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RNA-seq data
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RNA-seq is a powerful tool for the study of alternative splicing and other forms of alternative isoform expression.
Understanding the regulation of these processes requires sensitive and specific detection of differential isoform abun-
dance in comparisons between conditions, cell types, or tissues. We present DEXSeq, a statistical method to test for dif-
ferential exon usage in RNA-seq data. DEXSeq uses generalized linear models and offers reliable control of false discoveries
by taking biological variation into account. DEXSeq detects with high sensitivity genes, and in many cases exons, that are
subject to differential exon usage. We demonstrate the versatility of DEXSeq by applying it to several data sets. The method
facilitates the study of regulation and function of alternative exon usage on a genome-wide scale. An implementation of
DEXSeq is available as an R/Bioconductor package.

[Supplemental material is available for this article.]

In higher eukaryotes, a single gene can give rise to a multitude of

different transcripts (isoforms) by varying the usage of splice sites,

transcription start sites, and polyadenylation sites. We are only

beginning to understand which part of this diversity is functional

(for recent reviews, see, e.g., Nilsen and Graveley 2010; Grabowski

2011). High-throughput sequencing of mRNA (RNA-seq) promises

to become an important technique for the study of alternative

isoform regulation, especially in comparisons between different

tissues or cell types, or between cells in different environmental

conditions or with different genetic backgrounds.

Shotgun sequencing

The median length of human transcripts is 2186 nt, with the

longest transcripts having sizes of up to 101,206 nt. (These num-

bers are based on UCSC hg19 annotation.) An ideal RNA-seq

technology would produce sequence reads that directly corre-

spond to full-length transcripts. Current implementations of RNA-

seq, however, use shorter reads and use a shotgun sequencing ap-

proach. For instance, Illumina’s HiSeq 2000 produces reads of

length 100 nt, which are typically paired so that they cover the two

ends of shotgun fragments of lengths between 200 and 500 nt.

Approaches to the analysis of such data may be grouped into

three main categories. First, in an approach that is reminiscent of

microarray expression profiling, one simply counts the fragments

from each gene locus, irrespective of transcript isoform, to measure

each gene’s overall expression strength in each experimental

sample. Several methods have been published for the detection of

statistically significant differences in such count values across

conditions, including edgeR (Robinson et al. 2010b), DESeq (Anders

and Huber 2010), and baySeq (Hardcastle and Kelly 2010).

Second, one tries to assemble the fragments into full-length

transcripts, using the fragment coverage to estimate each tran-

script’s expression strength in each of the samples. This approach

has been pursued by Jiang and Wong (2009), Trapnell et al.

(2010), and Turro et al. (2011). Of these, only Trapnell et al. (2010)

attempt inference of differential expression by comparing be-

tween these estimates. Such inference is challenging, due to un-

certainties from the assembly step. In addition, the accumulation

of uncertainties might lead to less inferential power for certain

types of questions than the third category of approaches, as is

shown in the following.

Third, one avoids the assembly step and looks for differences

across conditions between quantities that are directly observable

from the shotgun data, such as the (relative) usage of each exon.

This is the approach that is described in this article.

Transcript inventory versus differential expression

Shotgun RNA-seq data can be used both for identification of tran-

scripts and for differential expression analysis. In the former, one

annotates the regions of the genome that can be expressed, i.e., the

exons, and how the pre-mRNAs are spliced into transcripts. In

differential expression analysis, one aims to study the regulation of

these processes across different conditions. For the method de-

scribed here, we assume that a transcript inventory has already

been defined, and focus on differential expression.

Biological variability

If our aim is to make a statement about the regulation of a bio-

logical process across different conditions with some generality,

rather than only making statements about singular biological

samples, then a suitable level of replication in the data is needed.

While this may be obvious to a reader unfamiliar with the field, it is

noteworthy that most methods suggested so far for the study of

alternative isoform regulation (AIR) have evaded this point. Wang

et al. (2008) presented a method for inference of differential exon

usage based on 2 3 2 contingency tables of read counts and Fisher’s

exact test. As we show in the Discussion, this method cannot ac-

count for biological variability, and in fact, the data used to dem-

onstrate the method comprised only a single sample per tissue

type. In follow-up work, Katz et al. (2010) refined this method

(now termed MISO); however, they still compared only a single

knockdown sample with a single control sample and made no at-

tempt to address biological variability. Griffith et al. (2010) dem-

onstrate their ALEXA-seq analysis method by comparing a cell line
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derived from a single colorectal tumor resistant to a drug with a cell

line derived from a single tumor sensitive to the drug. This

method, too, cannot be applied to replicated samples. Trapnell

et al. (2010), when presenting the Cufflinks/Cuffdiff tool chain,

compared consecutive time points, using data from one sample for

each time point. The Cuffdiff software tool, in the version de-

scribed in the paper, can only process pairs of samples without

replicates. Brooks et al. (2010) used replicates but did not use them

to assess biological variability because they used a modified version

of the method of Wang et al. (2008). A notable instance in which

biological variation was accounted for in the statistical analysis is

the work of Blekhman et al. (2010). However, their method relies

on the availability of a moderate-to-large number of samples, and

no software implementation was provided.

The importance of accounting for biological variation has

been pointed out by Baggerly et al. (2003) and recently by Hansen

et al. (2011). Methods to do so when inferring differential expres-

sion were suggested by Baggerly et al. (2003) and Lu et al. (2005).

