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Abstract

Ultra-high field 7T magnetic resonance imaging (MRI) offers potentially unprecedented spatial 

resolution of functional activity within the human brain through increased signal and contrast to 

noise ratios over traditional 1.5T and 3T MRI scanners. However, the effects physiological and 

imaging artifacts are also greatly increased. Traditional statistical parametric mapping theories 

based on distributional properties representative of data acquired at lower fields may be 

inadequate for new 7T data. Herein, we investigate the model fitting residuals based on two 7T 

and one 3T protocols. We find that model residuals are substantively more non-Gaussian at 7T 

relative to 3T. Imaging slices that passed through regions with peak inhomogeneity problems (e.g., 

mid-brain acquisitions for the 7T hippocampus) exhibited visually higher degrees of distortion 

along with spatially correlated and extreme values of kurtosis (a measure of non-Gaussianity). The 

impacts of artifacts have been previously addressed for 3T data by estimating the covariance 

matrix of the regression errors. We further extend the robust estimation approach for 

autoregressive models and evaluate the qualitative impacts of this technique relative to traditional 

inference. Clear differences in statistical significance are shown between inferences based on 

classical versus robust assumptions, which suggest that inferences based on Gaussian assumptions 

are subject to practical (as well as theoretical) concerns regarding their power and validity. Hence, 

modern statistical approaches, such as the robust autoregressive model posed herein, are 

appropriate and suitable for inference with ultra-high field functional magnetic resonance imaging.
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1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) and Statistical Parametric mapping (SPM) 

are widely used to infer spatial-temporal characteristics of brain activity [1, 2]. In addition to 
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task or event based models, many fMRI studies are now focused on the analysis of resting 

state activity [3]. A common curse of rapid acquisitions seeking high resolution in three-

dimensions is the relatively low signal-to-noise ratio (SNR) in fMRI data [4]. The next 

generation of 7T MRI scanners offers the possibility of greatly increased SNR along with 

higher contrast for functional activity [5]. Yet, as the magnetic field strength increases, the 

effects of physiological noise (breath, cardiac and other movements), susceptibility artifacts, 

and hardware induced distortion are increased [6]. Hence, artifacts and outliers are an 

increased problem with fMRI at 7T over the current 3T and 1.5T scanners [7].

In SPM, resting state fMRI data may be analyzed by fitting an autoregressive model using 

an Expectation-Maximization (EM) algorithm. The increased artifacts and correlated 

physiological noise on 7T fMRI images compared to 3 T fMRI may increase violations the 

distributional assumptions underlying the statistical modeling. The impacts of the artifacts 

have been previously addressed for 3T data by estimating the covariance matrix of the 

regression errors, which provides a robust version of the M-step [8]. Robust regression is 

popular in the form of M-estimator provided by [9], which has been implemented in many 

programs using iteratively reweighted least squares [10]. A robust empirical Bayesian 

estimation of longitudinal data is briefly discussed in [11]. Herein, we investigate the 

distributional characteristics from two distinct empirical protocols at 7T alongside a 3T 

protocol. To address the outliers especially for the 7T fMRI data which contain relatively 

higher non-Gaussian noise, we proposed a unified robust approach for the EM algorithm.

2. THEORY

We consider a temporal first order autocorrelation model, AR(1), for weakly dependent time 

series data which is traditionally used in fMRI analysis. Both the simple AR(1) model and 

the ‘AR(1)+white noise’ model [12] can be considered using the general linear model 

(GLM) with non-spherical error [13].

(1)

(2)

where yi is a vector of fMRI time series (time t = 1…T) intensity at voxel i, X is the design 

matrix, βi is a vector of regression parameters at voxel i, and ei is a T column non-spherical 

error vector. The covariance matrix V is estimated using Restrict Maximum Likelihood 

(ReML), then the model can be whitened by pre-multiplying a whitening matrix W = V−1/2:

(3)

(4)

To estimate the covariance matrix V, the AR(1) model used in SPM assumes that
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(5)

Our objective is to maximize the likelihood of the observed data p(yi|λ), conditioned on the 

hyperparameters λ, in the presence of unobserved variables or parameters βi [13]. This is 

equivalent to maximizing the negative variational free energy in Variational Bayesian 

methods.

