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Abstract

UTX (KDM6A) and UTY are homologous X and Y chromosome members of the Histone H3 Lysine 27 (H3K27) demethylase
gene family. UTX can demethylate H3K27; however, in vitro assays suggest that human UTY has lost enzymatic activity due
to sequence divergence. We produced mouse mutations in both Utx and Uty. Homozygous Utx mutant female embryos are
mid-gestational lethal with defects in neural tube, yolk sac, and cardiac development. We demonstrate that mouse UTY is
devoid of in vivo demethylase activity, so hemizygous XUtx2 Y+ mutant male embryos should phenocopy homozygous XUtx2

XUtx2 females. However, XUtx2 Y+ mutant male embryos develop to term; although runted, approximately 25% survive
postnatally reaching adulthood. Hemizygous X+ YUty2 mutant males are viable. In contrast, compound hemizygous XUtx2

YUty2 males phenocopy homozygous XUtx2 XUtx2 females. Therefore, despite divergence of UTX and UTY in catalyzing
H3K27 demethylation, they maintain functional redundancy during embryonic development. Our data suggest that UTX
and UTY are able to regulate gene activity through demethylase independent mechanisms. We conclude that UTX H3K27
demethylation is non-essential for embryonic viability.
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Introduction

Post-translational modifications of histones establish and maintain

active or repressive chromatin states throughout cell lineages. Thus,

the enzymes that catalyze these modifications often have crucial roles

in establishing genomic transcriptional states in developmental

decision-making. Histone methylation can stimulate gene activation

or repression depending on which residues are targeted. Methylation

of histone H3 on Lysine 4 (H3K4me) is an active chromatin

modification, while methylation on histone H3 Lysine 27

(H3K27me) is associated with repression of gene activity [1].

The polycomb repressive complex 2 (PRC2) methylates H3K27

[2,3,4,5]. Within this complex, enhancer of zeste homolog 2

(EZH2) catalyzes di and tri-methylation of H3K27. Embryonic

ectoderm development (EED) and suppressor of zeste homolog 12

(SUZ12) are additional PRC2 core components indispensible for

PRC2 activity [6,7,8]. EZH1 is a secondary, less efficient H3K27

methyl-transferase that shares some overlapping redundancy with

EZH2 in ES cells and epidermal stem cells [9,10,11,12]. The

PRC1 complex is recruited through H3K27 trimethylation for

additional histone modification and chromatin compaction [13].

In embryonic stem (ES) cells, PRC2 targets and represses genes

essential for developmental events [14,15,16,17]. The promoters

of these PRC2 targets typically contain ‘‘bivalent’’ chromatin

marks with both active H3K4 and repressive H3K27 methylation

[18,19,20]. Loss of PRC2 activity de-represses these genes but

does not alter ES cell pluripotency [14]. However, mouse

mutations in any of the three PRC2 core components are early

embryonic lethal with gastrulation defects [7,21,22].

H3K27 trimethylation is reversible as a family of histone

demethylases catalyzes the removal of this epigenetic mark

[23,24,25,26]. JMJD3 (KDM6B) is an autosomal H3K27

demethylase upregulated during specific differentiation events

[25,27]. UTX (KDM6A) is a broadly expressed X-linked H3K27

demethylase that escapes X-inactivation [23,24,26,28]. UTY is the

Y chromosome homolog of UTX. Both UTX and JMJD3

demethylate H3K27 di and tri-methyl residues; however, UTY

lacks this activity in vitro [26,29]. Based on cell culture models,

UTX and JMJD3 mediated H3K27 demethylation is vital in a

wide array of functions including cell cycle regulation, M2

macrophage differentiation, neuronal stem cell specification, skin

differentiation, and muscle differentiation [27,30,31,32,33,34,35].

In contrast, the biological function of UTY remains unknown.

Utx and Uty are genetically amenable to delineate H3K27me3

demethylation dependent versus demethylation independent

function in mouse development. Comparative amino acid

sequence analysis of UTX and UTY reveals 88% sequence

similarity in humans (83% identity) and 82% sequence similarity

in mouse. Across the annotated JmjC histone demethylase

domain, the similarity is at 98% and 97% for human and mouse
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respectively. In the TPR (tetratricopeptide repeat) domain, the

similarity is at 94%. So while UTY is reported to have lost H3K27

demethylase activity, it is remarkably well conserved with respect

to UTX. Recent discoveries have revealed that JMJD3 functions

in macrophage lipopolysaccharide response and lymphocyte Th1

response through H3K27 demethylase independent gene regula-

tion [36,37], suggesting that function of this family of proteins is

not limited to histone demethylation. It has been hypothesized that

X and Y chromosome homologs will escape X-inactivation in

instances where the Y homolog has not lost functional activity and

male to female dosage remains balanced [38]. Therefore, it is

possible that UTX and UTY have functional overlap in H3K27

demethylase independent gene regulatory processes.

A recent publication by Lee et al. characterized heart defects in

Utx homozygous embryos [39]. Cell culture experiments suggested

that the phenotype resulted from H3K27 demethylase activity. Utx

hemizygotes were reported to have a wide range of abnormalities,

but it was not clear if any phenotypes overlap with the Utx

homozygotes as no comparative data were illustrated. Given that

Uty remained intact in these studies, it was not possible to conclude

definitively whether Utx demethylase activity was essential for early

embryonic development. Furthermore, it is not known whether

mouse UTY is capable of H3K27 demethylation. The classifica-

tion of UTY as having no demethylase activity is based on in vitro

assays only. The possibility of in vivo demethylase activity due to

other co-factors remains a possibility. Also, mouse UTY has

considerable sequence divergence from human UTY. The two

proteins are 75% identical overall, and 95% identical in the JmjC

demethylase domain. Thus, it is possible that mouse UTY has

retained demethylase activity.

In our study, we have generated mouse mutations in both Utx

and Uty. Hemizygous Utx mutant male mice (XUtx2 Y+) were

runted at birth with only a small number surviving to adulthood.

In contrast, Utx homozygous females (XUtx2 XUtx2) had severe

phenotypes mid-gestation, with developmental delay, neural tube

closure, yolk sac, and heart defects. Unlike homozygotes, Utx

hemizygotes lack mid-gestational cardiovascular defects and are

recovered in Mendelian frequencies at E18.5. Furthermore,

compound hemizygous male embryos (XUtx2 YUty2) carrying

mutations of both Utx and Uty phenocopy the Utx homozygotes.

Thus, the disparity in hemizygous and homozygous Utx pheno-

types is due to compensation by Uty in the hemizygous male

embryos. We have utilized an in vivo H3K27 demethylation assay

to demonstrate that mouse UTY is not capable of H3K27

demethylation. Additionally, cell culture data indicate UTX and

UTY may function in gene activation as both proteins associate

with the H3K4 methyl-transferase complex, the BRG1 chromatin

remodeler, as well as heart transcription factors. Our results

implicate a crucial H3K27 demethylase independent function for

UTX and UTY in mouse embryonic development. This is the first

ascribed function for UTY, and the first example of developmental

redundancy for X and Y chromosome homologous genes.

Notably, our data suggest the H3K27 demethylase activity of

UTX is not essential for embryonic viability.

Results

Hemizygous Utx mutant male mice have reduced peri-
natal viability

We developed mutant mouse lines to assess the contribution of

UTX H3K27 demethylase function in mouse development. Two

alleles for Utx were obtained from public resources. The

BayGenomics gene trap line Kdm6aGt(RRA094)Byg is designated as

XUtxGT1 (Figure 1A). RT-PCR and PCR genotyping verified the

identity of this allele in both ES cells and mutant mice (Figures S1

and S2A–S2C). Additionally, we obtained the EUCOMM Kdm6a

knockout line (project 26585, Kdm6atm1a(EUCOMM)Wtsi), designated

as XUtxGT2fl, which inserts a gene trap in intron 2 along with a

floxed 3rd exon (Figure 1A). Southern blotting and PCR

genotyping verified the identity of this allele (Figures S1 and

S2D–S2F). Notably, quantitative RT-PCR comparison of tail

RNA from XUtxGT1 YUty+ versus XUtxGT2fl YUty+ mice demonstrated

that Utx gene trap 1 is more effective than gene trap 2 (a 96%

reduction compared to a 61% reduction in Figures S2C and S2F).