Subsequently, Robinson and coworkers presented the edgeR

method (Robinson and Smyth 2007, 2008; Robinson et al. 2010b),

which introduced the use of the negative binomial distribution to

RNA-seq analysis. Robinson et al. (2010a) extended edgeR with

generalized linear models (GLMs) and the Cox-Reid dispersion

estimator, discussed below. The basic approach of using exon–

condition interactions in linear or generalized linear models to

detect differential exon usage has been explored before by Cline

et al. (2005) and Purdom et al. (2008) for exon microarrays and by

Blekhman et al. (2010) for RNA-seq data. Our method can be seen

as a further development of these approaches that also incor-

porated ideas from DESeq (Anders and Huber 2010).

In this article, we first explain the proposed statistical in-

ference procedure and then use it to reanalyze published data

sets by Brooks et al. (2010), by Brawand et al. (2011), and by The

ENCODE Project Consortium (2011). In the Discussion, we elabo-

rate on the observation that most published methods are unable to

account for biological variation, focusing on the analysis provided

by Brooks et al. (2010) for their data (which is based on the method

of Wang et al. 2008), and illustrate how this leads to unreliable re-

sults. Finally, we compare DEXSeq with the one competing tool that

claims to account for biological variation, namely, the new versions

of Cuffdiff.

Method

Preparation: Flattening gene models and counting reads

The initial step of an analysis is the alignment of the sequencing

reads to the genome. Here, it is important to use a tool capable of

properly handling reads that straddle introns. Then, transcriptome

annotation with coordinates of exon boundaries is required. For

model organisms, reference gene model databases as provided, e.g.,

by Ensembl (Flicek et al. 2011), may be used. In addition, such a

reference may be augmented by information retrieved from the

RNA-seq data set that is being studied. Garber et al. (2011) review

tools for the above tasks.

The central data structure for our method is a table that, in the

simplest case, contains for each exon of each gene the number of

reads in each sample that overlap with the exon. Special attention

is needed, however, if an exon’s boundary is not the same in all

transcripts. In such cases, we cut the exon in two or more parts

(Fig. 1). We use the term ‘‘counting bin’’ to refer to exons or parts

of exons derived in this manner. Note that a read that overlaps

with several counting bins of the same gene is counted for each

of these.

Model and inference

We denote by kijl the number of reads overlapping counting bin l of

gene i in sample j. We interpret kijl as a realization of a random

variable Kijl. The number of samples is denoted by m, i.e., j = 1, . . ., m.

We write mijl for the expected value of the concentration of

cDNA fragments contributing to counting bin l of gene i, and relate

the expected read count E(Kijl) to mijl via the size factor sj, which

accounts for the depth that sample j was sequenced: E(kijl) = sjmijl.

Note that sj depends only on j, i.e., the differences in sequencing

depth are assumed to cause a linear scaling of the read counts. We

estimate the size factors with the same method as in DESeq (Anders

and Huber 2010; for details, please see Supplemental Note S.1).

A generalized linear model

We use generalized linear models (GLMs) (McCullagh and Nelder

1989) to model read counts. Specifically, we assume Kijl to follow

a negative binomial (NB) distribution:

Kijl ; NB mean = sjmijl;dispersion = ail

� �
; ð1Þ

where ail is the dispersion parameter (a measure of the distribu-

tion’s spread; see below) for counting bin (i, l), and the mean is

predicted via a log-linear model as

log mijl = bG
i + bE

il + bC
irj

+ bEC
irj l
: ð2Þ

The negative binomial distribution in Equation 1 has been

useful in many applications of count data regression (Cameron

and Trivedi 1998). It can be seen as a generalization of the Poisson

distribution: For a Poisson distribution, the variance v is equal to

the mean m, while for the negative binomial, the variance is v = m +

am2, with the dispersion a describing the squared coefficient

of variation in excess of the Poisson case. Lu et al. (2005) and

Robinson and Smyth (2007) motivated the use of the NB distri-

bution for SAGE and RNA-seq data; we briefly summarize their

argument in Supplemental Note S.2.

We fit one model for each gene i, i.e., the index i in Equation 2

is fixed. The linear predictor mijl is decomposed into four factors

as follows: bG
i represents the baseline expression strength of gene

i. bE
il is (up to an additive constant) the logarithm of the expected

fraction of the reads mapped to gene i that overlap with counting

bin l. bC
irj

is the logarithm of the fold change in overall expression

Figure 1. Flattening of gene models: This (fictional) gene has three
annotated transcripts involving three exons (light shading), one of which
has alternative boundaries. We form counting bins (dark shaded boxes)
from the exons as depicted; the exon of variable length gets split into two
bins.
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of gene i under condition rj (the experimental condition of sample

j). Finally, bEC
irj l

is the effect that condition rj has on the fraction of

reads falling into bin l.

To make the model identifiable, constraints on the coef-

ficients are needed; see Supplemental Note S.3.

Of interest in this model are the effects bC
ir and bEC

irl . If one of

the bEC
irl is different from zero, this indicates that the counting bin it

refers to is differentially used. A value of bC
ir different from zero

indicates an overall differential abundance that equally affects all

counting bins, i.e., overall differential expression of the gene. Be-

fore we describe the analysis-of-deviance (ANODEV) procedure to

test for these effects, we need to discuss the aspect of dispersion.

Parameter fitting

For a fixed choice of the dispersion parameter, the NB distribution

is a member of the exponential family with respect to the mean.