(6)

where q(β) is the distribution over the model parameters [14]. Then the problem can be 

solved using EM algorithm:

The maximum in the E-step obtains when q(β) = p(β|(yi, λ)), which causes the negative free 

energy in the M-step to be equivalent to the objective function maximized in classical 

ReML. Under the Gaussian assumption , β in the E-step can be estimated 

from ordinary least squares (OLS), and the q(β) is also Gaussian. However, in 7T fMRI the 

assumption may be violated because of artifacts. We will explore the distribution 

assumption in the next section.

Considering that a robust estimate of β from the whitening data in the E-step is the same as 

the robust regression on the independent distribution data set. For a consistent M-step, since 

the estimated robust β can be viewed as the OLS solution of the weighted data which 

weights are assigned by the robust weight functions, we can use these weights to estimate 

the robust covariance in the M-step. The complete robust EM-method can be expressed as:

Where rw represents therobust weights estimated from the robust weight function.

3. METHODS

3.1 Resting State fMRI Analysis

Resting state fMRI image series from individual healthy subjects were analyzed using SPM 

8 (Wellcome Trust Centre for Neuroimaging, University College London, UK). All subjects 

were imaged after informed written consent. One 3T fMRI dataset and two 7T fMRI 

datasets (7T Hippocampus and 7T Motor Cortex) were compared. For each analysis, the 

average seed signal was orthogonalized with respect to its mean value and six motion 

parameters prior to measuring its time course before entry into the GLM. The connectivity 

maps were estimated from the design matrix defined as one column seed region time course, 
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six column movement parameters from realignment estimated by SPM 8 and one column 

constant.

The 3T resting state fMRI image series (4×4×4 mm resolution, 46×55×46 voxels, TR = 

2000 ms, 200 volumes) were analyzed through slice timing correction, realignment, co-

registration, normalization, smoothness in SPM 8, followed by the time series low pass filter 

with a cut off frequency equal to 0.1Hz. A right hippocampus mask defined by 

WFUpickatlas (http://fmri.wfubmc.edu/software/PickAtlas) was used to define the seed 

region and the average time series signal were calculated (Figure 1).

The 7T (Hippocampus) resting state MRI dataset (2×2×2 mm resolution, 96×96×12 voxels, 

TR = 2000 ms, 96 volumes) was analyzed to compute a connectivity map of the right 

hippocampus as the 3T fMRI (Figure 1). An image based physiological noise reduction 

method [15] was first applied to adjust physiological noise. Then a standard preprocessing 

containing slice timing correction, realignment, smoothness and low pass temporal filter 

were performed.

The 7T (Motor Cortex) fMRI data (2×2×2 mm resolution, 96×96×13 voxels, TR = 1000 ms, 

500 volumes) were preprocessed by slice timing, realignment, low pass temporal filtering, 

and linearly detrending. The global average brain intensity was used as a confounding 

regressor. One voxel inside the right motor cortex was selected as the seed voxel (Figure 1).

3.2 Whitening Residuals Distribution

In fMRI analysis, the weight matrix is estimated by ReML for the whole brain. To explore 

the Gaussian assumption of the whitening data we calculated the residuals of the filtered 

weighted data. i.e., for each voxel

(7)

(8)

(9)

Where W is the weighted matrix used to whitening data, which is the same for every voxel, 

filter represents applying the filter specified in the 1st level fMRI design. Y is the fMRI 

image intensity, X is the design matrix, β is the estimated parameters calculated by SPM 8. ε 

is the residual that is assumed to be distributed as normal distribution.

For each resting state fMRI dataset, we calculated the kurtosis of the residuals across time in 

every brain voxel to compute a kurtosis map. The estimator of the popular kurtosis is 

defined as

(10)
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where k4 is the unbiased estimator of the fourth culminant and k2 is the unbiased estimator 

of the population variance. It is an unbiased estimator of the population kurtosis that equals 

0 for the normal distribution.

3.3 Robust fMRI Connectivity Analysis

Our robust estimation EM algorithm proposed in section 2 was tested as a preliminary 

robust method on our three datasets. It is implemented in SPM 8 by changing ordinary least 

squares regression to robust regression and applying weights in restricted maximum 

likelihood estimation. The resting state fMRI images are analyzed under the robust method 

and compared with the results acquired earlier.

