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Abstract This study aimed at characterizing the insecti-

cidal genes of eight Bacillus thuringiensis isolates that

were recovered from the local environment of western

Saudi Arabia. The screening for the presence of lepi-

dopteran-specific cry1A family and vip3A genes, dipteran-

specific cry4 family and coleopteran-specific cry3A, vip1A

and vip2A genes, was carried out by PCR. All eight isolates

produced PCR products that confirmed the presence of

cry1Aa, cry1Ab, cry1Ac, cry4A, cry4B genes, but not

cry3A, vip1A and vip2A genes. However, three isolates

only were found to carry vip3A genes as revealed by PCR.

The observation of cry1 and cry4 genes suggests that these

eight isolates may have dual activity against Lepidoptera

and Diptera species, while three isolates possessed vip3

genes in addition to cry1 and cry4 which suggests that

these three isolates have toxic crystals and vegetative

proteins. The results of this study are interesting in the

sense that they may help developing new strategies for

controlling insects of economic and medical importance in

Saudi Arabia, using B. thuringiensis strains that naturally

exist in the local environment instead of the current control

strategies that are based solely on chemical insecticides.
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The insecticidal activities of Bacillus thuringiensis are

mainly related to the production of parasporal inclusions,

which are formed by polypeptides known as Cry proteins.

These proteins showed entomopathogenic activities against

wide spectrum of insect orders [1]. Other virulence factors

that may play a role in the toxic activities of B. thuringi-

ensis include vegetative insecticidal protein (vip), phos-

pholipases, proteases, and chitinases [2]. Because of their

specificity and safety to the environment, the crystal and

vegetative proteins have been widely used for many years

as biopesticides for the control of insect pests in agricul-

ture, forestry and in the home [3, 4].

Despite the wide spectrum of B. thuringiensis toxicity

against invertebrate, there were a number of crystal-bearing

B. thuringiensis strains that exhibited no toxic activities

[5], or their activities may threaten by the possible evolu-

tion of resistance from susceptible insect host [6]. Thus,

there is a great interest for screening B. thuringiensis col-

lection strains [7–9], and/or the isolation of novel strains/

toxins [10–12], to discover insecticidal genes with broader

insect host range [13].

We managed to isolate eight strains of B. thuringiensis

for the first time from the environment of western Saudi

Arabia. These isolates were found to be very toxic to

Lepidoptera as revealed by toxicity assay [14]. We were

unable to investigate the toxicity of these isolates against

insects belonging to orders other than Lepidoptera by

bioassay. Thus the aim of this study was to predict the

insecticidal activity of our eight B. thuringiensis isolates by

PCR.

The B. thuringiensis strains analyzed in this work were

previously isolated from soil samples and dead larvae of

Spodoptera littoralis collected from the environment of

Makkah Province, Saudi Arabia. These eight isolates were

confirmed by morphological and molecular methods, and
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finally by toxicity assay against S. littoralis. These strains

were identified as B. thuringiesis IBL 200 (GenBank

accession number: NK01000211) [14].

Screening of toxicity genes was carried out by PCR.

Primers used for the amplification of crystal toxic genes

were Lep1A/Lep1B Lepidopteran-specific, Dip1A/Dip1B

Dipteran-specific and Col1A/Col1B Coleopteran-specific

crystal genes [15]. For amplification of vegetative toxic

genes, primers 5-vip1A/3-vip1A, 5-vip2A/3-vip2A [16]

and vip3A [17] were used. The sequence of each primer,

the target genes and the expected product size are listed in

Table 1.

PCR mixtures were prepared as described by Carozzi et al.

[15], briefly, a loopful of cells from an overnight culture, was

suspended in 100 ll sterile water and boiled for 10 min. One

microliter of this suspension was used as template DNA and

was added to 50 ll PCR mix containing 0.25 mmol l-1

dNTPs, 1 mmol l-1 MgCl2, 0.6 mmol l-1 of each primer

(Bioneer, Alameda, USA), and 1 unit Taq DNA polymerase

(ABgene, Surry, UK). Amplification was done under the

following conditions: a 45 s denaturation step at 95�C,

anneal for 45 s at 45�C, and extended at 72�C for 1 min, for

total of 35 cycles. A total of 20 ll of PCR reaction mix was

analyzed by gel electrophoresis on a 0.8% agarose gel (Bi-

oline, London, UK) in Tris–borate buffer, and made visible

by ethidium bromide (0.5 lg ml-1) staining and UV

transillumination.