Hence, the iteratively reweighted least square (IRLS) algorithm,

which is commonly used to fit GLMs (McCullagh and Nelder

1989), allows fitting of the model (1, 2) if the dispersion ail is given.

Ordinary maximum likelihood estimation of the dispersion is

not suitable, because it has a strong negative bias when the number

of samples is small. The bias is caused by not accounting for the loss

of degrees of freedom that arises when estimating the coefficients.

Robinson and Smyth (2008) reviewed alternatives and derived an

estimator based on the work of Cox and Reid (1987) and Smyth

and Verbyla (1996). Cox and Reid suggested modifying the profile

likelihood for the parameter of interest (here, the dispersion) by

dividing out a term containing the Fisher information for the other

parameters as an approximation to conditioning on the profiled-

out parameters. This works if the parameter of interest is approx-

imately independent from the other parameters with respect to

Fisher information, which is the case for the NB likelihood with

respect to its parameters mean and dispersion. However, calculat-

ing the Cox-Reid correction term for dispersion estimation in

GLMs is not straightforward. The (to our knowledge) best method

has been proposed by McCarthy et al. (2012). The authors have

been using it in their edgeR package (Robinson et al. 2010a) since

September 2010 (version 1.7.18). We make use of this approach to

estimate the dispersion for each counting bin; details are provided

in Supplemental Note S.4.

Two noise components

It is helpful to decompose the extra-Poisson variation of Kijl into

two components: variability in gene expression and variability in

exon usage. If the expression of a gene i (i.e., the total number of

transcripts) in sample j differs from the expected value for experi-

mental condition rj, the values mijl for all of the counting bins l of

gene i will deviate from the values expected for condition rj by the

same factor. We denote this the variability in gene expression. By

variability in exon usage, we refer to variability in the usage of

particular exons or counting bins. The dispersion parameter ail in

Equation 1 with respect to the model of Equation 2 contains both

of these parts. However, if we replace Equation 2 with

log mijl = bG
i + bE

il + bS
ij + bEC

irj l
; ð3Þ

i.e., instead of fitting one parameter bC
rj

for the effect of each

condition r on the expression, we fit one parameter bS
ij for each

sample j, the gene expression variability is absorbed by the model

parameters and we are only left with the exon usage variability.

Hence, we use model (3) to increase power in our test for differ-

ential exon usage. This is possible because we test for an interaction

effect. If the aim were to test for a main effect such as differen-

tial expression, dispersion estimation would need to be based on

model (2).

We fit the model (3) for each gene i separately and use the

Cox-Reid dispersion estimator of McCarthy et al. (2012), as de-

scribed above, to obtain a dispersion value âil for each counting bin

l in the gene.

Information sharing across genes

If only a few replicates are available, as is often the case in high-

throughput sequencing experiments, we need to be able to deal

with the fact that the dispersion estimator for a single counting bin

has a large sampling variance. A commonly used solution is to

share information across estimators (Tusher et al. 2001; Lönnstedt

and Speed 2002). We noted that there is a systematic trend of dis-

persions as a function of the mean, and consider the relationship

a mð Þ = a1

m
+ a0: ð4Þ

This relation appears to fit many data sets we have encountered in

practice. (See also Di et al. 2011 for a comparison of approaches to

model mean-variance relations in RNA-seq data.) To obtain the

coefficients a0 and a1, we regress the dispersion estimates âil for all

counting bins from all genes on their average normalized count

values m̂il with a gamma-family GLM. To ensure robustness of the

fit, we iteratively leave out bins with large residuals until conver-

gence is achieved (Huber 1981).

Figure 2 shows a scatterplot of dispersion estimates âil against

average normalized count values m̂il, together with the fit a(m). For

many counting bins, the difference between the sample estimate

âil and the fitted value a m̂ilð Þ is compatible with a x2 sampling

distribution (indicated by the dashed lines). Nevertheless, there are

Figure 2. Dependence of dispersion on the mean. Each dot corre-
sponds to one counting bin in the data of Brooks et al. (2010) (discussed
in detail in the Results section); (x-axis) normalized count, averaged over
all samples; (y-axis) estimate of the dispersion. The bars at the bottom denote
dispersion values outside the plotting range (in particular, those cases in
which the sample dispersion is close to zero). (Solid red line) The regression
line; (dashed lines) the 1-, 5-, 95-, and 99-percentiles of the x2 distribution
with 4 degrees of freedom scaled such that it has the fitted mean.

Anders et al.
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sufficiently many bins with a sample estimate âil so much larger

than the fitted value a m̂ilð Þ that it would not be justified to only rely

on the fitted values. Hence, for the ANODEV (see below), we use as

dispersion value ail the maximum of the per-bin estimate âil and

the fitted value a m̂ilð Þ. On average, this overestimates the true dis-

persion and costs power, but we consider this preferable to using

either only the fitted values or the sample estimates, both of which

carry the risk of producing many undesirable false positives. More

sophisticated alternatives for this step, which usefully interpolate

between the two extremes, and perhaps incorporate further

covariates besides m, might become available in the future.