Because XUtxGT2fl demonstrated incomplete trapping, the 3rd exon

was deleted with Cre recombinase to establish XUtxGT2D (contain-

ing both the gene trap and deleted 3rd exon, Figure 1A). Deletion

of the third Utx exon produces a frameshift and introduction of a

translational stop codon when Utx is spliced from exon 2 to exon 4.

XUtxGT1 and XUtxD are null alleles as UTX protein was eliminated

in western blotting of these embryonic lysates (Figure 1B, 1C).

Consistent with RT-PCR data, XUtxGT2fl exhibits a reduction but

not absence of UTX protein (Figure 1D).

Heterozygous Utx female mice were crossed to wild type male

mice to produce hemizygous Utx mutant males. At weaning, the

hemizygous XUtxGT1 YUty+, XUtxGT2D YUty+, and XUtxGT2fl YUty+

mice all exhibited reductions of 68%, 83%, and 55% respectively

from the expected genotype frequencies based on these crosses,

yet expected genotype frequencies were observed at embryonic

day E18.5 (Table 1). At E18.5, most of the hemizygous Utx males

appeared phenotypically normal; however a small percentage of

the fetuses exhibited exencephaly. At birth, the hemizygous Utx

males were small and exhibited a failure to thrive phenotype.

Those males that survived through this phenocritical phase

reached adulthood and were fertile. Hemizygous Utx mutant

males were runted compared to wild type littermates and

remained smaller than controls throughout their lifespan

(Figure 2A, 2B). Backcross of the Utx allele onto a C57BL/6J

or 129/SvJ background affected postnatal viability, but hemizy-

gous Utx male embryos were still readily obtained at E18.5 (Table

S1).

Author Summary

Trimethylation at Lysine 27 of histone H3 (H3K27me3)
establishes a repressive chromatin state in silencing an
array of crucial developmental genes. Polycomb repressive
complex 2 (PRC2) catalyzes this precise posttranslational
modification and is required in several critical aspects of
development including Hox gene repression, gastrulation,
X-chromosome inactivation, mono-allelic gene expression
and imprinting, stem cell maintenance, and oncogenesis.
Removal of H3K27 trimethylation has been proposed to be
a mechanistic switch to activate large sets of genes in
differentiating cells. Mouse Utx is an X-linked H3K27
demethylase that is essential for embryonic development.
We now demonstrate that Uty, the Y-chromosome
homolog of Utx, has overlapping redundancy with Utx in
embryonic development. Mouse UTY has a polymorphism
in the JmjC demethylase domain that renders the protein
incapable of H3K27 demethylation. Therefore, the over-
lapping function of UTX and UTY in embryonic develop-
ment is due to H3K27 demethylase independent mecha-
nism. Moreover, the presence of UTY allows UTX-deficient
mouse embryos to survive until birth. Thus, UTX H3K27
demethylation is not essential for embryonic viability.
These intriguing results raise new questions on how
H3K27me3 repression is removed in the early embryo.

UTX/UTY Histone Demethylase-Independent Function
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Figure 1. Utx mutant alleles. (A) Schematics of mouse mutations in Utx. Included are annotations and locations of where the protein would be
mutated. Two Utx mutant alleles included a gene trap in intron 3 (XUtxGT1) and a gene trap/floxed exon 3 (XUtxGT2fl). A UTX protein annotation is
illustrated at the top to indicate to positions of Utx alleles. A germline Cre recombinase deleted exon 3 in the XUtxGT2fl background to create XUtxGT2D.
Additionally, the gene trap of XUtxGT2fl was excised with Flp recombinase to create a standard floxed exon 3 (XUtxfl) and Cre recombination created
XUtxD. (B) Western blotting of E18.5 liver demonstrates a complete loss of UTX in XUtxGT1 YUty+ lysates. RbBP5 was used as a loading control. (C)
Western blotting of E10.5 whole embryo demonstrates a complete loss of UTX in XUtxD YUty+ and XUtxD XUtxD lysates. RbBP5 was used as a loading
control. (D) Western blotting of E12.5 primary MEFs demonstrates a reduction of UTX in XUtxGT2fl YUty+ and XUtxGT2fl XUtxGT2fl lysates. RbBP5 was used as
a loading control.
doi:10.1371/journal.pgen.1002964.g001
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Homozygous Utx females are mid-gestational embryonic
lethal

Human UTY lacks demethylase activity based on in vitro assays, so

we hypothesized that XUtx2 XUtx2 homozygous females will pheno-

copy XUtx2 YUty+ hemizygous males in demethylase dependent

function (UTX specific), but may demonstrate a more severe

phenotype in demethylase independent roles. Homozygous XUtxGT1

XUtxGT1 and XUtxGT2D XUtxGT2D females were never observed at

weaning or embryonic day E18.5 (Table 1), but were observed at

expected genotype frequencies at E10.5. However, these embryos were

dead and resorbed by E12.5 (Table 1). Notably, at E10.5 all

homozygous XUtxGT1 XUtxGT1 and XUtxGT2D XUtxGT2D females were

smaller in size and had open neural tubes in the midbrain region

(Figure 3A-ii, iii, vi, vii). Variation in severity of the Utx homozygous

phenotypes was observed in mutant embryos, ranging from medium

sized with typical E10.5 features (Figure 3A-ii, vi) to much smaller

embryos resembling the E9.5 timepoint (Figure 3A-iii, vii). The XUtxGT1

and XUtxGT2D alleles failed to complement, as trans-heterozygous

XUtxGT1 XUtxGT2D female embryos resembled individual homozygous

alleles (Figure 3A-viii). Hemizygous XUtxGT1 YUty+ male embryos

appeared phenotypically normal at E10.5 (Figure 3A-iv). Homozygous

XUtxGT2fl XUtxGT2fl females exhibited a slight reduction in phenotypic

severity; about half of the mutant embryos had open neural tubes and

some survival to E12.5 (Table 1). To distinguish between embryonic

Table 1. Genotype frequencies of Utx and Uty mutant mice.

Genotype frequencies of Utx hemizygous mutant males

Geno: XUtxGT1 YUty+ XUtxGT2D YUty+ XUtxGT2fl YUty+

Stage: Obs(Ex) p-value Obs(Ex) p-value Obs(Ex) p-value

E10.5 42(47) 0.43 60(60) 0.38 - -

E18.5 26(30) 0.30 31(22) 0.05 - -

P25 27(85) 0.00 3(10) 0.10 14(31) 0.00

Genotype frequencies of Utx homozygous mutant females

Geno: XUtxGT1 XUtxGT1 XUtxGT2D XUtxGT2D XUtxGT2fl XUtxGT2fl

Stage: Obs(Ex) p-value Obs(Ex) p-value Obs(Ex) p-value

E10.5 47(42) 0.62 58(60) 0.38 - -

E12.5 0(11) 0.00 0( 6) 0.04 17(25) 0.04

E14.5 - - - - 0( 8) 0.01

E18.5 0( 9) 0.01 0(20) 0.00 - -

P25 0(21) 0.00 - - - -

Genotype frequencies of Uty hemizygous mutant males and Utx/Uty compound hemizygous mutant males

Geno: XUtx+ YUtyGT XUtxGT1 YUtyGT XUtxGT2D YUtyGT

Stage: Obs(Ex) p-value Obs(Ex) p-value Obs(Ex) p-value

E10.5 - - 3( 3) 0.97 33(36) 0.42

E18.5 - - 0(29) 0.00 0(17) 0.00

P25 40(47) 0.18 - - - -

Observed (Obs) and expected (Ex) frequencies of indicated genotypes (Geno) at embryonic (E) or postnatal (P) developmental stages with x2 p-values (p-value) for the
corresponding crosses to obtain each genotype.
doi:10.1371/journal.pgen.1002964.t001

Figure 2. Hemizygous male Utx mutant mice are runted. (A) Hemizygous male Utx mutant mice are runted in size. Wild type male XUtx+ Y+

mice are displayed next to hemizygous XUtxGT1 Y+ mice. (B) The hemizygous mice exhibit a smaller size throughout adulthood.
doi:10.1371/journal.pgen.1002964.g002
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and extraembryonic contribution of UTX towards the homozygous

phenotype, we crossed the Sox2Cre transgene into the Utxfl background.