The results showed that all eight isolates were found to

produce PCR products with 490 bp when primers Lep1A

and Lep1B were used. Similarly, when primers Dip1A and

Dip1B were used, the amplicon size of PCR products from

all eight isolates was 797 bp. However when primers

Col1A and Col1B were used, no PCR products were

observed. With regards to vegetative toxic genes, PCR

products of 2,300 bp were observed when primers vip3

from three out of eight isolates (Fig. 1), while no PCR

products from all eight isolates were observed when

primers vip1 and vip2 primers were used.

The PCR method we have used was suggested to be a

useful rapid screening test to predict the insecticidal

activities of new B. thuringiensis isolates [15]. The use of

these primers had provided valuable data about the content

and the activity of toxic genes in a large number of

B. thuringiensis strains worldwide [8–12, 15, 18–21].

The content of cry genes in our isolates appears to be in

concordance with the toxicity of these strains against S.

littoralis previously reported by Assaeedi et al. [14]. The

observation of a 490 bp band with primers Lep1A/Lep1B,

confirms the presence of cry1Aa, cry1Ab and cry1Ac genes

(Table 2). The cry1 genes family is widely known for their

activity against Lepidoptera [12]. The cry1Aa, cry1Ab and

cry1Ac are probably the most common profiles of cry1

gene family that are carried by lepidopteran-toxic B. thu-

ringienisis strains [7, 10, 22, 23].

When primers Dip1A/Dip1B were used, PCR profiles

suggest that these isolates carry cry4A and cry4B genes,

Table 1 Sequence of primers used in PCR screening

Primer Sequence Product size (bp) Gene(s) recognized Reference

Lep1A 50-CCGGTGCTGGATTTGTGTTA-30 490 cry1Aa, cry1Ab, cry1Ac [15]

Lep1B 50-AATCCCGTATTGTACCAGCG-30

Dip1A 50-CAAGCCGCAAATCTTGTGGA3-0 797 cry4A, cry4B [15]

Dip1B 50-ATGGCTTGTTTCGCTACATC-30

Col1A 50-GTCCGCTGTATATTCAGGTG-30 649 cry3A [15]

Col1B 50-CACTTAATCCTGTGACGCCT-30

5-vip1A 50-GGATCCGATGAAAAATATGAAGAA-30 2300 vip1A [16]

3-vip1A 50-GTCGACTTATCTAGATTTGTTAGGT-30

5-vip2A 50-GGATCCGATGAAAAGAATGGAGGG-30 1300 vip2A [16]

3-vip2A 50-GTCGACTTAATTTGTTAATAATGTTG-30

vip3A 50-ATGAACAAGAATAATACTAAA-30 2300 vip3A [17]

vip3A 50-GCGGCCGCTTACTTAATAGAGAC-30

3.0 Kb2.3 Kb

Fig. 1 Agarose gel electrophoresis of PCR products amplified from

native B. thuringiensis isolates with vip3A forward and reverse

primers. Lane M 1 kb DNA ladder, Lanes 1–8 B. thuringiensis
isolates Bt1 to Bt8
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and may have activity against Dipteran species (Table 2).

Similar results were reported elsewhere using various sets

of primers, and it was observed that insecticidal activity

predicted by PCR corresponded with the insecticidal

activity of insect bioassay [15, 19]. In this respect we

suggest that our eight B. thuringiensis isolates may have

dual insecticidal activities against Lepidoptera and

Diptera.

PCR analysis of all eight isolates yielded no detectable

cry3A gene products when primers Col1A/Col1B were used

(Table 2). This result may suggest that these eight isolates do

not carry cry3A gene. Similarly, Chak et al. [22] reported the

absence of cry3 genes in 225 isolates of B. thuringiensis in

Taiwan. The observation of no PCR products, may also

suggests that the genes are gone undetected [15].

The vip3A genes are toxic to Lepidoptera and other spe-

cies, with different mode of action from cry genes [24]. We

found that (37.5%) of our eight isolates carried vip3A genes

(Table 2). Similarly, the low frequency of vip3A genes was

reported elsewhere [25]. The coleopteran-specific vip1 and

vip2 genes were not detected in any of the eight isolates

(Table 2). Altogether the absence of cry3A, vip1A and vip2A

genes further suggests that these isolates may have no

insecticidal activity against coleopteran species.

In conclusion, the findings of this study are very inter-

esting and need further investigation since dengue fever is

widely common in Makkah region [26], thus, if the cry4

genes of these eight isolates are active against Aedes ae-

gypti, it would be best developing control strategies of this

pest in particular, or other insects of economic importance

in general, using locally derived B. thuringiensis strains

instead of the current control strategies that are based

solely on chemical insecticides.
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