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Abstract
Our objective was to illustrate the effects of using stricter standards for the quality of evidence
used in decision analytic modeling. We created a simple 10-parameter probabilistic Markov model
to estimate the cost-effectiveness of directly observed therapy (DOT) for individuals with newly
diagnosed HIV infection. We evaluated quality of evidence on the basis of U.S. Preventive
Services Task Force methods, which specified 3 separate domains: study design, internal validity,
and external validity. We varied the evidence criteria for each of these domains individually and
collectively. We used published research as a source of data only if the quality of the research met
specified criteria; otherwise, we specified the parameter by randomly choosing a number from a
range within which every number has the same probability of being selected (a uniform
distribution). When we did not eliminate poor-quality evidence, DOT improved health 99% of the
time and cost less than $100 000 per additional quality-adjusted life-year (QALY) 85% of the
time. The confidence ellipse was extremely narrow, suggesting high precision. When we used the
most rigorous standards of evidence, we could use fewer than one fifth of the data sources, and
DOT improved health only 49% of the time and cost less than $100 000 per additional QALY
only 4% of the time. The confidence ellipse became much larger, showing that the results were
less precise. We conclude that the results of decision modeling may vary dramatically depending
on the stringency of the criteria for selecting evidence to use in the model.

Many clinicians and policymakers view decision analytic modeling as interesting but
ultimately esoteric and unhelpful (1). Anecdotally, model users find it difficult to know
when they can “trust the model” and often express bewilderment when confronted with data
sources from a wide range of study designs, personal opinions, and convergence with the
target population. While modelers commonly use methods to consider the random error of
individual data sources (2, 3), they seldom model the uncertainty that arises when the
evidence for the data is weak or is of questionable applicability to the model’s target
population. Because this uncertainty is hard to detect, it may be an insidious source of
modeling error.

Similar issues arise in evidence-based reviews of the literature, in which authors combine
studies that have different methods and populations to form a summary measure (4).
However, these reviews often encounter less skepticism because evidence-based reviews
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characterize the quality of each study’s evidence (5–7). Readers can then use their own
personal thresholds for quality of evidence to decide whether to use the results in their
decision making. We sought to emulate the transparency of systematic reviews in the
domain of decision analytic modeling.

Several authors have published methods to quantify the uncertainty conferred by weak study
designs. These include bias modeling (8) and Bayesian approaches, such as the confidence
profile method (9, 10). While these methods differ in their specifics, they require the analyst
to identify each bias that may have affected each individual data source, to quantify the
impact of that bias, and then to modify each parameter distribution in the model so that it
reflects the bias. These methods promise great accuracy, potentially yielding probability
distributions that precisely reflect what is known about each parameter. However, these
methods are sometimes intractable—it may be impossible to identify and quantify every bias
that affects each model parameter. Responding to skepticism about complex decision
analytic models that readers cannot understand (1), authors may be reluctant to add another
opaque methodologic layer that deals with bias in the evidence. For all their merits, those
methods for accounting for biased evidence have not become routine practice.

We sought to illustrate the principle behind adjusting for biased evidence by using a
transparent method for incorporating quality of evidence into decision analytic modeling.
Our approach does not involve a conceptual advance beyond these previously published
methods. Rather, we identify powerful and simplifying heuristics that sacrifice precision to
gain transparency and feasibility.

We demonstrate how to incorporate the evidence valuation hierarchy used by the U.S.
Preventive Services Task Force (USPSTF) within decision analytic models. The question we
chose to evaluate was the cost-effectiveness of directly observed therapy (DOT) for an
individual with newly diagnosed HIV infection and a moderately low CD4 cell count (0.1 to
0.2 × 109 cells/L).

Methods
We first discuss how we adapted the USPSTF method to our task of grading the quality of
evidence that we might use in our decision model. Next, we describe how we specified a
minimally acceptable, or “qualifying,” grade of evidence. If the quality of evidence was
beneath this grade, we considered it to be too weak for us to use in the model. Finally, we
varied our threshold for defining adequate quality of evidence to measure the effect of
evidence quality on the results produced by the model.