In this cross, paternally inherited Sox2Cre expression will drive Utx

deletion specifically in embryonic tissue [40]. No XUtxfl XUtxfl, Sox2Cre

female embryos were recovered at E18.5, whereas XUtxfl YUty+, Sox2Cre

male embryos were recovered at expected frequencies (Table S2). At

E10.5, XUtxfl XUtxfl, Sox2Cre embryos produced phenotypes largely

identical to Utx homozygotes. In summary, Utx homozygous females

demonstrate a significantly more severe embryonic phenotype in

comparison to Utx hemizygous males.

Mid-gestational lethality is typically associated with defective

cardiovascular development. Accordingly, we observed both heart

and yolk sac vasculature/hematopoietic phenotypes in Utx homozy-

gotes. Utx homozygous mutant hearts were small and underdeveloped,

and more severe embryos exhibited peri-cardial edema (Figure 3A-ii,

iii, vi, vii). The yolk sac vasculature of Utx homozygotes was pale with a

reduction in the amount of vascular blood (Figure 3B-ii). In more

severe examples, homozygous yolk sacs were completely pale with

an unremodeled vascular plexus (Figure 3B-iii). Thus, abnormal

cardiovascular function may be a source of lethality and develop-

mental delay in Utx homozygous mutant embryos.

UTX and UTY have redundant function in embryonic
development

The most likely explanation for the disparity between Utx

hemizygotes and homozygotes is that UTY can compensate for the

loss of UTX in embryonic development. We tested Utx and Uty

expression in embryonic development to assess any overlap in

expression patterns. Utx expression was initially gauged utilizing the

B-galactosidase reporter in XUtx+ XUtxGT1 and XUtxGT1 XUtxGT1 whole

mount E10.5 embryos. Utx was expressed at lower levels throughout

the E10.5 embryo with a particular enrichment in the neural tube and

otic placode (Figure S3A-ii, iii, iv). In situ hybridization for both Utx and

Uty demonstrated similar expression patterns characterized by

widespread low-level expression with particular enrichment in the

neural tube (Figure S3B-ii, iii, v, vi). Our analysis of publicly available

RNA-seq data sets [41,42] revealed similar low-levels of expression for

Utx and Uty.

Figure 3. Homozygous female Utx mutant embryos have mid-gestational developmental delay. (A) Compared to controls (A-i and A-v),
homozygous female E10.5 XUtxGT1 XUtxGT1 (A-ii) and XUtxGT2D XUtxGT2D (A-vi) embryos have some developmental delay including smaller size,
underdeveloped hearts (white arrows), and open neural tube in the head (arrowheads). More severe embryos resemble the size and features of E9.5
embryos with cardiac abnormalities and peri-cardial edema (A-iii, vii, red arrows). Hemizygous male XUtxGT1 YUty+ embryos appear phenotypically
normal at this stage (A-iv). The XUtxGT1 and XUtxGT2D alleles fail to complement as female XUtxGT1 XUtxGT2D embryos have identical phenotypes to
homozygotes (A-viii). (B) At E10.5, homozygous XUtxGT1 XUtxGT1 female embryos exhibit either normal yolk sac vasculature with a reduction in red
blood cells (B-ii) or have a completely pale yolk sac with unremodeled vascular plexus (B-iii).
doi:10.1371/journal.pgen.1002964.g003
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To determine whether UTY can compensate for the loss of UTX,

we obtained the Welcome Trust Sanger Institute gene trap line

UtyGt(XS0378)Wtsi, designated as YUtyGT (Figure 4A). This line, inserted in

intron 4, traps the Uty transcript in a similar position of the coding

sequence as the Utx alleles (compare to Figure 1A). This gene trap line

was verified by RT-PCR in ES cells and subsequent mice (Figures S1

and S2G), and it achieved a 99% reduction in Uty expression from

XUtx+ YUtyGT mouse tail RNA (Figure 4B). Hemizygous Uty mutant

males, XUtx+ YUtyGT, were viable and fertile (Table 1). However, no

compound hemizygous XUtxGT1 YUtyGT and XUtxGT2D YUtyGT embryos

were recovered at E18.5 (Table 1). At E10.5, expected genotype

frequencies of XUtxGT1 YUtyGT and XUtxGT2D YUtyGT males were

observed, but these embryos phenocopied the developmental delay,

neural tube closure, cardiac, and yolk sac defects observed in Utx

homozygous embryos (Figure 4C-iii, iv).

UTX and UTY redundancy is essential for progression of
cardiac development

We performed a more detailed phenotypic assessment of Utx

and Uty mutant hearts to scrutinize the extent of phenotypic

overlap between XUtx2 YUty+, XUtx2 XUtx2, and XUtx2 YUty2

embryos. Analysis of cardiac development in similar sized E10.5

embryos (Figure 5A-i, ii, iii, iv) revealed that Utx homozygotes and

Utx/Uty compound hemizygotes failed to complete heart looping

(Figure 5A-vi, viii), whereas Utx heterozygotes and hemizygotes

were phenotypically normal (Figure 5A-v, vii). Additionally,

homozygotes and compound hemizygotes had smaller hearts with

a lack of constriction between the left and right ventricles.

Sectioning of E10.5 hearts confirmed that Utx homozygotes and

Utx/Uty compound hemizygotes have small hearts with a

reduction in ventricular myocardial trabeculation and little or no

initiation of interventricular septum formation (Figure 5B-ii, iv).

The outer ventricular wall of these embryos is much thinner, and

the overall number of cardiomyocytes and myocardial structure is

severely deficient (Figure 5C-ii, iv). In summary, while mid-

gestational hearts appear normal in XUtx2 YUty+ hemizygous

males, XUtx2 XUtx2homozygous females and XUtx2 YUty2

compound hemizygous males display identical deficiencies in

cardiac development. Therefore, UTY compensates for the loss of

UTX in hemizygous Utx mutant males, rescuing mid-gestational

cardiac phenotypes.

Figure 4. UTX and UTY have essential, redundant functions in embryonic development. (A) Schematic of mouse mutation in Uty. The Uty
gene trap YUtyGT is located in intron 4. Protein annotation is illustrated at the top to denote the location of the gene trap within the Uty coding
sequence. (B) Quantitative RT-PCR downstream of the gene trap (exon 15) from tail RNA of X+ YUtyGT mice demonstrates essentially no mutant RNA.
(C) XUtxGT2D YUtyGT males (C-iii, iv) have identical phenotypes to XUtxGT2D XUtxGT2D females (Figure 3A-vi, vii). Arrowheads denote open neural tube in
the head, while white and red arrows denote moderate and more severe cardiac phenotypes.
doi:10.1371/journal.pgen.1002964.g004
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Mouse and human UTY are incapable of H3K27
demethylation in vivo

