also the topological
properties of their interaction networks. These studies, by our
group as well as others, have demonstrated the advantages of
incorporating network structure in characterizing pathway/
network states, and in linking them to phenotype variations.

In this study, we propose a new candidate disease gene
prioritization approach and apply it to T1D. It first uses the
naive Bayesian network (NBN) to integrate functional, genetic,
and sequence features of individual genes, and derives a T1D
involvement probability score (PS) for each. Bayesian networks
are efficient at integrating multiple data sources and have been
widely used in systems biology, such as prediction of gene
function, reconstruction of gene networks, and identification of
disease genes (Aragues et al., 2008; Franke et al., 2006; Gao and
Wang, 2011). Next, modules in the PPI network are scored ac-
cording to the PS of module members and their interaction
patterns using a new network metric, and the top T1D-relevant
modules are identified. PPI is one of the strongest manifesta-
tions of a functional relationship between genes, and has been
frequently utilized to assist in candidate disease gene prioriti-
zation (Gao and Wang, 2009; George et al., 2006; Kann, 2007; Xu
and Li, 2006). Increasing evidence suggests that interacting
proteins often share similar functions, participate in the same
biological pathways and processes, and contribute to related
phenotypes (Lage et al., 2007; Oti and Brunner, 2007). Lastly, we
examine the potential role in T1D of novel candidate genes
using independent data from one GWAS study and two large-
scale gene expression studies. All algorithms are freely available
at http://zen.dom.uab.edu:8080/t1dsource/index.jsp.

Materials and Methods

Known T1D candidates and their features

Prior to the GWAS era, numerous genetic studies of T1D
have identified hundreds of functional candidate genes and
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20 linkage regions. The complete list of 265 known functional
candidates and 983 positional candidates that reside within
linkage regions were obtained from T1Dbase (http://
www.tldbase.org). These are listed in Supplementary Tables S1
and S2, respectively (see online supplementary material at
http: //www liebertonline.com). Sharing of GO terms by gene
sets was evaluated using GOStat (http://gostat.wehi.edu.au),
which employs the Fisher’s exact test. A gene annotated with a
GO term was also annotated with all the term’s ancestors. The
human PPI database was downloaded from the Human Protein
Reference Database (HPRD; http://www.hprd.org/; Mishra
et al., 2006). In all, 222 of the 265 functional candidates and 487
of the 983 positional candidate genes were annotated in the
HPRD. Gene lengths were retrieved from Ensembl (http://
uswest.ensembl.org/), and protein domain information was
downloaded from InterPro (http://www.ebi.ac.uk/interpro).
InterPro is an integrated documentation resource for protein
families, domains, and sites, and has become an important
protein function classification tool (Hunter et al., 2009). It inte-
grates predictive models or “signatures,” representing protein
domains, families, and functional sites from multiple, diverse
source databases: Gene3D, PANTHER, Pfam, PIRSF, PRINTS,
ProDom, PROSITE, SMART, SUPERFAMILY, and TIGRFAMs.

Genome-wide association study data of T1D

GWAS data were downloaded from the Wellcome Trust
Case-Control Consortium (Wellcome Trust Case-Control Con-
sortium, 2007; http: //www.wtccc.org.uk), and consisted of 2000
T1D cases and 3000 healthy controls. SNP markers were map-
ped to genes with dbSNP build 129 (http://www.ncbinlm
nih.gov/projects/SNP/). For each gene, SNPs up to 5kb up-
stream and 5 kb downstream were regarded its associated SNPs,
since these regions are strongly enriched for gene regulatory
elements (Veyrieras et al., 2008). The significance of each gene
was assigned with the lowest p value of its associated SNPs.

Gene expression data of T1D

Two gene expression datasets were utilized in this study. The
first came from our own study (Wang et al., 2008) of the global
transcription profile induced in healthy unrelated peripheral
blood mononuclear cells (PBMCs) by the serum of different T1D
cohorts (http://www .ncbinlm.nih.gov/geo, GSE24147). The
approach relies on the sensitivity of cells to respond to inflam-
matory factors in serum or plasma. For the responder cells, we
chose to use cryopreserved PBMCs from Cellular Technologies
Ltd. (Shaker Heights, OH), a provider of high-quality PBMCs.
The cohort samples included 39 recent-onset (RO) T1Ds (mean
age 9.97+2.89 years, collected 2-7 months post-diagnosis); 50
unrelated healthy controls (HC; mean age 14.98 +4.13 years); 77
siblings of T1D patients (not part of the RO group) that had both
high-risk (high-risk siblings [HRS]; DR3/4 haplotypes, 32) and
low-risk (low-risk siblings [LRS]; non-DR3/4, 45) HLA geno-
types. The RO cohort includes 27 with high-risk (RO-HR), and
12 with low-risk (RO-LR) HLA genotypes. The numbers for
their HC cohorts were 2 (HC-HR) and 48 (HC-LR), respectively.
Among the RO, HR, and LR cohorts, no two samples came from
the same family. Gene expression was profiled with Affyme-
trix’s human genome U133 plus 2.0 GeneChip array that in-
terrogates 47,000 transcripts.