The basic idea underlying this approach is that when a data source has poor-quality
evidence, we should not use it to estimate a model parameter. Instead, we should assume
that we know little about the parameter’s true value and specify it by using a probability
distribution with few embedded assumptions (probability distributions that are
“uninformative” or “wide”). A probability distribution is a way of expressing what we know
about a number whose true value is uncertain. It is narrow if we are certain and wide if we
are uncertain. We chose to use uniform distributions (that is, it is equally likely that a
parameter has any value within a specified range) to construct our uninformative
distributions; however, other types of wide distributions (such as shallow triangular
distributions) are consistent with this approach and may also be suitable. It is important to
note that we used uninformative distributions only if no data source met our qualifying
grade of evidence; otherwise, we based the parameter distribution on the statistical
uncertainty of the qualifying data source.
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Adapting the Analytic Framework of Evidence-Based Medicine
As recommended by the USPSTF (4), we evaluated quality of evidence according to 3
separate domains of study design: hierarchy of research design, internal validity, and
external validity (Table 1). Hierarchy of research design (which we subsequently refer to as
study design) measures the extent to which a study’s design differs from a controlled
experiment. The hierarchy ranges from randomized, controlled clinical trial (level 1, most
favorable) to expert opinion (level 3, least favorable). Internal validity measures how well a
study’s conclusions apply to the members of the study sample itself (11) (Table 1) and
includes determinants of study quality or bias minimization, such as concealment of
randomization and loss to follow-up. It is graded as good, fair, or poor. External validity
measures how well a study’s inferences should apply to members of the target population
(11) (Table 1) and includes such determinants of generalizability as whether clinical, social,
or environmental circumstances in the studies could modify the results from those expected
in another clinical setting. The USPSTF did not specify a grading system for external
validity, so we simply graded this attribute as high or low. The USPSTF classification
scheme treats research design, internal validity, and external validity as largely independent
of each other. Therefore, although some would argue that any study with poor internal
validity will necessarily have poor external validity, the USPSTF approach preserves the
flexibility to rate these 2 attributes independently.

The USPSTF developed its methods to use with experimental variables (that is,
interventions). Therefore, it gives lower-quality scores to studies that rely strictly on
observation. Decision analytic models commonly include variables that are necessarily
observed and are impossible to measure by experiment (for example, cost or features of the
natural history of disease, such as the mortality rate due to age-, sex-, and race-related
causes). For this reason, we did not want to automatically award low study design grades to
studies measuring nonexperimental variables. Therefore, we classified high-quality studies
that measured nonexperimental variables as level 1 rather than level 2.

Two of the authors independently classified the design, internal validity, and external
validity of 17 data sources (12–25; one unpublished study; expert opinion) for the DOT
model by using this adapted classification scheme (Table 2). They disagreed only once and
quickly resolved the difference. Some investigators may prefer more robust review
procedures, such as those used for meta-analyses (for example, review in duplicate with
decision rules for adjudicating discrepancies, blinded review) (26).

Specifying Qualifying Grades of Evidence
Every time we used the model, we specified qualifying grade or grades of evidence for 1 or
more of our evidence domains (study design, internal validity, and external validity). A
“qualifying” grade of evidence means we could use a data source in our model only if that
source met or exceeded the qualifying grade of evidence. For example, if we specified that
the model must contain only data from studies using level 1 study design, we used only data
sources with level 1 design and excluded studies with weaker design (level 2-1, level 2-2,
level 3 [see Table 1]).