UTX and UTY have redundant function in embryonic

development, but it is not known whether mouse UTY is capable

of H3K27 demethylation. Two independent publications demon-

strated that human UTY has no catalytic activity in H3K27

demethylation in vitro [26,29]. It is possible that human UTY (and

not mouse UTY) has accumulated a specific polymorphism

rendering it demethylase deficient. Additionally, in vitro assays

remove UTY from its natural cellular context and may lack co-

factors required to promote H3K27 demethylation. Therefore, we

utilized an intracellular, in vivo demethylation assay, whereby

HEK293T cells transiently over-expressing the UTX carboxy-

terminus (encoding the JmjC and surrounding domains essential

Figure 5. UTX and UTY redundancy is essential for progression of cardiac development. (A) Similar sized Utx heterozygous (i), Utx
homozygous (ii), Utx hemizygous (iii), or Utx/Uty compound hemizygous (iv) embryos were analyzed in more detail for cardiac developmental
abnormalities. Frontal views of the respective hearts of these embryos revealed that Utx homozygotes and Utx/Uty compound hemizygotes (A-vi, viii)
have smaller hearts that have not completed looping relative to Utx heterozygotes (A-v) or hemizygotes (A-vii). A white dashed line was drawn at an
identical angle in all panels to illustrate the failure of hearts to loop around in alignment with this appropriate plane. Only control and Utx
hemizygous embryos (A-v, vii) have initiated the formation of the interventricular groove (white arrows), indicative of early interventricular septum
development. (B) Transverse sections of E10.5 XUtxGT2D XUtxGT2D (B-ii) and XUtxGT2D YUtyGT (B-iv) embryos reveal smaller heart size with defects in
ventricular myocardial trabeculation and organization. The control and Utx hemizygous hearts initiated the formation of the interventricular septum
(B-i, iii, IVS, black arrow), while other mutant combinations (B-ii, iv) have not (red asterisk). RA and LA = Right and Left Atrium, and RV and LV = Right
and Left Ventricle. (C) More magnified images further illustrate the narrowing of the ventricular wall (red scale) and the lack of myocardial cells and
structure in Utx homozygotes and Utx/Uty compound hemizygotes (Epi = epicardium, MC = myocardium, Endo = Endocardium).
doi:10.1371/journal.pgen.1002964.g005

UTX/UTY Histone Demethylase-Independent Function
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for proper structure and function) exhibit a reduction in

H3K27me3 immunofluorescence levels [43]. In our assay, wild

type and mutant constructs were expressed at similar levels (Figure

S4A), and individual cells expressing similar, medium-high

expression levels of each construct were selected for analysis

(Figure 6). Expression of Flag-tagged human and mouse UTX

demethylated H3K27me3 and H3K27me2, while a mutation

known to disrupt activity (H1146A) was unable to demethylate

H3K27 (Figure 6A and 6B, Figure S5A). Human UTX expression

had no effect on other histone modifications we tested, such as

H3K4me2 (Figure S5B). In contrast, neither human nor mouse

UTY were capable of demethylating H3K27me3 and H3K27me2

(Figure 6A and Figure S5A). Cells expressing medium-to-high

levels of UTY (N.100) never exhibited a reduction in H3K27me3

levels relative to nearby untransfected controls.

Our previous structural analysis of human UTX [43], combined

with sequence alignments (Figure 6C and Figure S6), suggested

several amino acid substitutions in human and mouse UTY

sequences might make them catalytically inactive. We introduced

these mutations into the human UTX C-terminal fragment

(Y1135C, T1141I, SNR1025NKS, G1172D/G1191S, I1267P,

I1267V, and H1329P), and examined their effects on the in vivo

demethylation activity. Of all the mutations tested, only the

Y1135C and T1143I mutations completely abolished the ability of

UTX to demethylate H3K27 (Figure 6B, 6D). Complete loss of

activity was similarly caused by mutations of the corresponding

residues in JMJD3 (Y1377C and T1385I, Figure 6D). All

qualitative data was also confirmed by immunofluorescence

quantification (Figure S4B). Y1135 is conserved throughout all

H3K27 demethylases (Figure S7), and in the crystal structure [43],

it interacts with two of the three methyl groups of the H3K27me3

side chain, as well as N-oxalylglycine (NOG; an analog of the

cofactor alpha-ketoglutarate) (Figure 6E). The smaller C947 side

chain of mouse UTY would not effectively maintain either

interaction. T1143 is conserved throughout H3K27, H3K9, and

H3K36 demethylases (Figure S8), and also interacts with NOG

(Figure 6E). Its replacement with bulky isoleucine not only

removes the hydroxyl group for interaction with alpha-ketogluta-

rate, but also may sterically hinder its binding. These observations

are consistent with the fact that no H3K27 demethylation activity

has been detected for mouse UTY, and we therefore conclude that

the catalytic domain of mouse UTY has crucial amino acid

replacements that render the protein incapable of H3K27

demethylation. On the other hand, we failed to identify why

human UTY is catalytically inactive. Notably, restoring the 2

crucial mouse UTY polymorphisms (M-UTY C947Y, I955T)

failed to recover H3K27 demethylase activity (Figure 6B). These

data suggest that unidentified structural elements in the UTY C-

terminal region are also responsible for the lack of H3K27

demethylase activity.

UTX and UTY associate in common protein complexes
and are capable of H3K27 demethylase independent
gene regulation

Although human and mouse UTY have lost the ability to

demethylate H3K27, they retain considerable sequence similarity

with UTX, suggesting a conserved function. To gain more insight

into the overlap in UTX and UTY activities, we performed a

biochemical analysis of tagged constructs to determine if UTX and

UTY can associate in common protein complexes. Co-transfection

of Flag tagged UTX or UTY with HA-UTX followed by

immunoprecipitation demonstrates that UTX can form a multi-

meric complex with itself and UTY (Figure 7A). UTX associates

with a H3K4 methyl-transferase complex containing MLL3,

MLL4, PTIP, ASH2L, RBBP5, PA-1, and WDR5 [23,44]. To

examine incorporation into this complex, we performed immu-

noprecipitations with Flag tagged UTX and UTY constructs. Both

UTX and UTY were capable of associating with RBBP5

(Figure 7B). Thus, UTX and UTY are incorporated into common

protein complexes.

To identify common gene targets of UTX and UTY mediated

regulation we generated E10.5 mouse embryonic fibroblast (MEF)