The second dataset was downloaded from Gene Expres-
sion Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo,
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GSE9006). In this study by Kaizer and associates, genome-
wide gene expression levels in PBMCs were directly mea-
sured in 43 patients with newly-diagnosed T1D, between the
ages of 2 and 18 years, and 24 healthy controls (Kaizer et al.,
2007). Affymetrix’s human U133A and U133B GeneChips
were used, which analyze the expression level of 39,000
transcripts and variants.

Data were normalized with Robust Multichip Analysis
(RMA; www .bioconductor.org/). The statistical significance
of differential gene expression was derived through the
Mann-Whitney test.

Naive Bayesian network to predict T1D involvement
of individual genes from multiple data sources

Using all known T1D candidates as positive controls
(training set), and the rest as negative controls, our NBN
learns its parameters based on the following features:

* GO molecular function and biological process. For each
of the top 30 GO terms overrepresented in the training
gene set, a feature is scored 1 if the gene is annotated
with this term, and 0 otherwise, totaling 30 variables.

¢ T1D linkage. A feature is scored 1 if the gene locates
within a linkage locus, and 0 if not.

® Gene length. Scored with the logarithm value of the
nucleotide sequence length.

* Protein sequence domains. For each of the top 10 In-
terPro terms overrepresented in the training gene set, a
feature is scored 1 if the gene is annotated with the term,
and 0 otherwise, totaling 10 variables.

* Protein interaction. A feature is scored 1 if the gene in-
teracts with known T1D candidates, and 0 otherwise.

Through back-inference the NBN then calculates a PS of
T1D involvement for each gene given the above five features.
The number of variables, such as 30 GO terms, and 10 InterPro
terms, were chosen for points at which the improvement in
performance plateaued.

New algorithm to extract T1D-relevant subnetworks

The T1D relevance of each network module is determined
based on the PS of individual genes in the network and their
interaction patterns. Briefly, given a network module A, the PS
value of its members is first converted to a z-score with z=® "
(1-PS), where @~ ! is the inverse normal cumulative distribution
function (CDF). Let (a;) be the adjacency matrix of A, where
a;=1 if members i and j interact, and 0 otherwise, with all
diagonal elements set to 1. We define the overall significance
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TaBLE 1. Tor 30 GENE ONTOLOGY (GO) TERMS SHARED BY THE KNOWN T1D CANDIDATES

GO ID GO name No. of related genes No. of all genes p value
GO:0002376 Immune system process 119 419 8.96623E-57
GO:0006955 Immune response 107 324 1.11306E-56
GO:0006952 Defense response 66 262 1.16757E-29
GO:0048522 Positive regulation of cellular process 78 422 3.38945E-27
GO:0048518 Positive regulation of biological process 87 527 3.5746E-27
GO:0051707 Response to other organism 47 129 1.07228E-26
GO:0045321 Leukocyte activation 42 96 2.88314E-26
GO:0001775 Cell activation 43 107 1.01018E-25
GO:0009607 Response to biotic stimulus 47 163 4.75999E-23
GO:0046649 Lymphocyte activation 37 85 6.47356E-23
GO:0005102 Receptor binding 63 351 2.22003E-21
GO:0001816 Cytokine production 29 49 1.81449E-20
GO:0009891 Positive regulation of biosynthetic process 24 30 7.94301E-19
GO:0005126 Hematopoietin cytokine receptor binding 22 22 1.64226E-18
GO:0005125 Cytokine activity 36 114 1.98231E-18
GO0:0051239 Regulation of multicellular organismal process 38 132 2.29147E-18
GO:0005615 Extracellular space 47 237 3.02711E-17
GO:0009893 Positive regulation of metabolic process 41 179 8.12675E-17
GO:0031325 Positive regulation of cellular metabolic process 40 171 1.19356E-16
GO:0042127 Regulation of cell proliferation 42 210 2.18148E-15
GO:0009611 Response to wounding 40 193 4.7197E-15
GO:0009605 Response to external stimulus 46 273 1.96122E-14
GO:0008283 Cell proliferation 51 349 7.50038E-14
GO:0044421 Extracellular region part 48 355 8.16255E-12
GO:0005886 Plasma membrane 84 939 1.40211E-11
GO:0044459 Plasma membrane part 73 778 6.85688E-11
GO:0008219 Cell death 45 365 9.93575E-10
GO:0016265 Death 45 365 9.93575E-10
GO:0006950 Response to stress 51 458 1.07864E-09
GO:0005515 Protein binding 163 2891 9.8504E-07

All human genes in the Human Protein Reference Database were used as reference.

through the adjacency matrix, and hub genes contribute more
to this metric. |z* *u,»j*|z/»|0'5 can be regarded as the confidence
measure of T1D association of the interaction between genes
i and j. Those interactions in which both genes have high
z-scores contribute more to the network score (Gao and
Wang, 2007). A heuristic search algorithm was used to
find the maximally-scored subnetworks, since it is a NP-hard
problem.