Analysis of deviance

We test for each counting bin whether it is differentially used be-

tween conditions. More precisely, we test against the null hypoth-

esis that the fraction of reads overlapping with a counting bin l, of

all the reads overlapping with the gene, does not change between

conditions. To this end, we fit for each gene i a reduced model with

no counting-bin–condition interaction:

log mijl = bG
i + bE

il + bS
ij; ð5Þ

and, separately for each bin l9 of gene i, a model with an interaction

coefficient for only this bin, but as in Equation 5, main effects for all

bins l,

log mijl = bG
i + bE

il + bS
ij + bEC

irj l
dll0 : ð6Þ

Here, dll9 is the Kronecker delta symbol,

which is 1 if l = l9 and 0 otherwise. We

compute the likelihood of these models

using the dispersion values ail as estimated

from model (3), with the information-

sharing scheme presented earlier. Com-

paring the fit (6) for counting bin l9 of gene

i with the fit (5) for gene i, we get an

analysis-of-deviance P-value pil9 for each

counting bin by means of a x2 likelihood-

ratio test. Note that we test against the null

hypothesis that none of the conditions in-

fluences exon usage, and hence, if there are

more than two different conditions r, we

aim to reject the null hypothesis already if

any one of the conditions causes differen-

tial exon usage.

Differential exon usage, as treated

here, cannot be distinguished from over-

all differential expression of a gene if the

gene only consists of a single counting

bin or if all but one of its counting bins

have zero counts. Hence, we mark all

counting bins with zero counts in all sam-

ples, and all bins in genes with less than

two nonzero bins, as not testable. Further-

more, we skip counting bins with a count

sum across all samples below a threshold

chosen low enough that a significant re-

sult would be unlikely, to speed up com-

putation. Such filtering can also improve

power (see Bourgon et al. 2010).

Note that we perform one test for

each counting bin, always fitting an in-

teraction coefficient only for the single

bin l9 under test. Therefore, it is valid that a read that overlaps with

several exons is counted for each of these exons: In each test, for

the purpose of estimating and testing the interaction coefficient,

any given read is only considered at most once.

Additional covariates

The flexibility of GLMs makes it easy to account for further covar-

iates. For example, if in addition to the experimental condition rj we

wish to account for a further covariate tj, we extend model (3) as

follows:

log mijl = bG
i + bE

il + bS
ij + bEB

itj l
+ bEC

irj l
; ð7Þ

When testing for differential exon usage, the extra term bEB
itj l

is

added to both the reduced model (5) and the full model (6).

An example is provided in the next section with Equation 9.

Visualization

The DEXSeq package offers facilities to visualize data and fits. An

example is shown in Figure 3, using the data discussed in the next

section. Data and results for a gene are presented in three panels.

The top panel depicts the fitted values from the GLM fit. For this

plot, the data are fitted according to model (2), with the y coor-

dinates showing the exponentiated sums:

mijl = exp ~bG
i + ~bE

il + ~bC
irj

+ ~bEC
irj l

� �
: ð8Þ

Figure 3. The treatment of knocking down the splicing factor pasilla affects the fourth exon (counting
bin E004) of the gene Ten-m (CG5723). (Top panel) Fitted values according to the linear model; (middle
panel) normalized counts for each sample; (bottom panel) flattened gene model. (Red) Data for
knockdown samples; (blue) control.

Differential usage of exons in RNA-seq
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The tildes indicate that a decomposition of the linear predictors

has been used that separates the effects of expression and isoform

regulation, as described in Supplemental Note S.3.

For genes with differential overall expression, it can be diffi-

cult to see the evidence for differential exon usage in a plot based

on Equation 8. For these cases, the software offers the option to

average over the expression effects. Supplemental Figure S1 shows

this for the pasilla gene.

Variance stabilizing transformation

In Figure 3, a special axis scaling is used, because neither a linear

nor a logarithmic scale seems appropriate. Instead, the software

‘‘warps’’ the axis scale such that, for data that follow the fitted

mean-dispersion relation, the standard deviation corresponds to

approximately the same scatter in the y direction throughout the

dynamic range. See Supplemental Note S.5 for details.

Results

Analysis of the data set of Brooks et al.

We considered the data by Brooks et al. (2010), who used Drosophila

melanogaster cell lines and studied the effect of knocking down

pasilla with RNA-seq. The gene pasilla and its mammalian homo-

logs NOVA1 and NOVA2 are well-studied splicing factors.

Brooks et al. (2010) prepared libraries from RNA extracted

from seven biologically independent samples: three control sam-

ples and four knockdown samples. They sequenced the libraries on

an Illumina Genome Analyzer II, partly using single-end and partly

paired-end sequencing and using various read lengths. We ob-

tained the read sequences from the NCBI Gene Expression Om-

nibus (accession numbers GSM461176–GSM461181), trimmed

them to a common length of 37 nt, and aligned them against the

D. melanogaster reference genome (assembly BDGP5/dm3, without

heterochromatic sequences) (Hoskins et al. 2007) with TopHat 1.2

(Trapnell et al. 2009). We defined counting bins, as described

above, based on the annotation from FlyBase 5.25 (Tweedie et al.

2009) as provided by Ensembl 62 (Flicek et al. 2011).

After counting read coverage for the counting bins, we esti-

mated dispersion values for each bin by fitting, for each gene,

a model based on Equations 2 and 3. Here, since we have a mixture

of single-end and paired-end libraries, we extended Equation 3 to

account for this additional covariate:

log mijl = bG
i + bE

il + bS
ij + bEC

irj l
+ bET

itj l
; ð9Þ

where tj = 1, 2 is the library type of sample j, single-end or

paired-end.