cell lines containing mutations in Utx and Uty (alleles XUtxGT2D and

YUtyGT). The gene traps in these MEFs efficiently trapped Utx and

Uty transcripts (Figure 7C). These MEFs did not demonstrate

differences in levels of global H3K27me3 (Figure S9A). Genome-

wide UTX promoter occupancy has been mapped in fibroblasts

[30]. Therefore, we screened our mutant MEFs for misregulated

genes affected by the loss of both Utx and Uty that had been

documented as direct UTX targets. The FNBP1 promoter is

bound by UTX [30]. We verified UTX and UTY binding to the

Fnbp1 promoter by ChIP (Figure S9B and S9C). Fnbp1 expression

was reduced to 68% of WT levels in XUtx2 YUty+ MEFs, but was

further compromised to 42% in XUtx2 XUtx2 lines and 48% in

XUtx2 YUty2 MEFs in which all Utx and Uty activity was lost

(Figure 7C). Analysis of E12.5 MEFs of a secondary allele

(XUtxGT2fl) also demonstrated diminished Fnbp1 expression in both

Figure 6. Human and mouse UTY have no H3K27 demethylase activity. (A) HEK293T cells were transfected with Flag-tagged C-terminal
human (H) and mouse (M) UTX and UTY constructs. The C-terminal fragments span AA 880–1401 in human UTX (Figure S6) and include the
corresponding regions in mouse UTX. Transfected cells (white arrows) over-expressing H-UTX and M-UTX (Flag immunofluorescence, green pseudo-
color) exhibited global loss of H3K27me3 immunofluorescence (red pseudo-color). Cells transfected with H-UTY and M-UTY C-terminal constructs did
not demethylate H3K27me3. (B) H3K27me3 demethylase assay of UTX and UTY mutant constructs. H-UTX H1146A contains a point mutation in a
residue that was previously reported as defective in H3K27 demethylation. Cells expressing H-UTX H1146A had no loss of H3K27me3. Mouse UTY has
a Y to C amino acid change that corresponds to position 1135 in human UTX. This UTX residue is predicted to regulate H3K27me3 binding and
demethylation. Expression of H-UTX Y1135C failed to demethylate H3K27me3. Mouse UTY also has a T to I amino acid change that corresponds to
position 1143 in human UTX that is predicted to regulate binding of ketoglutarate in the demethylase reaction. Expression of H-UTX T1143I failed to
demethylate H3K27me3. Correction of these two altered residues in mouse Uty (M-UTY-C947Y, I955T) failed to recover H3K27me3 demethylase
activity. (C) Alignment of the JmjC domains of human/mouse UTX human UTY, mouse UTY, and human/mouse JMJD3. UTY non-conservative
substitutions are indicated by white boxes and residues of interest are labeled with red asterisks. The UTX mutations that were analyzed are listed
above the alignment, while JMJD3 mutations are listed below the alignment. (D) HEK293T cells were transfected with C-terminal UTX and UTY
constructs or full-length mouse JMJD3 constructs carrying various AA substitutions. Medium-high expressing cells (N$100 cells scored for each
experiment) were scored for any visible reduction in H3K27me3 levels relative to nearby untransfected cells. 100% of WT H-UTX, M-UTX and M-JMJD3
expressing cells had observable H3K27me3 demethylation. The negative controls of H-UTX H1146A, M-JMJD3 H1388A, and M-JMJD3 with deletion of
the JmjC domain had no visible H3K27me3 demethylation (0% of cells). Wild type H-UTY and M-UTY had 0% of cells with detectable demethylation.
Of the point mutations in UTY predicted to affect H3K27me3, only mutation of H-UTX Y1135C and T1143I with corresponding M-JMJD3 Y1377C and
T1385I had no cells with any detectable H3K27 demethylation (0%). (E) Stereo view of the active site of human UTX (PDB ID: 3AVR). The
corresponding residues in mouse UTY are also indicated in parentheses. The figure was prepared with the program Pymol (Schrodinger LLC).
doi:10.1371/journal.pgen.1002964.g006
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Figure 7. UTX and UTY associate in common protein complexes and are capable of H3K27 demethylase independent gene
regulation. (A) Co-transfection of HA-UTX with Flag-UTX or Flag-UTY demonstrates that HA-UTX can immunoprecipitate with both Flag-UTX and
Flag-UTY. (B) Immunoprecipitation of Flag-UTX and Flag-UTY reveal interaction with RBBP5, a component of the H3K4 methyl-transferase complex.
Flag vector transfection was used as a negative control for immunoprecipitation. (C) Fnbp1, a gene targeted directly by UTX, has intermediate
downregulation in XUtx2 YUty+ MEFs (68% of WT, t-test p-value = 0.002), but was further compromised in XUtx2 XUtx2 (42% of WT, t-test p-value relative
to XUtx2 YUty+ = 0.001) and XUtx2 YUty2 (48% of WT, t-test p-value relative to XUtx2 YUty+ = 0.02, N.4 independent MEF lines per genotype) MEFs. MEFs
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XUtx2 XUtx2 and XUtx2 YUty2 MEFs (Figure 7D). Therefore,

Fnbp1 expression is positively regulated by both UTX and UTY.

To examine the role of UTX and UTY in Fnbp1 regulation, we

performed H3K27me3 ChIP on E12.5 XUtx+ YUty+ or XUtx2

XUtx2 MEFs (Figure 7E). Quantitative PCR for an intergenic

region served as a negative control, while HoxB1 served as a

positive control for H3K27me3. Quantitative PCR demonstrated

that the Fnbp1 promoter has relatively low levels of H3K27me3

with no additional accumulation in XUtx2 XUtx2 MEFs (Figure 7E).

Alternatively, H3K4me3 significantly accumulated at the Fnbp1

promoter (Figure 7F). Notably, a loss of Fnbp1 H3K4me3 was

observed in XUtx2 XUtx2 MEFs (Figure 7F). Therefore, UTX and

UTY appear to function in Fnbp1 activation by regulating

promoter H3K4 methylation rather than H3K27 demethylation.

UTX and UTY can both associate with heart transcription
factors to regulate downstream target genes

It has been documented that UTX can associate with heart

transcription factors and with the SWI/SNF chromatin remo-

deler, BRG1 [39]. It has been hypothesized that UTX

association with these factors mediates H3K27 demethylase

dependent and demethylase independent induction of the

cardiomyocyte specification program. As UTX and UTY have

redundant demethylase independent function in embryonic

development, we examined whether UTY can also associate

with these proteins. Co-transfection of Myc-UTY with Flag-

BRG1 followed by immunoprecipitation demonstrated that

UTY associates with BRG1 (Figure 8A). Myc-UTY also co-

immunoprecipitated with Flag-NKX2–5, Flag-TBX5, and Flag-

SRF (Figure 8B and Figure S10A). Thus, UTY can form the

same protein complexes as UTX with respect to BRG1 and

heart transcription factors.

To examine function of UTY in directing activation of

downstream heart transcription factor targets, we assessed the

regulation of one previously characterized target, atrial natriuretic

factor (ANF) [39]. Co-transfection of NKX2–5 with a ANF

promoter-Luciferase reporter construct demonstrated a significant

upregulation in expression off the ANF promoter (Figure 8C). The

reporter expression was significantly enhanced when NKX2–5

was co-transfected with UTY (Figure 8C). The level of ANF

reporter transcriptional enhancement was relatively weaker with

UTY as compared to UTX, but this is most likely due to a

reduction in the transfection efficiency of full-length UTY relative

to UTX (as demonstrated in Figure 7A and 7B). UTY also

significantly enhanced the ANF reporter response to TBX5

(Figure S10B). Finally, ANF expression was significantly affected in

the hearts of only XUtx2 XUtx2 and XUtx2 YUty2 embryos (with

52% and 57% level of expression respective to XUtx+ YUty+

controls, Figure 8D). XUtx2 YUty+ hemizygotes only had a

moderate loss of ANF expression (76% expression level respective

to XUtx+ YUty+) that was not statistically significant from wild type

controls due to the variability in ANF expression. In summary,

both UTX and UTY can associate with heart transcription factors

to modulate expression of downstream targets.

Discussion

We have undertaken a rigorous genetic analysis contrasting

UTX and UTY function in mouse embryonic development. In

alignment with current literature, Utx homozygous females are

lethal in mid-gestation with a block in cardiac development [39].

We now demonstrate that Utx hemizygous mutant males are

viable at late embryonic timepoints in expected Mendelian

frequencies. In fact, approximately 25% are capable of reaching

adulthood. Our comprehensive phenotypic analysis of Utx

hemizygous males illustrates that these embryos are phenotypically

normal at mid-gestation and lack the cardiovascular dysfunction of

Utx homozygous females. This stark phenotypic disparity suggests

that UTY may compensate for the loss of UTX in the male

embryo. Compound hemizygous Utx/Uty mutant male embryos

phenocopy the cardiovascular and gross developmental delay of

homozygous females, proving that UTX and UTY have

redundant function in embryonic development. As we have

demonstrated that mouse UTY lacks H3K27 demethylase activity

in vivo, the overlap in embryonic UTX and UTY function is due to

H3K27 demethylase independent activity. Given the widespread

developmental delay and pleiotropy, it is difficult to assess the

primary defect and tissue(s) responsible for UTX and UTY

redundancy. The presence of functional UTY in Utx hemizygous

males is not capable of preventing peri-natal runting and lethality,

suggesting that UTX and UTY are not completely overlapping in

activity. These later phenotypes could be due to H3K27

demethylase dependent activity of UTX. Furthermore, the lack

of phenotype in Uty hemizygotes demonstrates the absence of any

essential UTY specific function in mouse development.