Results
Properties of the known functional candidates of T1D

We found that known T1D candidates share unique fea-
tures in functional, structural, and sequence properties that
separate them from other genes. This information in turn can
be used to predict novel T1D candidate genes. Table 1 lists the
top 30 shared GO terms. As expected, immune system process
and immune response are the two top terms, consistent with
the fact that T1D is an autoimmune disease. The third sig-
nificant term is defense response, which is annotated as: “re-
actions, triggered in response to the presence of a foreign body
or the occurrence of an injury, which result in restriction of
damage to the organism attacked or prevention or recovery
from the infection caused by the attack.” This is consistent
with the hypothesis that T1D results from initial beta cell
damage, and the failure of the immune system to respond
appropriately (Mathis et al., 2001). Most of the remaining
GO terms, such as regulation of cell proliferation, response to

stress/external stimulus, leukocyte/lymphocyte activation,
cytokine production/activity, and cell death, also fit well with
the current understanding of T1D pathophysiology.

The known T1D candidates are more likely to be within one
of the linkage loci compared to random selections. Presently
there are ~20,152 known (Entrez GenelD unique) human genes,
and 983 genes located within the 20 mapped T1D linkage loci.
Out of the 265 known candidates, 66 are encoded within these
linkage regions; this is a ~5-fold enrichment (Fisher’s exact test,
p<le-14). If we restrict to genes annotated in the HPRD, the
numbers become 487 out of 9222, and 58 out of 222. This is again
a ~ 5-fold enrichment (Fisher’s exact test, p < 1e-12). This finding
is somewhat expected, given the way disease gene mapping was
conventionally carried out in the past. Often after linkage re-
gions were identified, investigators then tried to make the most
intelligent speculation on the etiological variants within the re-
gions that might explain the linkage, followed by association
tests. Many functional candidates were proposed this way.

We compared the protein structure and domain composi-
tion of the T1D candidates against that of all the other genes.
Table 2 lists the top 10 protein domains significantly over-
represented in the T1D candidates. Overall they are consistent
with T1D being an autoimmune disease. Among the most
significant domains are Ig-like, Immunoglobulin, and Ig_c1.
These are structure domains possessed by proteins in the im-
munoglobulin superfamily, a large group of cell-surface and
soluble proteins that are involved in the recognition, binding, or
adhesion processes of cells. One end of the domain has a section
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TABLE 2. Tor 10 PROTEIN DomAINS OVER-REPRESENTED IN KNOwWN T1D CANDIDATES

InterPro ID InterPro short description InterPro description p value
IPR003597 Ig_c1 Immunoglobulin C1 type 8.93E-34
IPR007110 Ig-like Immunoglobulin-like 2.64E-23
IPR003006 Ig MHC Immunoglobulin/major histocompatibility complex 2.89E-22
IPRO13151 Immunoglobulin Immunoglobulin 7.90E-21
TPR013568 SEFIR SEFIR 3.37E-19
IPR004075 IL1 _rept_1 Interleukin-1 receptor, type I/Toll precursor 4.49E-16
IPR000157 TIR Toll-interleukin receptor 1.17E-15
IPR001039 MHC_I_alpha_A1A2 MHC class I, alpha chain, alphal and alpha2 1.17E-15
IPRO07775 LST1 LST-1 3.04E-15
IPR001003 MHC_II_alpha_N MHC class II, alpha chain, N-terminal 1.93E-14

called the complementarity-determining region, which is im-
portant for the specificity of antibodies for their ligands.
Members of the family are commonly associated with roles in
the immune system, and include cell surface antigen receptors,
co-receptors, and co-stimulatory molecules of the immune
system, and molecules involved in antigen presentation to
lymphocytes. hLST1 is a well-known domain closely related
with cell morphogenesis and immune response. MHC_I_
alpha_A1A2, MHC_II_alpha_N, Ig MHC, IL1_rcpt_1 (interleu-
kin receptor 1), SEFIR (IL17 receptor) and TIR (Toll-Interleukin
receptor), also agree with T1D being strongly associated with
the major histocompatibility complex (MHC) molecules.