Varying the Qualifying Grade of Evidence in Sensitivity Analyses
After performing a base-case analysis in which we used all evidence (regardless of its
quality), we performed 4 separate sensitivity analyses on the basis of quality of evidence.
Three of them consisted of imposing the strictest evidence criteria for 1 of the 3 evidence
domains while using all evidence for the other 2 domains. In the fourth analysis, we
simultaneously set all 3 evidence criteria to their strictest levels.
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Estimation of Parameter Input Distributions
When more than 1 study met the qualifying grade of evidence, we used the data source with
the most statistically precise estimate. Specifically, we used the mean and 95% CI from the
study to define the corresponding parameter’s distribution. We chose this approach for its
simplicity, as well as to reflect common modeling practice. However, an alternative
approach would be to perform a formal meta-analysis using all data sources that met the
qualifying grade of evidence (assuming that the studies were sufficiently homogeneous to
justify combining them).

When data sources for a particular model parameter did not meet the qualifying grade of
evidence, we did not base the parameter point estimate on those sources. Instead, we
assumed a uniform distribution over a range that was sufficiently wide and inclusive to
encompass the likely range of model users’ beliefs (that is, prior probability distributions)
about the true value of that parameter. To minimize our dependence on assumptions, we
specified uniform distributions that were neutral, thereby not favoring any particular
direction of effect. For example, when we imposed a strict qualifying grade of evidence for
external validity, none of the studies of the effectiveness of DOT met our criterion, so we
specified this parameter by a uniform distribution centered on the null effect (DOT had no
effect on adherence).

Decision Analytic Model
We constructed a simple decision analytic model (Figure 1) by using standard methods to
specify parameters as probability distributions (that is, a range of probabilities in which
some probabilities may be more likely than others). In the model, individuals may or may
not receive DOT, and DOT may or may not affect whether individuals take HIV treatment.
HIV treatment, in turn, influences whether people live or die. We used this simple model
solely to illustrate this approach. The model differs completely from the HIV decision model
published elsewhere by Braithwaite and colleagues (27–29). We deliberately made it as
simple as possible to ensure that the complexity of the model would not be a barrier to
understanding the concept of incorporating quality of evidence into a decision model, which
applies to any expected value decision model, no matter how complex.

We used a type of model that generates a result from each of many runs in which the model
draws a value at random from the probability distributions for each parameter input.
Because the parameter values vary from run to run, the results vary from run to run. We
used a cost-effectiveness model, so each run generated a value for incremental cost and
incremental effectiveness. In accord with accepted practice for presenting model results, we
display the results in 2 different ways. First, we show a confidence ellipse, which indicates
the portion of the cost-effectiveness plane (that is, a 2-dimensional graph of incremental cost
and incremental effectiveness) in which 95% of results of a run are likely to occur (30). The
confidence ellipse is analogous to confidence intervals. Smaller confidence ellipses
correspond to more precise results, and wider confidence ellipses correspond to less precise
results. Second, we show an acceptability curve, which shows the proportion of observations
that fall beneath a range of hypothetical thresholds that society is willing to pay for health
benefits (31). A range of $50 000 to $100 000 per quality-adjusted life-year (QALY) is
commonly used as a de facto standard for cost-effectiveness. If a high proportion of
observations falls below this range, it is evidence in favor of cost-effectiveness. We ran each
simulation 1000 times.

Role of the Funding Source
The funding source had no role in the study’s design, conduct, or analysis and in the
decision to submit the manuscript for publication.
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Results
To perform a sensitivity analysis by quality of evidence, we varied each of the 3 evidence
criteria (study design, internal validity, external validity) across their ranges, first
individually and then collectively. When we imposed no evidence criteria, we used all 17
data sources for the parameter estimates in the model. When we included only studies that
met the most selective grade of evidence for study design (level 1), we excluded 4 of the
data sources and based our parameter estimates on the remaining 13 studies. When we
included only studies that met the most selective grade of evidence for internal validity
(good), we excluded 8 of the 17 studies and based our parameter estimates on the remaining
9 studies. Specifying the most selective grade for external validity (high) excluded 12 of the
17 studies, and specifying all 3 evidence criteria simultaneously excluded 14 of the 17
studies (Table 2).