The UTY Jumonji-C domain has maintained high conservation

in the absence of catalytic H3K27 demethylase activity. JMJD3

mediated regulation of lymphocyte Th1 response requires an

intact Jumonji-C domain, but is also not dependent on H3K27

demethylation [37]. Therefore, this domain may be an essential

structural protein component, a protein binding domain, or a

domain that may demethylate non-histone substrates. UTX and

UTY can associate in a common protein complex and can both

interact with RBBP5 of the H3K4 methyl-transferase complex.

UTX, UTY, and JMJD3 all associate with H3K4 methyl-

transferase complexes from multiple mouse and human cell types

[23,25,44,45]. The Fnbp1 promoter is bound by UTX, and gene

expression is positively regulated by both UTX and UTY in

MEFs. Based on our histone profiling at this locus, UTX and UTY

affect the deposition of H3K4 methylation, not H3K27me3

demethylation. Therefore, the common UTX/UTY pathway in

embryonic development may involve gene activation rather than

removal of gene repression. JMJD3 has been linked more directly

to transcriptional activation as the protein complexes with and

facilitates factors involved in transcriptional elongation [46]. One

cardiac target of UTX regulation, atrial natriuretic factor (ANF),

was misregulated in ES cell differentiation [39]. Cell culture

experiments suggest that ANF may be a target of both H3K27

demethylase dependent and demethylase independent regulation;

however, this study could not distinguish UTX versus UTY

were generated from the XUtxGT2D and YUtyGT alleles. (D) Fnbp1 is similarly mis-expressed in XUtxGT2fl allelic combinations of E12.5 MEFs. XUtx2 XUtx2 and
XUtx2 YUty2 MEFs significantly differ from XUtx2 YUty+ MEFs (t-test p-value = 0.05 and 0.02 respectively, N.4 independent MEF lines per genotype). (E)
H3K27me3 ChIP was performed on E12.5 XUtx+ YUty+ control (green) and XUtx2 XUtx2 (red) MEFs. An IgG antibody control is indicated in grey.
Quantitative PCR for the ChIP was performed over a negative control region (an intergenic region) as well as a positive control (HoxB1). Fnbp1 failed
to accumulate H3K27me3 in XUtx2 XUtx2 MEFs (t-test p-value = 0.5, N = 4 independent MEF lines per genotype). (F) H3K4me3 ChIP was performed on
E12.5 XUtx+ YUty+ control (green) and XUtx2 XUtx2 (red) MEFs. An IgG antibody control is indicated in grey. Quantitative PCR for the ChIP was performed
over a negative control region (intergenic region) as well as a positive control (Npm1). The WT Fnbp1 promoter exhibited significant H3K4me3
accumulation, which was reduced in XUtx2 XUtx2 MEFs (t-test p-value = 0.005, N = 3 independent MEF lines per genotype).
doi:10.1371/journal.pgen.1002964.g007
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Figure 8. UTY associates with BRG1 and heart transcription factors, and regulates downstream ANF gene expression. (A) Myc-UTY
was co-transfected with a Flag vector control or Flag BRG1 and immunoprecipitated with Flag-Agarose beads. Myc-UTY specifically
immunoprecipitates with Flag-BRG1. (B) Myc-UTY was co-transfected with the Flag vector control or Flag-NKX2–5. Myc-UTY was co-
immunoprecipitated by Flag-NKX2–5. (C) ANF:Luciferase reporter assay. HEK293T were transfected with the reporter ANF:Luciferase construct
alone (-), with NKX2–5, with NKX2–5 and UTY, or with NKX2–5 and UTX. Reporter activity was significantly enhanced with the addition of UTY (t-test
p-value = 0.01). Right panel illustrates the comparison of UTY versus UTX enhancement of NKX2–5 driven ANF expression. N = 3 independent
transfections per group. (D) Anf expression was analyzed from E10.5 heart RT-PCR of various XUtxGT2D and YUtyGT allelic combinations. A moderate, but
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function in ES cell differentiation. Both UTX and UTY affect the

transcriptional response of an exogenous ANF reporter in the

presence of heart specific transcription factors, suggesting that

UTX and UTY can operate more directly by aiding in

transcriptional activation of this gene rather than altering

chromatin structure. Consistently, ANF expression was affected

in XUtx2 XUtx2 and XUtx2 YUty2 embryonic hearts. UTX and

UTY can both associate with the SWI/SNF chromatin remodeler

BRG1, which has been hypothesized to mediate histone

demethylase independent gene regulation, but the relevance and

mechanism of this interaction is not known. Drosophila UTX

associates with BRM (orthologous to BRG1) and CBP (a H3K27

acetyl-transferase), and the coupling of H3K27 demethylation with

H3K27 acetylation may be essential for switching from a silent to

active state [47].

Female cells are subject to gene silencing of one X-chromosome

(X-inactivation) to balance gene dosage with males. Theory on

establishing X-inactivation for X-Y chromosome homologs

hypothesizes that the initial entry step is loss of function or

expression of the Y homolog to create dosage imbalance [38]. This

prediction also dictates that conservation of X-Y homolog function

will maintain gene dosage between sexes, and the female X-

homolog will not experience pressure to inactivate. Utx and Uty

represent a unique paradox to this untested theory; UTY has lost

demethylation activity yet Utx escapes X-inactivation. We now

demonstrate that UTX and UTY have retained embryonic

redundancy, verifying the presumed correlations between X-

inactivation escape and functional dosage balance. Zfx, Sox3, and

Amelx represent unbalanced X-chromosome genes; they have

similar hemizygous and homozygous mutant phenotypes indicat-

ing that the Y chromosome homologs have lost redundant

function [48,49,50,51,52,53,54]. Zfx and Sox3 are inactivated,

while the Amelx inactivation status is unknown [55,56]. Of all

mouse X and Y chromosome homologs, only Utx, Kdm5c, and

Eif2s3x are known to escape X-chromosome inactivation

[28,56,57,58]. Interestingly, both KDM5C (SMCX) and its Y

chromosome homolog, KDM5D (SMCY) have retained catalytic

activity in demethylation of H3K4 di and tri-methyl residues

[59,60,61,62]. In contrast to Utx X-chromosome escape driven by

demethylation independent redundancy, Kdm5c may escape

inactivation due to demethylation dependent redundancy. Our

study is the first to demonstrate that an X-Y homologous pair that

escapes X inactivation maintains functional conservation, and this

escape may stem from an evolutionary benefit to maintain UTY

demethylation independent function.

H3K27 demethylases are hypothesized to function in early

developmental activation of ‘‘bivalent’’ PRC2 targets by coordi-

nating H3K27 demethylation with H3K4 methylation. The

H3K27 demethylation dependent phenotype (UTX specific) of

Utx hemizygotes is not apparent until birth. The UTX H3K27

demethylase activity is dispensable for function in C. elegans [63].

Remarkably, the mammalian embryo, having numerous examples

of H3K27me3 repression in early development, can survive to

term without UTX histone demethylation. It is possible that there

is further redundancy between UTX and JMJD3. JMJD3 mutant

mice are not well characterized, but have been reported to be peri-

natal lethal with distinct features in comparison to Utx hemizygotes

[32]. Therefore, it is likely that JMJD3 has distinct targets in

development. Overall, the earliest H3K27 demethylation depen-

dent phenotypes for all members of this gene family do not

manifest until late embryonic development. This timepoint is

much later than the converse early embryonic phenotypes from

mutations in the H3K27 methyl-transferase complex [7,21,22].

Thus, there appears to be a lack of interplay between H3K27

methylation and demethylation in gene regulation, and the early

embryonic removal of H3K27me3 from PRC2 mediated processes

(such as ES cell differentiation, reactivation of the inactive X-

chromosome, or establishing autosomal imprinting) may involve

other mechanisms such as histone turnover or chromatin

remodeling. H3K27 demethylases may certainly have crucial

roles in the specification of progenitor cell populations of organ

systems essential in peri-natal or postnatal viability, and genetic

model systems will best assess the functional impact that H3K27

demethylation plays in these processes.