It has been reported that disease genes tend to have longer
nucleotide sequence length (Xu and Li, 2006). We found that
this is also true for the T1D candidates. Their length distribution
is significantly biased toward the long end (p <2e-11, KS-test).

Naive Bayesian network algorithm: Optimization
and cross-validation

Our NBN algorithm was trained using the following five
features of the known T1D candidates: GO molecular function
and biological process; T1D linkage; gene length; protein se-
quence domains; and protein interactions.
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Through a standard cross-validation test we first investi-
gated performance of each feature and the best feature combi-
nation for disease gene prediction. A fraction of the known
disease genes (67%, or 2/3) were used as the positive learning
set, and we examined how well the model is able to predict the
remaining fraction (33%). The process was repeated 20 times.
For features with continuous or high-dimension discrete values,
we evaluated the performance using the receiver operating
characteristic (ROC) curve. The ROC curve plots sensitivity (i.e.,
true-positive rate) of a classifier against 1 — specificity (i.e., false-
positive rate). The area under the curve (AUC) of the ROC curve
measures the performance, with AUC=0.5 for a random clas-
sification. Figure 1 presents the AUC for features GO and In-
terPro. The NBN predictions improve rapidly with the number
of values, and plateaus around 30 for GO (Fig. 1A), and 10 for
InterPro (Fig. 1B). Hence we kept the top 30 GO and top 10
InterPro terms for predicting novel candidate genes.

Figure 2 presents the ROC of the feature combination GO +
linkage + PPI + InterPro. On average, we obtained 63.1%
sensitivity /88.0% specificity with a PS cut-off at 0.5, and
66.6% sensitivity /86.4% specificity at 0.3. Table 3 lists the
AUC of the top four feature combinations, and the individual
features GO, InterPro, and Length, and GO was found to yield
the best performance. Evidently the AUC of the feature
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AUC of the cross-validation ROC curve shows that performance of the NBN depends on the number of feature
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FIG. 2. ROC curve of the feature combination GO+
linkage + PPI + InterPro.

combinations are higher than those of the individual ones. For
the two binary-valued features, linkage and PPI, we deter-
mined their enrichment ratios, which were 3.7 and 3.4, re-
spectively. In contrast, the enrichment ratios of feature
combinations were significantly higher, with GO+
linkage + PPI + InterPro reaching 7.2.

Overall we observed a significant improvement when the
features were integrated. Among the top combinations, we de-
cided to use GO +linkage + PPI+InterPro for novel disease gene
prediction, as adding the remaining feature (length), which is
not disease-specific, did not further improve the performance.

Individual candidate genes with high PS

Figure 3 presents the cumulative fraction plot of the pre-
dicted T1D involvement PS for all 9222 HPRD-annotated
genes. The results are listed in Supplementary Table S3 (see
online supplementary material at http://www liebertonline
.com), and are available at http://zen.dom.uab.edu:8080/
tldsource/index.jsp. We examined their citations in T1D-
related publications. The 222 known T1D candidates were
excluded from this analysis to avoid confounding contribu-
tions from them. In our previous study, we used the T1D
publication citations annotated by T1Dbase to evaluate can-
didate disease gene prediction (Gao and Wang, 2009). The text
mining algorithm of T1Dbase is not open, and we found that

TABLE 3. PERFORMANCE IN DISEASE GENE PREDICTION
oF THE Tor FOUR FEATURE COMBINATIONS
AND INDIVIDUAL FEATURES

AUC of

Feature combination ROC curve

GO +Linkage + PPI + InterPro 0.824+0.034
GO +Linkage + PPI+InterPro + Length 0.823+0.020
GO +Linkage +PPI 0.823+0.032
GO +Linkage 0.816+0.035
GO 0.804+0.032
InterPro 0.594+£0.022
Length 0.512+0.013
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the annotation changes significantly over time. Therefore, we
instead searched the PubMed database (abstract only) directly
using the official gene name and the aliases. An article was
termed T1D-related if its abstract contains the phrase “type 1
diabetes” or its aliases. We found a significant difference in the
PS score distribution between genes cited or not cited by T1D-
related publications (p=1.9e-57, KS test). Figure 4 illustrates
the percent of genes in different PS intervals that are cited in
T1D-related publications. A positive correlation is evident.
We found a number of genes with high PS for which their
potential role in T1ID had been implied in the literature
(highlighted in Supplementary Table S3; see online supple-
mentary material at http://www liebertonline.com).
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FIG. 4. Genes with higher predicted probability scores are
cited more often by T1D-related publications.
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FIG. 5. Subnetworks related to T1D. Round rectangles denote known T1D candidates collected in T1Dbase.