The estimated dispersions are shown in Figure 2. The fitted

line is given by a(m) = 1.3/m + 0.012, which has the form of

Equation 4. The parameter a0 = 0.012 represents the amount of

biological variation: Taking the square root, we can see that the

exon usage typically differs with a coefficient of variation of ;11%

between biological replicates for strongly expressed exons.

Here, we can also see the advantage of absorbing expression

variability in a sample coefficient. Had we used Equation 2 instead

of Equation 3, we would have had to work with a higher disper-

sion, namely, a9(m) = 1.6/m + 0.018, and so would have lost power.

We performed the test for differential exon usage described in

the context of Equations 5 and 6 for all counting bins that had at

least 10 counts summed over all seven samples. We controlled the

false discovery rate (FDR) with the Benjamini-Hochberg method

and found, at 10% FDR, significant differential exon usage for 259

counting bins, affecting 159 genes.

Figure 3 shows the gene Ten-m, which exhibited a clear signal

for differential usage of counting bin E004 (p = 2.1 3 10�11; after

Benjamini-Hochberg adjustment padj = 1.2 3 10�8). Similar plots

can be found, for all genes in this study, at http://www-huber.

embl.de/pub/DEXSeq/psfb/testForDEU.html.

Figure 4 gives an overview of the test results and shows how

the detection power depends on the mean: For strongly expressed

exons, log2 fold changes around 0.5 (corresponding to fold changes

around 40%) can be significant, while for weakly expressed exons

with around 30 counts, fold changes above twofold are required.

This is a consequence of the fact that the coefficient of variation

(CV) of the count values decreases with their mean, as explained in

more detail in Supplemental Note S.2.

Analysis of the chimpanzee data of Brawand et al.

While the preceding application was on a controlled experiment

with a cell culture under sharp treatment, in this section, we analyze

data from an observational study with complex subject-to-subject

variation (Brawand et al. 2011). This data set includes RNA-seq from

prefrontal cortex samples from six chimpanzees and cerebellum

samples from two further chimpanzees. We used DEXSeq to test for

exon usage differences between these two brain tissue types.

We aligned the RNA-seq reads (GEO accessions GSM752664–

GSM752671) from these samples to the chimpanzee genome

(CHIMP2.1.4 from Ensembl 64) using GSNAP 2012-01-11 (Wu and

Nacu 2010). Prior to alignment, we trimmed all reads to a common

length of 76 nt, single-ended. The trimming was necessary to make

the data comparable across samples; DEXSeq itself has no length

limitation and can deal with any read length.

At 10% FDR, DEXSeq found significant differential exon usage

for 866 counting bins in 650 genes. The result table, with plots for

all genes with significant differential exon usage, can be found at

http://www-huber.embl.de/pub/DEXSeq/chimp/testForDEU.html.

Figure 4. Fold changes of exon usage versus averaged normalized
count value for all tested counting bins for the Brooks and coworkers data.
(Red) Significance at 10% FDR. Bars at the margin represent bins with fold
changes outside the plotting range.

Anders et al.

2012 Genome Research
www.genome.org



Exploration of this hit list reveals interesting differences be-

tween the tissues. For example, one of the top hits, the gene PRKCZ

(protein kinase C zeta; ENSPTRG00000000042) expresses its first

four exons only in cerebellum but not in the prefrontal cortex

(Supplemental Fig. S4). Inspecting the Pfam (Finn et al. 2010) and

SMART (Letunic et al. 2012) databases of protein domains reveals

that these four exons encode the heterodimerization domain PB1.

This suggests the hypothesis that the gene product loses its ability

to bind to its partner protein in the prefrontal cortex. Indeed, these

two isoforms are well studied (for review, see Hirai and Chida

2003). The long isoform protein product PKZz is widely expressed

and is activated by a second messenger, PARD6A, which removes

the protein’s auto-inhibition by binding to the PB1 domain. The

truncated protein, denoted PKMz, is specific to the brain and, due

to the lack of the PB1 domain, constitutively active. It plays a major

role in long-term potentiation and memory formation. In this

context, it is noteworthy that, as our analysis shows, its expression

is confined to certain brain regions.

Another example is provided by the gene PLCH2 (phospho-

lipase C eta 2; ENSPTRG00000000051), for which DEXSeq in-

dicated differential usage of counting bin E011 (fourth exon).

According to SMART and Pfam, this exon contains an EF hand, a

calcium binding helix–loop–helix motif. Here, we are not aware of

prior work on the isoform(s) lacking this exon. We can speculate

that the shorter isoform’s activity might no longer depend on

calcium concentration, on which PLCH2’s enzymatic activity

normally depends strongly (Nakahara et al. 2005). Furthermore,

Zhou et al. (2008) studied the activation of PLCH2 by Gbg com-

plexes and found that the EF hand domain of PLCH2 is required for

this interaction. Another hypothesis might hence be that the ob-

served tissue-specific usage of the fourth exon serves to modulate

the regulation of PLCH2 by G-proteins.

For the gene ENSPTRG00000000130, DEXSeq reports increased

usage of the second exon in the cerebellum and of the second-to-last

exon in the prefrontal cortex. This gene codes for precortistatin,

a protein that gets cleaved to give rise to the neuropeptide cortis-

tatin, which (in human) comprises the last 17 amino acids of the full

protein’s C terminus (de Lecea et al. 1997), which are contained in

the last exon. While the overall expression differences seen in the

data agree with the known main location of cortistatin—the cortex,

the observed differential exon usage is intriguing and more difficult

to interpret: The affected parts of the protein are not part of the final

product. Nevertheless, the presence or absence of these parts could

affect the efficiency of the cleavage process or the stability of the

mRNA, to coregulate the tissue-specific expression.