Methods

Cell culture and constructs
HEK293T were maintained in DMEM supplemented with

Glutamine, Pen-Strep, and 10%FBS. Flag-Human UTX (Plasmid

#17438) and UTY (Plasmid #17439) were obtained through

Addgene [29]. The N-terminus of H-UTX and H-UTY were

deleted with QuikChange Lightning (Agilent) as directed produc-

ing H-UTX C-terminus 880–1401 (Genbank: NP_066963.2) and

H-UTY C-terminus 827–1343 (Genbank: NP_009056.3, an N-

terminal His tag was also incorporated into both constructs). Site

directed mutagenesis was performed via QuikChange Lightning

(Agilent) as directed to produce point mutations. The mouse UTX

C-terminus (880–1401) deviated from Human UTX at 2 residues,

R1073K and S1263N (According to the Sanger Vega server, the

primary Utx transcript Kdm6a-001 encodes for Genbank:

CAM27157, we also detected this transcript in E14 ES cell RT-

PCR). These changes were created in the H-UTX C-terminus to

generate the M-UTX construct. The Flag-tagged mouse UTY C-

terminus (692–1212, Genbank: NP_033510.2) was subcloned by

RT-PCR of E14 ES cell RNA and introduced into the same vector

as the other UTX constructs (PCS2+MT backbone). HA tagged

H-UTX was obtained through Addgene [24]. Flag tagged mouse

JMJD3 was generously provided by Burgold et al. [27]. Flag

tagged BRG1 was obtained through Addgene (Plasmid #19143).

Flag tagged NKX2–5 (Plasmid #32969), TBX5 (Plasmid

#32968), and SRF (Plasmid #32971) were obtained through

Addgene and recombined into DEST26 (Invitrogen). Flag tagged

NKX2–5 was also generously provided by Benoit Bruneau [64].

Transfections, immunofluorescence, Western blotting,
antibodies

Transfection of HEK293T was accomplished with Lipofecta-

mine 2000 as directed (Invitrogen). Lipid complexes were removed

24 hours post-transfection, and analysis was performed after

48 hours total. Fixation, extraction, and immunofluorescence

were performed as described [65]. Immunofluorescence antibodies

include anti-Flag (Sigma F3165, 1:500), anti-H3K27me3 (Milli-

pore 07-449, 1:500), anti-H3K27me2 (Millipore 07-452, 1:500),

and anti-H3K4me2 (Millipore 07-030, 1:500). Cells were imaged

with Zeiss axiovision software. Image stacks were deconvolved and

z-projected. Quantification of H3K27me3 immunofluorescence

was performed on deconvolved z-projected stacks (with no pixel

not significant downregulation of ANF was observed in XUtx2 YUty+ hearts (76% of WT, t-test p-value = 0.06), but was significantly compromised in
XUtx2 XUtx2 (52% of WT, t-test p-value relative to XUtx+ YUty+ = 0.005) and XUtx2 YUty2 (57% of WT, t-test p-value relative to XUtx+ YUty+ = 0.02, N.4 per
genotype) hearts.
doi:10.1371/journal.pgen.1002964.g008
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saturation in images) using ImageJ software (NIH). The

average mean H3K27me3 signal was calculated for untrans-

fected and transfected cells in a given image. For each image,

the relative % H3K27me3 was determined, and the average

relative % H3K27me3 was calculated for .15 images per

construct. For western blotting, nuclear lysates were prepared

according to Invitrogen’s nuclear extraction protocol. Immu-

noprecipitations were carried out with 50 ml Flag beads (Sigma

A2220) in buffer A as described, using 500 mg (UTY-UTX,

RBBP5, BRG1, TBX5, SRF associations) or 1 mg (UTY-

NKX2–5 association) of lysate [44]. Immunoprecipitation

reactions were boiled off beads and run with 10% input on

an 8% SDS-PAGE gel. Histone extractions were prepared as

described [66]. Western blotting was performed as described

[67] with anti-Flag (Cell Signaling 2368, 1:4000), anti-RBBP5

(Bethyl Labs A300-109A, 1:5000), anti-HA (Roche

11867423001, 1:10000), anti-Myc (Abcam ab9132, 1:5000),

anti-H3K27me3 (Millipore 07-449, 1:2000), anti-H3 (Milli-

pore 06-755, 1:5000), and anti-UTX [24].

MEF generation, RT–PCR, and ChIP
E10.5 and E12.5 MEFs were generated by removal of the head

and interior organs of respective embryos. The remaining body

was passed through a 20G needle 66 and plated in DMEM

supplemented with Glutamine, Pen-Strep, and 15%FBS. After 3

passages, RNA was isolated with Trizol, and cleaned with an

RNeasy kit (Quiagen). RNA from 3 distinct WT XUtx+ YUty+ MEF

lines was compared to 3 XUtxGT2D XUtxGT2D lines on an Illumina

bead array (University of Tennessee Health Science Center). All

genes significantly decreased in XUtxGT2D XUtxGT2D MEFs were

cross-referenced to the list of UTX bound promoters in human

fibroblasts [30]. These genes were analyzed by qRT-PCR (Bio-

Rad SsoFast EvaGreen, CFX96 real time system) in all mutant

MEF combinations to identify UTY regulated genes. ChIP was

performed on these MEFs according to Rahl et al. [68]. MEFs

(56106 cells) were sonicated by a Branson Sonifier at 15% duty

cycle (0.7 s on 0.3 s off). ChIP was performed with anti-

H3K27me3 (Millipore 07-449, 10 ml), anti-H3K4me3 (Abcam

ab1012, 5 ml), anti-Myc (Abcam ab9132, 10 ml), anti-UTX (Santa

Cruz H-300, 50 ml), or Rabbit IgG (Sigma, I5006) and qPCR was

performed as described above.

Luciferase assay
We received the ANF promoter-Luciferase reporter construct

from Benoit Bruneau [69]. This construct was co-transfected in

the presence of NKX2–5 or TBX5 with or without UTX or

UTY. Luciferase activity was measured using the Promega Dual

Luciferase Reporter Assay System on the Promega Glomax

Multi Detection System. All readings were normalized to a

Renilla Luciferase control that was co-transfected with all

samples.

Mouse strains
Kdm6aGt(RRA094)Byg (XUtxGT1), Kdm6atm1a(EUCOMM)Wtsi (XUtxGT2fl),

and UtyGt(XS0378)Wtsi (YUtyGT) ES cells were obtained from

BayGenomics (through MMRRC), EUCOMM, and SIGTR

(through MMRRC) respectively. All ES cells were injected into

C57BL/6J host blastocysts for chimera generation. Chimeras were

crossed to CD1 to assess germline transmission, and were

maintained on either a mixed CD1 background or were

backcrossed to 129/SvJ or C57BL/6J. Sox2Cre and RosaFlp

transgenes were obtained from The Jackson Laboratory [40].

The VasaCre transgene was developed by Gallardo et al. [70].

Mouse crosses
All mouse experimental procedures were approved by the

University of North Carolina Institutional Animal Care and Use

Committee. Utx homozygous data was generated either by crosses

between Utx hemizygous males and Utx heterozygous females, or

by crosses between XUtxGT2fl YUty+ VasaCre males and XUtx+

XUtxGT2D heterozygous females. XUtxGT2fl YUty+ VasaCre males were

utilized because of an initial difficulty in generating XUtxGT2D YUty+

males and due to the efficient and specific activity of VasaCre in the

male germline [70]. Utx hemizygous phenotypic data was

developed from the previously mentioned homozygous crosses or

through crosses between a WT male and heterozygous Utx female.

Compound hemizygous Utx/Uty embryos were generated by

crossing heterozygous Utx females with hemizygous Uty males.

Embryos were PCR genotyped from yolk sac samples for Utx and

were sexed by a PCR genotyping scheme to distinguish Utx from

Uty. All primer sequences are available upon request.