Predicted T1D subnetworks

Using our new network metric defined in [Eq. 2], six sub-
networks with s;(’po > 2.0 were predicted to be associated
with T1D (Fig. 5; a complete list of genes is provided in
Supplementary Table S4; see online supplementary material
at http://www liebertonline.com; additional details are
available at http://zen.dom.uab.edu:8080/tldsource/index
jsp). There are a total of 207 nodes in the 6 subnetworks, cor-
responding to 92 genes; 53 are novel candidates. Most of the
network members appear in T1D publications, even after ex-
cluding the known T1D candidates (p < 1e-9, Fisher’s exact test).

Itis believed that hub genes play a central role in a network.
Interestingly, 66.7% of those genes with network degree >5
appear in T1D-related abstracts, while only 31% of those with
degree <5 do. Table 4 lists genes with degree >5 in the six
subnetworks, excluding the known T1D candidates. Most of
them participate in biological processes that are likely relevant
to T1D pathophysiology. Though PIK3R1 did not appear in
the T1D-related publications, it is part of the insulin receptor
signaling KEGG pathway (Gustafson et al., 1995), plays an
important role in the metabolic actions of insulin, and a mu-
tation in this gene has been associated with insulin resistance.
Furthermore, it participates in apoptotic processes, and the
Mouse Genome Informatics (MGI) mutant studies have
shown that its murine homologue affects the immune system.
TRAF6 activates the IL-1 signaling pathway via MYD88 and
IRAK kinases. Both TRAF6 and TRAF?2 are involved in NF-«xB

activation during NF-xB-regulated apoptotic beta-cell death
(Liuwantara et al., 2006). The mouse homologue of TNFR2 lies
within the T1D susceptibility locus, and the diabetes-associated
variant contains a mutation adjacent to the TRAF2 binding
site. It is also part of the anti-apoptotic TNF/NF-kB/Bcl-2

TaBLE 4. GENES WITH DEGREE
>5 IN THE PREDICTED SUBNETWORKS

Gene No. of T1D
EntrezID name publications ~ Degree  Subnetwork
5295 PIK3R1 0 14 4
7186 TRAF2 3 13 5
7186 TRAF2 3 12 2
7186 TRAF2 3 11 4
7189 TRAF6 1 9 5
6850 SYK 2 7 4
7189 TRAF6 1 7 2
7189 TRAF6 1 7 4
3556 IL1IRAP 2 6 4
4615 MYDS88 4 6 5
6885 MAP3K7 0 6 5
4615 MYDS88 4 5 4
7852 CXCR4 4 5 1
7852 CXCR4 4 5 2
7852 CXCR4 4 5 3
8915 BCL10 0 5 5
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pathway (Hill et al., 2007). SYK is required for signaling of
several immunoreceptors of the antigen-presenting cells. In-
hibition of SYK was recently found to interrupt the humoral
contributions to T-cell-driven autoimmunity, and delayed
spontaneous diabetes onset in the NOD mouse model of T1D
(Colonna et al., 2010).

The administration of ILIRAP was found to improve beta-
cell function in both type 1 and type 2 diabetes (Pfleger et al.,
2008). Activation of MYDS88 can lead to NF-«B activation, cy-
tokine secretion, and inflammatory responses (Sharp et al,
2008). In the NOD mouse model of T1D, animals lacking
MyD88 protein do not develop T1D. Also in this animal model,
CXCR4 was found to contribute to the negative regulation of T-
cell adhesion, which is important in the recruitment of diabe-
togenic T cells into islet cells (Sharp et al., 2008). It was found
that signaling of CXCR4 together with SDF-1 protects against
autoimmune diabetes, and inhibition of CXCR4 activity exac-
erbates the adoptive transfer of diabetes (Aboumrad et al.,
2007). BCL10 participates in T- and B-cell-receptor signaling
and the adaptive immune response, both of which are relevant
to T1D pathogenesis (Ruefli-Brasse et al., 2004).