Precision of Model Results
When we imposed no evidence criteria and used all data sources in the model, the 95%
confidence ellipse was narrow (Figure 2, A), suggesting precise model results. In addition,
the area contained within the confidence ellipse was mostly to the right of the $100 000
cost-effectiveness threshold, suggesting that DOT was cost-effective.

When we required that the study design of data sources had to have level 1 evidence, the
cost-effectiveness ellipse became much larger (Figure 2, B), indicating a substantial increase
in uncertainty about model results. The long axis of the ellipse rotated considerably
counterclockwise, indicating worse cost-effectiveness.

Requiring a “good” rating for the internal validity of data sources resulted in an
intermediate-size cost-effectiveness ellipse compared with requiring a level 1 rating for
study design. Nonetheless, the size of the ellipse, and therefore the uncertainty of the model
results, increased substantially compared with when we used all data sources (Figure 2, C).

When we required a “high” rating for the external validity of data sources, the confidence
ellipse became larger than with the other individual evidence criteria, indicating imprecise
modeling results. Very few results were on the favorable side of the cost-effectiveness
threshold (Figure 2, D).

Imposing all 3 evidence criteria simultaneously yielded a confidence ellipse nearly identical
to that resulting from setting the external validity criterion to “high.” Few results were on
the favorable side of the cost-effectiveness threshold.

Model Results for Cost-Effectiveness
When we imposed no evidence criteria (Figure 3, A), 85% of simulation runs were cost-
effective, assuming willingness to pay $100 000 per QALY, and 99.0% of all runs showed
DOT to have a beneficial effect. The overall incremental cost-effectiveness of DOT was $78
000 per QALY.

When we mandated level 1 study design (Figure 3, B), only 17% of simulation runs were
cost-effective, although 99.6% of runs showed effectiveness. The overall incremental cost-
effectiveness increased to $227 000/QALY.

Mandating good internal validity (Figure 3, C) affected the cost-effectiveness of DOT less
adversely than did the study design criterion but still resulted in only 20% of runs being
cost-effective. Most (89%) runs showed effectiveness. The cost-effectiveness remained
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unfavorable compared with when we did not impose limitations on evidence criteria ($158
000/QALY).

Requiring high external validity (Figure 3, D) resulted in a tiny fraction of simulation runs
being cost-effective (4.5%). Directly observed therapy was no longer consistently effective;
53% of simulation runs now showed DOT to be ineffective. The overall incremental cost-
effectiveness now increased to greater than $6 million/QALY.

Imposing all 3 evidence criteria simultaneously yielded similar results: 4.3% of runs were
cost-effective, 49% of runs showed effectiveness, and the cost-effectiveness was extremely
unfavorable.

Discussion
Our results suggest that quality of evidence may sometimes have a profound impact on the
results of decision analytic models. When we did not specify a qualifying level of evidence,
DOT was always effective and was usually cost-effective, with 85% of simulations showing
an incremental cost-effectiveness more favorable than $100 000 per QALY and an overall
incremental cost-effectiveness of $78 000 per QALY. These results were not markedly
different from the far more complex HIV simulation published by Goldie and colleagues
(25), in which DOT was estimated to have an incremental cost-effectiveness of up to $75
000 per QALY across a wide range of effectiveness assumptions. However, when we
specified strict qualifying levels of evidence, our results became much less precise, and the
confidence ellipse became commensurately more expansive. Directly observed therapy was
often ineffective, and it was seldom cost-effective. Therefore, with constraints concerning
quality of evidence, our results became substantially more pessimistic than the results of
Goldie and colleagues.