These three examples illustrate how a DEXSeq analysis can

serve as a starting point for hypothesis formation. We picked these

three genes by inspecting the first 10 genes with significant dif-

ferential exon usage, as sorted by numerical Ensembl gene ID (not

by P-value); that is, in essence we inspected a mere 10 randomly

chosen hits. The richness of the biology seen indicates that many

novel insights into gene function and regulation may be expected

from the analysis of tissue-specific exon usage patterns.

Comparison of human cell lines

As a third application, we briefly present a comparison between

two human cell lines. The ENCODE Project Consortium (2011)

performed RNA-seq experiments for several human cell lines, of

which we chose H1 human embryonic stem cells (h1-hESC) and

human umbilical vein endothelial cells (HUVEC) (Laboratory

of B. Wold; sequenced with 76-nt paired-end reads; GEO acces-

sion numbers GSM758573 and GSM767856), because they were

performed in biological duplicates. Such a comparison offers high

detection power because of the typically small within-group vari-

ability that one may expect for untreated cells and the many dif-

ferences between these two cell lines. In fact, we find 7795 genes to

be affected by differential exon usage, which can be seen in the

report generated by DEXSeq, available at http://www-huber.

embl.de/pub/DEXSeq/encode/testForDEU.html. For a plot of exon

usage fold change, see Supplemental Figure F5, and for an example

of a differentially spliced gene, see Supplemental Figure S6. Since

the cell lines were derived from different subjects, the many ob-

served differences could be due both to the difference in cell type

and to differences in their genetic background.

Discussion

Importance of modeling overdispersion

The method presented here differs from previous work by using

an error model that accounts for sample-to-sample variation in

excess of Poisson variation. In the following, we investigate

whether this extra variation is important enough to influence re-

sults in practice.

To address this question for our inference procedure, we re-

computed the tests for differential exon usage for the Brooks and

coworkers data after setting the dispersion values ail in Equations

1, 5, and 6 to zero. This corresponds to assuming that the varia-

tion in the data follows a Poisson distribution. Cutting again the

Benjamini-Hochberg–adjusted P-values at 10%, we obtained 36

times as many hits: Significant differential exon usage was repor-

ted for 9432 counting bins in 3610 genes (see Supplemental Fig. S2;

cf. Fig. 4). For these extra hits, however, the treatment effect was

not large compared with the variation seen between replicates, i.e.,

the data do not provide evidence for them being true positives.

The assumption that variability is limited to Poisson noise is

implicit in analysis methods based on a Fisher’s test, which we

discuss next.

Analyses based on Fisher’s test

To test for differential isoform regulation, Wang et al. (2008) and

Brooks et al. (2010) used 2 3 2 contingency tables and a Fisher’s

exact test. In this approach, the contingency table’s rows corre-

sponded to control and treatment, the cells in one column con-

tained the numbers of reads supporting inclusion of an exon (i.e.,

reads overlapping the exon), and the cells in the other column gave

the numbers of reads supporting exclusion (e.g., in the case

of cassette exons, reads straddling the exon). In the study of Wang

et al. (2008), each row corresponded to a single sample, while Brooks

et al. (2010) summed up the number of reads from their replicates.

The MISO method (Katz et al. 2010) proposed a different way of

setting up the contingency table. In all cases, the contingency tables

did not contain information on sample-to-sample variability

(Baggerly et al. 2003), and, therefore, one should expect the results

to contain an inflated number of false positives.

As an example, Supplemental Figure S3 shows the gene Lk6,

for which Brooks et al. (2010) reported differential use of its al-

ternative first exons, while our analysis did not call a significant

differential use. Clearly, the average expression strength of exon

E002 is different between the conditions. However, examining the

counts from the individual biological replicates reveals that the

variance within the treatment groups is large compared with this
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difference, and hence, the data do not support the claim of a sig-

nificant effect of the treatment.

Heterogeneity of dispersions

In our model, we allow the counting bins of a gene to have dif-

ferent dispersion values. The gene RpS14b (Fig. 5) exhibits very

different variability for its three exons and thus illustrates the need

for this modeling choice.

The first exon also illustrates the value of replicates and the

importance of making use of their information. This exon had

between 252 and 416 (normalized) counts in four of the samples

and no counts in three. However, this difference cannot be at-

tributed to the treatment because both the control and the treat-

ment group contained samples with zero counts as well as samples

with several hundreds of counts. Hence, the reason for the differ-

ence in read counts for this exon cannot be the knockdown of

pasilla and is likely some other difference between the samples’

treatment that was not under the experimenters’ control.

If one just adds up or averages the samples in a treatment

group, as done in the contingency table method, one would only

see a sizeable difference, as in the upper panel of the figure, and

might call a significant effect. It is also crucial that the test for

differential exon usage does not rely on the fitted dispersion (solid

line in Fig. 2) only, because the effect size would seem significant

if one did not take note that the actual observed within-group

variance is so much larger that the fitted value is implausible. The

maximum rule discussed in the section on information sharing

ensures this.