Among all human HPRD genes there were 430 (5.1%) with
PS>0.95 (Fig. 2 and Supplementary Table S3; see online
supplementary material at http://www. liebertonline.com).
If we use this value as a cut-off, 349 novel candidates are
predicted (after excluding the known T1D candidates). In
each predicted subnetwork, there are genes that miss this cut-
off. However, they interact with genes with the highest PS
values. We found that their potential role in T1D is implicated
by existing literature reports. IFNAR?2 in subnetwork 6 has a
moderate PS score of 0.8879, ranked #474 out of 9222, and
#389 after excluding T1D candidates. Its neighbors IFNAS5,
IFNAS8, IFNA2, and IFNB1, all have PS=1, and are all known
T1D candidates. IFN-« is a group of pleiotropic cytokines in
the type I family of IFNs. IFN-u exerts broad but distinct ef-
fects on the innate and adoptive immune responses by sig-
naling through a heterodimeric receptor composed of IFN-u
receptor 1 (IFNAR1) and IFNAR2. Many studies suggest that
IFN-o is involved in the development of T1D (Li et al., 2008).
SPG21 (PS=0.8826), ranked #477, interacts with two PS=1
genes, CD4 (a known T1D gene) and TRAF2. The noncatalytic
alpha/beta hydrolase fold domain of this protein binds to the
hydrophobic C-terminal amino acids of CD4, which are in-
volved in repression of T-cell activation. It is thus proposed
that this gene product modulates the stimulatory activity of
CD4 (Zeitlmann et al.,, 2001). IGFIR (PS=0.9487), ranked
#433, interacts with PIK3R1 (PS=0.99997). It is a transmem-
brane tyrosine kinase receptor that is activated by insulin-like
growth factor-I (IGF-1), and by the related growth factor IGF-
2. Decreases in IGF1R signaling causing insulin resistance is a
major component in the development of type 2 diabetes.

In T1D, the HLA locus accounts for most of the genetic risk.
Recent studies identified over 50 non-HLA regions that sig-
nificantly affect disease risk (http://www.tldbase.org; Pociot
et al., 2010; Rich et al., 2009). Genes outside the HLA, though
contributing less to the overall disease risk, are likely the
major source for disease heterogeneity. The majority of novel
variations recently discovered are in intronic and/or regula-
tory gene regions, indicating the importance of mapping
disease gene networks (Pociot et al., 2010; Rich et al., 2009).
Among the genes coding for the 9222 HPRD proteins, 115
(1.25%) are located in the HLA locus. The number of HLA
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genes among the known T1D genes is 22 out of 222 (10%),
significantly higher than that expected by random chance
(42=107.8, p<0.0001). This is consistent with the genetic im-
portance of the HLA locus in T1D. Interestingly, the presence
of the HLA genes is diminished among the novel candidate
genes. At PS>0.95, 7 out of the 349 novel candidates (2.01%)
are in the HLA locus, a frequency no different from that ex-
pected by chance (5*=0.99, p ~0.32), and is significantly less
than that of the known T1D candidates (*=15.98, p <0.0001).
In the six predicted network modules, only one, TNF-«, a
known T1D gene, resides in the HLA region. Of the 53 novel
candidates predicted by the six subnetworks, none reside
within the HLA locus. Again, this is no different from the rate
expected by chance (y*=0.11, p ~0.74), and significantly less
than that of the known T1D candidates (5*=6.22, p ~0.013).
In conventional genetic approaches, the presence of a domi-
nating disease risk locus often makes it difficult to dissect the
contributions from the minor loci. Our results indicate that
mapping disease-associated networks may be an efficient
approach to identify genes that contribute moderately to
disease risk.

Predicted subnetworks were supported
by GWAS and gene expression data

First, we examined evidence of T1D association using in-
dependent data from GWAS. A number of large-scale GWAS
studies have been carried out for T1D, most notably the study
conducted by the Wellcome Trust Case-Control Consortium
(Wellcome Trust Case-Control Consortium, 2007), and those
by the Type 1 Diabetes Genetics Consortium (T1DGC; Barrett
et al., 2009; Morahan et al., 2011). To validate our algorithm
prediction, we chose to use the WICCC dataset over a meta-
analysis of all studies, since the WTCCC cases were drawn
from only two countries (U.K. and U.S.), whereas the TIDGC
families were recruited from many different countries and
diverse recruitment networks (Asia-Pacific, Europe, and
North America). The markedly increased genetic and envi-
ronmental heterogeneity in the latter could affect the pene-
trance of susceptibility alleles and confound the ability to
detect genes that may affect risk in some populations but not
others. Interestingly, although each individual gene did not
meet the stringent p-value cut-off for disease association
typically required for a GWA study (p >0.001 for all genes), as
a group the 53 novel candidate genes from the six T1D sub-
networks showed a shift toward to the low-p end compared to
the rest (p=0.063, KS test). Figure 6A presents the distribution
of their p values and those of all genes (excluding the known
disease genes). We further examined the p values of genes
with degree >2 (31 genes); the difference is more significant,
with p=0.055 (Fig. 6A). For novel candidates with degree >2,
the number of genes typed by the GWAS study was too few
for a statistical test to be meaningful. For comparison we also
evaluated the GWAS p values of the 222 known T1D candi-
dates, and the 349 new candidates predicted with PS only at
PS>0.95, and found that they were also shifted toward the
low-p end, with p=0.083 and p =0.074, respectively. However,
if we randomly picked 53 members from each gene list (to
compare them at the same sample size), KS-test on average
yielded p>0.2. These results suggest that the network-based
candidate gene prioritization is likely more efficient at iden-
tifying true disease genes.
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FIG. 6. GWAS and gene expression studies indicate the potential disease involvement of the novel candidate genes in the
predicted T1D network modules. (A) Cumulative distribution function of the T1D association p value from GWAS. Dis-
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above). (B) Cumulative distribution function of the differential expression p value between the RO-LR and LRS cohorts. The
distribution for the novel candidate genes shows significant ( p=0.03) shift to the low end, indicating correlation with the T1D

phenotype in cohorts with low-risk HLA genotypes.