Histology, in situ hybridization, and LacZ staining
Histology samples, in situ hybridization, and LacZ staining were

performed as described [71]. In situ hybridization probes were

generated to be identical to previous literature [72].

Supporting Information

Figure S1 Schematic of genotyping strategies for Utx and Uty

alleles. (A) The XUtxGT1 allele was genotyped with a three-primer

scheme spanning the insertion site in intron 3. (B) The XUtxGT2fl

allele was verified by Southern blotting with an HpaI restriction

digest. HpaI sites are noted as ‘‘H’’, and the 59 probe location is

marked as a red box. The introduction of a novel HpaI site within

the targeting cassette reduces the HpaI product from 17-Kb to 10-

Kb. A three-primer scheme was designed for genotyping. Due to a

deletion of intron 3 within the targeting vector, the product size of

primers 1-2 will be larger in WT than in XUtxGT2fl, even with the

introduction of the loxP site. Primers 3-2 will only amplify if Cre

recombination takes place to delete exon 3. (C) The YUtyGT

insertion site was not mapped because intron 4 is approximately

25-Kb. The allele was verified by a RT-PCR three-primer

genotyping scheme.

(TIF)

Figure S2 Verification of Utx and Uty alleles. (A–C) Verification

of the XUtxGT1 allele. (A) Trap specific primers between Utx exon 2

and the B-Gal reporter amplify the expected band in XUtxGT1 Y+

ES cells. WT male E14 ES cells were used as a control. (B) The

gene trap DNA location was mapped within Utx intron 3, and

primers were designed to distinguish wild type (WT) and gene trap

(GT) alleles in mice generated from these cells. (C) Quantitative

RT-PCR downstream of the gene trap (exons 23–25) from tail

RNA of XUtxGT1 Y+ mice demonstrate the gene trap effectiveness.

(D–F) Verification of the XUtxGT2fl allele. (D) Southern blotting of

WT and XUtxGT2fl Y+ ES cells using a 59 probe and HpaI digest

demonstrated the expected shift in banding due to a novel

restriction site. (E) A PCR genotyping scheme was designed to

distinguish WT (X+), XUtxGT2D, and XUtxGT2fl alleles in mice

produced from these ES cells. (F) Quantitative RT-PCR

downstream of the gene trap (exons 23–25) from tail RNA of

XUtxGT2fl Y+ mice demonstrate the gene trap effectiveness. (G)

Verification of the YUtyGT allele. A RT-PCR genotyping scheme

was designed to distinguish WT and YUtyGT alleles in ES cells.

(TIF)

Figure S3 Utx and Uty have similar expression patterns. (A)

Whole mount B-galactosidase reporter assay on XUtx+ XUtxGT1 (A-
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ii, iii) and XUtxGT1 XUtxGT1 (A-iv) E10.5 embryos. Embryos were

cleared in A-iii, iv. (B) In situ hybridization of Utx sense control (B-i,

iv), Utx antisense (B-ii, v), and Uty antisense (B-iii, vi) probes on

E10.5 sagittal sections of WT male embryos.

(TIF)

Figure S4 Mouse UTY and corresponding mutation of the

UTX catalytic domain abolish H3K27me3 demethylation. (A)

Western blot of transfections from the H3K27me3 demethylase

assay in Figure 6. Flag tagged UTX and UTY constructs are

expressed at similar levels in this assay, Rbbp5 blotting served as a

loading control. (B) Quantification of H3K27me3 immunofluo-

rescence assay from Figure 5. In a given image, the average

H3K27me3 immunofluorescence for transfected and untrans-

fected cells was quantified. The average of the % H3K27me3

immunofluorescence relative to untransfected cells was graphed

(N.15 images per transfection).

(TIF)

Figure S5 Mouse UTY has no H3K27me2 demethylase activity.

(A) HEK293T cells were transfected with Flag tagged C-terminal

human (H) and mouse (M) UTX and UTY constructs.

Transfected cells (white arrows) over-expressing H-UTX and M-

UTX (green channel) exhibited global loss of H3K27me2

immunofluorescence (red, top 2 panels). H-UTX Y1135C and

M-UTY had no loss of H3K27me2 (bottom 2 panels). (B)

Expression of WT H-UTX had no effect on H3K4me2.

(TIF)

Figure S6 Alignment of human and mouse UTX, UTY, and

JMJD3. Alignment of the C-terminal 880–1401 amino acids of H-

UTX and corresponding regions of human and mouse UTX,

UTY, and JMJD3. The JmjC domain is boxed in pink. Several

residues in H-UTX predicted to be important for H3K27

demethylation are mutated in mouse or human UTY. These

residues are boxed in black, and these point mutations were made

in H-UTX (listed above the box) or JMJD3 (listed below the box).

(TIF)

Figure S7 Alignment of the JmjC domain of UTX, UTY, and

JMJD3. JmjC domain sequences were aligned from all identified

homologs of UTX, UTY, and JMJD3. All species have UTX

residue H1146 and E1148 required for Iron binding in the

demethylase reaction. Y1135 crucial for H3K27me3 binding and

T1143 essential for ketoglutarate binding in the demethylase

reaction are conserved throughout all species except for mouse

UTY.

(TIF)

Figure S8 Alignment of the JmjC domain of KDM6, KDM2,

KDM7, and KDM3. JmjC domain sequences were aligned from

human, mouse, a non-mammalian vertebrate (if protein sequences

were available), and an invertebrate (if protein sequences were

available) species for identified KDM6, KDM2, KDM7, and

KDM3 family members. The UTX T1143 essential for ketoglu-

tarate binding in the demethylase reaction is conserved throughout

all species except for mouse UTY.

(TIF)

Figure S9 UTX mutant MEFs have unaltered levels of

H3K27me3 and FNBP1 is bound by UTX and UTY. (A) Western

blot of H3K27me3 and total H3 following histone extraction from

MEFs of the indicated genotypes. There is no change in the level

of global H3K27me3 in lines with loss of UTX. (B) HEK293T

cells were transfected with a Myc vector control, Myc-UTX or

Myc-UTY. ChIP was performed with Myc antibody and qPCR

tested association with a negative control (an intergenic region,

grey bars), GAPDH (negative control, red bars), FNBP1 (green

bars), or HOXA9 (positive control, yellow bars). Myc-UTX and

Myc-UTY associate with the FNBP1 promoter. (C) ChIP was

performed on primary MEFs with an IgG control or UTX

antibody. ChIP with the UTX antibody was performed in wild-

type XUtx+ YUty+ or XUtxGT2fl XUtxGT2fl MEFs and qPCR tested

association with the Fnbp1 promoter relative to a negative control

intergenic region.

(TIF)

Figure S10 UTX and UTY associate with heart transcription

factors and regulate expression of ANF. (A) Myc-UTY was co-

transfected with the Flag negative control, Flag-TBX5, or Flag-

SRF. Myc-UTY was co-immunoprecipitated by Flag-TBX5 and

Flag-SRF. (B) ANF:Luciferase reporter assay. HEK293T were

transfected with the reporter ANF:Luciferase construct alone (-),

with TBX5, or with TBX5 and UTY. Reporter activity was

significantly enhanced with the addition of UTY (t-test p-

value = 0.004).

(TIF)

Table S1 Utx hemizygous genotype frequency on inbred

backgrounds. Observed (Obs) and expected (Ex) frequencies of

indicated genotypes (Geno) at embryonic (E) or postnatal (P)

developmental stages with x2 p-values (p-value) for the corre-

sponding crosses to obtain each genotype. At E18.5 on the

C57BL/6J background, 5 of the 8 observed XUtxGT1 YUty+ males

were on the N8 generation.

(DOC)

Table S2 Genotype frequencies of Sox2Cre driven Utx muta-

tion. Observed (Obs) and expected (Ex) frequencies of indicated

genotypes (Geno) at embryonic (E) or postnatal (P) developmental

stages with x2 p-values (p-value) for the corresponding crosses to

obtain each genotype.

(DOC)
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