Images are processed as stated before, only the estimation method changes. One voxel 

which shows different significance result in the connectivity map estimated from the robust 

method and the ordinary method was studied. We plotted the raw data and the regression 

lines for the seed course ignoring the motion confounds. The seed intensity is the intensity 

after orthogonalized with respect to its mean and the motion parameter while the image 

intensity is from fMRI images after preprocessed.

4. RESULTS

The connectivity maps are displayed in Figure 2 in glass brains with one slice image 

overlapped. The statistical significance was calculated based on the 0.05 Family Wise error 

(FEW) p-value threshold and then projected to three dimensions. The results are shown with 

10 voxels extent threshold to exclude noise. The darkest region represents the most 

correlated voxels to the seed region time series. We can expect that the most correlated 

voxels are inside the seed region. In the 3T fMRI connectivity map, the right hippocampus 

and the left hippocampus are much more significant than other regions. The right 

hippocampus region is also very significant in the 7T connectivity map, but the left 

hippocampus region is not as significant as we see in the result of the 3T fMRI dataset. The 

right motor cortex seed voxel of the 7T fMRI data is extremely significant since an 

orthogonalized time course is always perfectly correlated to itself and the extra motion 

regressors are not confounds. Bilateral correlations on each central sulcus are observed in 

the connectivity map as expected.

The kurtosis maps are shown in Figure 3 along with the plots of two selected voxel residuals 

across scans. The kurtosis values are randomly distributed in both 3T resting state fMRI and 

the 7T resting state fMRI with right motor cortex seed voxel. It confirms the assumption that 

the whitening resting state fMRI data are independent. However, the kurtosis maps of the 7T 

fMRI with right hippocampus exhibited spatial dependence.

To explore the performance of our robust method on the resting state fMRI data, we 

compared the results from robust and non-robust fMRI analysis. The glass brains and the 

estimated parameters for the seed signal are compared in the Figure 4. The connectivity map 

estimated by the robust method seems getting more power and accuracy.
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5. DISCUSSION

In summary, we extend the robust estimation approach for autoregressive models and 

evaluated the qualitative impacts of this technique relative to traditional inference. Clear 

differences in statistical significance are shown between inferences based on classical versus 

robust assumptions, which suggest that inferences based on Gaussian assumptions are 

subject to practical (as well as theoretical) concerns regarding their power and validity. 

Hence, modern statistical approaches, such as the robust autoregressive model posed herein, 

are appropriate and suitable for inference with ultra-high field functional magnetic 

resonance imaging.
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Figure 1. 
Presentation of data and seed regions. The first column show one slice raw images with the 

seed region marked in red for each data set. The second column displays the smoothed 

images. Note that we analyzed the smoothed images for hippocampus seed region but un-

smoothed images for motor cortex seed voxel. The third column plots the average seed 

region intensity after preprocessed across the first 100 scans.
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Figure 2. 
Connectivity maps. The connectivity maps from fMRI analysis are shown in the glass brain 

projecting the significant voxels to three dimensions. The statistical significance is 

calculated based on corrected FWE p<0.05 and 10 voxels extent threshold to exclude noise. 

One slice image overlapped with the connectivity map is displayed following the glass 

brain.
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Figure 3. 
Kurtosis of weighted residuals. The Kurtosis maps of the residuals from the weighted data 

are shown in the first column. The middle and the right column display one voxel residuals 

across the first 100 scans inside the cerebrospinal fluid region and the white matter region 

respectively.
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Figure 4. 
Comparison of Ordinary and Robust methods. For each data set, the first left row displays 

one dimension glass brains of the connectivity maps based on corrected FWE p<0.05 and 10 

voxels extent threshold to exclude noise. One slice of the estimated parameters for the seed 

signal from both ordinary and robust methods are shown in the second left row. One voxel 

inside the regions where the two methods estimated different significance is enlarged in the 

right column, which is corresponding to the blue circle in the glass brains and the black 

circle in the β images. The blue dots represent the raw data intensity. The seed intensity 

regression lines from ordinary and robust methods are plotted ignoring motion confounds.
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