Next we investigated expression of the novel candidate
genes in two large microarray studies of T1D. The first da-
taset came from our own study, which profiled global
transcription in healthy donor PBMCs stimulated by sera of
different cohorts (Wang et al., 2008): RO T1D patients,
unrelated HC with no family history of T1D, and healthy
siblings of T1D patients that possess either high-risk (HRS)
or low-risk (LRS) HLA genotypes. One-way ANOVA found
that overall the new candidates exhibited significant vari-
ation in the four cohorts, with p=0.03 for the 53-gene list,
and p=0.004 for the 349-gene list. Between the RO and HC
samples, neither expression of the novel candidates, nor the
known disease genes, showed significant correlation to
disease phenotype (Table 5). However, when stratified by
T1D risk defined by the DR3/4 HLA genotypes, the new
candidates as a set showed significant correlations with
disease in the low-risk cohorts (Table 5). In Figure 6B, the
cumulative plot of the p values between the RO samples
with low-risk HLA genotypes (RO-LR), and the LRS sam-
ples, is presented. The distribution of the novel candidates
is shifted toward the low-p end (p ~0.03). This finding of
disease correlation in low-risk cohorts is likely due to the
extremely low presence of the HLA genes in the novel

candidates, and because the non-HLA genes contribute
more to disease pathology in cohorts with low-risk HLA
genotypes.

The second microarray dataset came from a study by Kai-
zer and associates, in which genome-wide mRNA expression
levels in PBMCs were directly measured in 43 RO and 24 HC
samples (Kaizer et al.,, 2007). Again, few individual genes
showed significant differential expression between RO and
HC samples. As a group, 53 novel candidates exhibited
marginal significance in disease correlation (p=0.11, KS test).
The results from the known T1D disease genes are similar
(p=0.09). The HLA genotypes are not available so we could
not stratify the analysis into different HLA risk groups.

On-line resources of T1D genetics

The algorithms reported in this article are freely available
at: http://zen.dom.uab.edu:8080/t1dsource/index.jsp. Inter-
active examination of the network context (such as neigh-
boring genes), and properties of genes using several data
sources, are enabled with an in-house developed Cytoscape
plugin using the Java webstart technique, which is shown in
Figure 7. Currently, data sources are also being collected that

TABLE 5. GENE SET ANALYSIS OF NEW AND KNOowN T1D CANDIDATES

RO versus  RO-HR versus RO-HR RO-LR RO-LR
Comparison HC HC-HR versus HRS — versus HC-LR  versus LRS
53 Novel candidates from the 6 T1D subnetworks 0.76 0.43 0.19 0.26 0.03
349 Candidates with PS>0.95 0.86 0.93 0.91 0.06 0.07
222 Known T1D candidates 0.23 0.20 0.12 0.52 0.85

The new candidates show signs of differential activity in cohorts with low-risk HLA genotypes.
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FIG. 7. Snapshots from our T1D resources website. Top left
information about the given genes from several data sources;

networks of interest.

include: association studies, linkage analysis, gene expres-
sion, T1D-related literature, GO annotations, protein do-
mains, and protein-protein interaction networks.

Discussion

In this study we demonstrated the importance of mapping
disease gene networks in dissecting the genetics of a complex
disease. First, an NBN model was developed to score human
genes for their T1D relevance based on multiple features of
known disease genes. The efficiency of the model was dem-
onstrated through cross-validation, and by the significant
appearance in T1D-related literature of the predicted novel
candidate genes. Further, we proposed a new network activity
metric, and used it to extract PPI subnetworks that are relevant
to T1ID. We showed that the novel candidates identified
through the predicted subnetworks are more likely to contain
true disease genes. Two major features distinguish our study
from others. First, our network metric defined in [Eq. 1] and
[Eq. 2] incorporates the consideration of both individual genes
and topological characteristics of their interaction networks.
Second, to evaluate the performance of our new algorithm, we
went beyond the commonly used cross-validation approach,
and utilized real, independent data to confirm the predictions.
This includes the published peer-reviewed literature, GWAS,
and functional genomics studies. Our algorithm offers a gen-
eral approach to mapping disease-relevant gene networks and
prioritizing candidate disease genes through integration of

is the homepage; top right is the web interface to examine
bottom is the Cytoscape webstart interface to examine sub-

multiple data sources. It collects the existing data and
knowledge relevant to a disease to train an NBN model, which
in turn is used to identify new disease genes. The procedure
does not depend on any specific characteristics of T1D, or its
pathogenesis. For any disease for which there is existing ge-
netic data and knowledge, even if only partial, a similar NBN
model can be developed and trained to discriminate disease
genes from the rest. Therefore our approach is generally ap-
plicable to other complex diseases.