Comparison with Cuffdiff

Cufflinks (Trapnell et al. 2010) is a tool to infer gene models from

RNA-seq data and to quantify the abundance of transcript isoforms

in an RNA-seq sample. In addition to this, the Cuffdiff module

allows testing for differences in isoform abundance. Cuffdiff, as

described in Trapnell et al. (2010), compares a single sample with

another one and does not attempt to account for sample-to-sample

variability. The latter is also true for the version described by

Roberts et al. (2011), which allows processing of replicate samples,

but uses this for the assessment only of bias, not of variability.

Hence, the same drawbacks may be expected as discussed earlier

for the Fisher-test-based methods. More recently, starting with

version 1.0.0, Cufflinks attempts to assess overdispersion and ac-

count for it.

We compared the three knockdown samples of the Brooks

and coworkers data set against the four control samples with ver-

sion 1.3.0 of Cuffdiff. With nominal FDR control at 10%, Cuffdiff

reported differential splicing for only 50 genes, and thus showed

less power than our approach.

To test the control of false-positive

rates, we made use of the fact that there

were four replicates for the untreated

condition. We formed one group from

samples 1 and 3 and another group from

samples 2 and 4. We tasked both DEXSeq

and Cuffdiff with comparing between the

two groups at a nominal FDR of 10%.

Because this is a comparison between

replicates, ideally no significant calls

should be made. Note that each group

contained one single-end and one paired-

end sample, i.e., the blocking caused by

the library type was balanced between the

groups. In this mock comparison, DEXSeq

found eight genes significant, compared

with 159 in the comparison of treatment

versus control. Surprisingly, Cufflinks

found 639 genes in the mock compari-

son, many more than the 37 genes that

it found in the proper between-groups

comparison. Supplemental Note S.6 de-

scribes further tests, which confirmed

Cufflinks’ difficulty with providing type

I error control in this data set.

We also performed the same type of

comparison on a data set with quite dif-

ferent characteristics and experimental

design, the chimpanzee data of Brawand

et al. (2011). In a comparison of the six

chimpanzee prefrontal cortex (PFC) sam-

ples with the two cerebellum samples,

Cuffdiff 1.3.0 reported 114 genes at 10%

FDR, again showing less power then

DEXSeq (650 genes; see above).

We then used the five PFC samples

from male chimpanzees to assess type I

Figure 5. Ribosomal protein gene RpS14b (from the Brooks and coworkers data) is shown here as an
example for a gene with heterogeneous dispersion. The first exon has zero count in the paired-end
samples untreated 2, in the single-end sample treated 2, and in the paired-end sample treated 3, and
large nonzero counts in the four other samples. Colors are as in Figure 3.
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error rates. Both tools were tasked to compare any combination

of two samples versus two other samples. DEXSeq in each case

found substantially fewer genes in these mock comparisons

than in the proper comparison (with one exception, always less

than 1/65). Cuffdiff, however, always found more than twice as

many genes in the mock comparisons than in the true one. For

details, see Supplemental Note S.6. Also see Supplemental Note II,

which contains the exact commands used for all computations

performed for this article.

Comparing exon or isoform usage

The interpretation of the results of our method is straightforward

when a single exon of a gene with many exons is called differen-

tially used. However, if many exons within a gene are affected, the

interpretation is more complex. For instance, consider a gene with

two isoforms, a long one with n exons and a short one consisting of

only the first n/2 exons. If an experimental condition increased

the number of long transcripts at the expense of the short ones,

without changing the total number, one might expect an analysis

to indicate differential usage for the last n/2 exons. However, our

method cannot distinguish this situation from one in which the

gene is overall down-regulated, while the first n/2 exons are more

strongly used.

Hence, if differential exon usage is detected within a gene, we

can safely conclude that this gene is affected by alternative isoform

regulation. However, the test’s output with regard to which of the

counting bins are affected can be unreliable if the isoform regula-

tion affects a large fraction of the exons. In practice, the assign-

ment to counting bins is reliable as long as only a small fraction of

counting bins in the gene is called significant.

Methods that attempt to estimate not just the abundance of

exons but of isoforms, such as the method of Jiang and Wong

(2009), Cufflinks (Trapnell et al. 2010) and MMSeq (Turro et al.

2011), may be able to circumvent this issue. Of these, only Cufflinks/

Cuffdiff offers the functionality of comparing between samples. We

commented on Cuffdiff in the preceding section. (Note added after

revision: Recently, Glaus et al. 2012 published BitSeq, another

method to identify differential expression of isoforms.)

Apart from the lack of tools for inferring differential expres-

sion at the transcript level, there can be concrete advantages in per-

exon analysis. If, for example, several transcripts have most exons

in common and differ by only a few exons, their abundance esti-

mates will contain substantial correlated uncertainties that reduce

the power for inference of differential expression. The remedy

would be to disregard the reads that inform about the shared parts

of the transcripts and to focus on those reads in which they differ.

Hence, an exon-centric analysis might be a crucial component

even of a transcript-level method.

In addition, it is not clear that inference about transcripts is

always more useful for biological interpretation than inference at

the per-exon level. After all, we have knowledge about the func-

tional differences of multiple translated isoforms of a gene for only

a small number of proteins. If currently a researcher finds that a

gene of interest expresses different transcripts in different condi-

tions, her further analysis will typically start with assessing the

difference between the two transcripts. She might find, for exam-

ple, that they differ in the presence of certain exons and ask which

regulatory signals or functional domains these exons may contain.