In this study we used NBN to integrate multiple data
sources that contain functional, genetic, and sequence infor-
mation of genes. A number of data sources that may also offer
valuable information on disease associations were not in-
cluded, for instance, evolution conservation, protein stability,
and post-translational modification of proteins. These will be
investigated in our future studies. In training NBN, all known
T1D candidates were used as positive controls and the rest as
negative controls. Note that since the disease etiology is still
not fully understood, the negative controls likely contain genes
that are involved in T1D pathogenesis, although presently
they are not known to be. Some of the false-positive predic-
tions might represent true-positives. In fact, this is a common
challenge in current integrative genomics approaches to
complex diseases, in that we can be fairly confident of the
positive controls, but the negative controls may still contain
true disease genes. It would be of interest to investigate means
to improve the procedure. One possibility is to carry out the
novel disease gene prediction steps iteratively, and retrain the
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NBN by removing all positive predictions from the negative
set, followed by recalculating the PS for all genes.

The NBN is theoretically optimal when the attributes are
independent, but it performs well in many domains when
there are moderate attribute dependences (Domingos and
Pazzani, 1997; Friedman et al., 1997). The five features of the
known T1D candidates being studied here show weak inter-
dependence. In modeling some of the disease gene features,
such as GO (Table 1) and InterPro (Table 2), we only retained
the top annotation terms. Intuitively one may think that any
contributing information should be considered, and more
terms could be included to improve the performance. How-
ever, high dimensionality and sparse training data can result
in over-fitting, especially when there is inter-dependency
among data. In future studies we will examine how feature
inter-dependence, and types of information (discrete versus
continuous), affect the performance. We will also investigate
the balance between amounts of prior information and the
dimensionality issue. It is also worthwhile to investigate more
sophisticated algorithms to address these issues in data inte-
gration. Examples include partial least square, Tree Aug-
mented Naive Bayes (TAN), and neural-networks.

Validating computational algorithms for integrative geno-
mics is a challenge, as directly testing the predictions (of novel
candidate disease genes) is usually not immediately feasible.
Presently the performance is typically evaluated using the
known disease genes as a benchmark, and normally 5- to 10-
fold enrichment over random selection is observed. It has been
questioned whether the enrichment observed at a high-
throughput level is meaningful to a specific disease (Oti and
Brunner, 2007). To overcome this problem, we used the pre-
GWAS genetic knowledge of T1D as input to our algorithm,
and independent high-throughput association and gene-ex-
pression profiling studies to validate the network-based disease
gene predictions. We demonstrated the value of incorporating
network information in candidate gene prioritization.

Our algorithms can of course include the latest genetic re-
sults as input to further improve the efficiency and power of
identifying true disease genes. Recent technological ad-
vancements, including the GWAS and the next-generation
sequencing technologies, hold great promise for surveying
the entire genome in one experiment for disease-causing
variants. Some exciting results have already been published
for T1D (Barrett et al., 2009; Morahan et al., 2011; Wellcome
Trust Case-Control Consortium, 2007). However, because of
the high number of variants and their combinations, high
false-positive rates arising from multi-testing is a serious
problem (McCarthy et al., 2008). Some have argued the ad-
vantages of focusing on shorter predefined gene lists con-
sisting of the most probable candidates created by
computational or pathogenomic approaches (Gaulton et al.,
2008; Loza et al., 2007). This can significantly reduce the
number of tests that need to be performed. One of the po-
tential advantages of our study is to provide such a list (the 53
novel candidate genes from the six predicted T1D network
modules, for instance) for T1D association studies. In addi-
tion, conventional single-marker-based analysis of sequence
variant-disease association offers little insight into the disease
mechanism. Network-based pathway analysis can provide a
more comprehensive picture of the genetic architecture un-
derlying a disease (Wang et al., 2007). Our network metric
defined in [Eq. 1] and [Eq. 2] can be applied to ascertain the
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disease association of a network by replacing the z score of PS
with that of the p value of association. Though network-based
association analysis has been explored (Baranzini et al., 2009),
our metric is unique in that it accounts for contributions from
both the network topology and the individual genes.
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