Therefore, we expect that a method such as ours that pinpoints the

location of the differences by focusing on specific exons will be

valuable for biological interpretation, and sometimes perhaps

more valuable than a transcript-centric approach. This expectation

is supported by the three examples discussed in the analysis of

the chimpanzee data. The next step will be to leverage, in a sys-

tematic and automated way, databases with annotation for parts of

gene products, e.g., information on protein domains provided

by resources such as Pfam (Finn et al. 2010), SMART (Letunic et al.

2012), and PROSITE (Sigrist et al. 2010), or predicted miRNA target

sites.

Junction reads

Junction reads are reads whose genomic alignment contains a gap

because they start in one exon, end in another exon, and ‘‘jump’’

over the intron in between and possibly over skipped exons. In

DEXSeq, such reads are counted for each counting bin with which

they overlap, i.e., they appear multiple times in the count table.

However, because we test for each exon separately, this does not

affect the validity of the test.

Junction reads contain additional information that is espe-

cially valuable when inferring gene models and the positions of

splice junctions. Unless one works with a very well annotated

model system, this information should be used when defining the

counting bins, by parsing the spliced alignments with appropri-

ate tools.

Furthermore, junction reads give evidence for connections

between counting bins and thus are crucial for isoform deconvo-

lution tools such as Cufflinks and MMSeq. For our exon-by-exon

test, however, leveraging this information is not essential, and

also not straightforward. In the method presented, we essentially

consider for each sample the ratio of the number of reads over-

lapping with an exon to the number of reads falling onto the whole

gene. Alternatively, one could consider the ratio of the number of

reads skipping over the exon under consideration to the total

count. We anticipate that the latter would offer a moderate in-

crease in power in cases in which the counting bin is much shorter

than the typical read length. It may be an interesting future ex-

tension to the DEXSeq method to switch to this scheme for bins

that are short compared with the read length.

Implementation

We implemented DEXSeq as a package for the statistical pro-

gramming language R (R Development Core Team 2009) and have

made it available as open source software via the Bioconductor

project (Gentleman et al. 2004). See the Bioconductor web page

for downloading instructions. DEXSeq can be used on MacOS,

Linux, and Windows.

For the preparation steps, namely, the ‘‘flattening’’ of the

transcriptome annotation to counting bins and the counting of

the reads overlapping each counting bin, two Python scripts are

provided, which are built on the HTSeq framework (Anders 2011).

The first script takes a GTF file with gene models and transforms it

into a GFF file listing counting bins, and the second takes such

a GFF file and an alignment file in the SAM format and produces

a list of counts. The R package is used to read these counts, estimate

the size factors and dispersions, fit the dispersion-mean relation,

and test for differential exon usage. After the analysis has been

performed, all the results are available, together with the input

data, in an object derived from the ExpressionSet class, Bio-

conductor’s standard container type for data from high-through-

put assays. The results provided include for each counting bin the

following data: the conditional-maximum-likelihood estimate for
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the dispersion, the dispersion value actually used in the test

(which may be different, due to the information sharing across

genes), the P-value from the test for differential exon usage, the

Benjamini-Hochberg-adjusted P-value, and the fit coefficients

describing the fitted log2 fold change between treatment controls

(or, if there are more than two conditions, for pairs of conditions

as chosen by the user). Other R or Bioconductor functionality can

be used for downstream analyses of these results. If required, the

other coefficients as described in Supplemental Note S.3 are also

available.

Furthermore, DEXSeq can create a set of HTML pages that

contains the results of the tests, and, for each gene, plots like

Figures 3 and 5 and Supplemental Figures S1 and S3. The HTML

output allows interactive browsing of the results and facilitates

sharing of the results with colleagues by uploading the files to a

web server.

The DEXSeq package provides functions on different levels. In

the simplest case, a single function is called that runs all the steps

of a standard analysis. To give experienced users the possibility to

interfere with the workflow, functions are also provided to run

each step separately, to run some steps only for single genes, and to

inspect intermediate and final results.

The use of the package is explained in the vignette (a man-

ual with a worked example) and documentation pages for all

functions.

Because the DEXSeq method relies on fitting GLMs of the NB

family, a reliable IRLS fitting function is required. We use the

function nbglm.fit (McCarthy et al. 2012) from the statmod pack-

age, which offers better performance and convergence than older

implementations.

Fitting GLMs for many genes and counting bins is a compu-

tationally expensive process. When running on a single core of

a current desktop computer, the analysis of the Brooks and co-

workers data presented here takes several hours. However, the

method lends itself easily to parallelization: We use the multicore

package (Urbanek 2011) to distribute the computation on several

CPU cores.

The complete workflow used to perform all calculations for

this article is documented in Supplement II.

Conclusion

We have presented a method, called DEXSeq, to test for evidence of

differential usage of exons and hence of isoforms in RNA-seq

samples from different experimental conditions using general-

ized linear models. DEXSeq achieves reliable control of false dis-

covery rates by estimating variability (dispersion) for each exon or

counting bin and good power by sharing dispersion estimation

across features. The method is implemented as an open source

Bioconductor package, which also facilitates data visualization and

exploration. We have demonstrated DEXSeq on three data sets of

different type and illustrated how the results of a DEXSeq analysis,

combined with metadata on parts of transcripts, such as protein

domains, form the basis for exploring a biological phenomenon,

differential exon usage, that is currently not well understood and

whose study may reveal many surprises.
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