This approach can make the quality of evidence assumptions behind decision analytic
modeling more transparent and perhaps more believable. Model users who subscribe to the
philosophy that “any data are better than no data” will probably base inferences on model
results that incorporate all data sources, regardless of evidence quality. In contrast, users
who subscribe to the philosophy that “my judgment supersedes all but the best data” would
probably base inferences only on model results that incorporate the highest quality sources.
In many respects, this approach constitutes a very simplified and specific application of the
confidence profile method (9), in which we aggregated the impact of each separate bias
rather than considering them individually and considered this aggregated effect to be either
minutely small (if the study meets designated quality criteria) or overwhelmingly large (if
the study does not meet designated quality criteria).

Our finding of a large tradeoff between quality of evidence and precision of modeling
results is likely to be true of many other published decision analytic models. For example,
the cost-effectiveness of alendronate therapy (32) was based on utility estimates from 2
studies with low external validity (utilities were assessed in a different culture and care
system) (33, 34) and long-term cost estimates from 1 study with fair internal validity
(incompletely controlled for potential confounders) (35). If the authors’ sensitivity analysis
were to have incorporated uninformative distributions for these parameters instead of the
relatively informative (narrow) distributions that they used, their results may not have been
sufficiently precise to suggest a particular decision. Similarly, the cost-effectiveness of
preventive strategies for women with BRCA1 or BRCA2 mutations (36) was also likely to
have been affected by a tradeoff between quality of evidence and precision of results. The
authors used studies with poor external validity (tamoxifen was evaluated on patients
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biologically distinct from the target population) (37) or fair internal validity (surgical
strategies were not evaluated in an experimental setting).

Because more than 1 data source may meet evidence criteria for a particular parameter
estimate, we needed to develop decision rules to guide which source or sources to use. We
elected to use the source with the most statistically precise estimate, a straightforward rule
that reflects accepted modeling practice. An approach more consistent with our evidence-
based ethos would have been to perform a separate, formal meta-analysis for each possible
specification of qualifying evidence criteria, for each individual parameter. However, even
for a model as simple as ours, we would have to have performed a prohibitively large
number of separate meta-analyses.

Some of the decisions embedded in our approach may be appropriate subjects for debate.
While we chose to use uniform distributions to describe parameters that did not meet
qualifying evidence criteria, other types of distributions are consistent with our approach and
may also be suitable. While we chose wide distributions with the aim of enhancing the
conservatism and acceptability of our approach, it may be argued that this decision
magnifies the effect of poor quality of evidence. Even though we used a quality evaluation
method currently used by an expert panel, evaluating evidence using summary quality scores
or domain-specific quality “weights” is often viewed as arbitrary and invalid (38, 39). In the
end, the utility of this paper lies in neither its specification of particular evidence valuation
strategies nor its probability distributions. Rather, its strength is to highlight the importance
of incorporating quality evaluation within decision analytic models and to present one
simple and tractable method for accomplishing this important aim.
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Figure 1. Schematic diagram of decision analytic model
This model was constructed with extreme parsimony solely to illustrate the approach.
Squares signify choices (for example, use the adherence intervention [ADH INT] versus do
not use the adherence intervention [NO ADH INT]), circles signify potential consequences
(for example, live versus die), and triangles signify consequences that may endure over a
significant time frame and therefore may affect quality or quantity of life (for example, treat
HIV). The circle inscribed with “M” is a Markov node (MarkovAdh), denoting that the
model has the capacity to represent changes in clinical status over time. HIVtreat = receives
and adheres to HIV treatment; HIVnotreat = does not receive or does not adhere to HIV
treatment.
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Figure 2. Cost-effectiveness plane and 95% confidence ellipses for directly observed therapy in
the absence of any evidence criteria (A) and with quality of evidence criteria applied to research
design (B), internal validity (C), and external validity (D)
Each point signifies the incremental cost-effectiveness of a particular model run. Points that
cluster within a narrow 95% confidence ellipse (the analogue of a 95% CI) suggest great
precision, whereas points that scatter throughout a wide 95% confidence ellipse suggest low
precision. The location of each point on the cost-effectiveness plane indicates its cost-
effectiveness. As a general guide, when points lie to the left of a decision making threshold
($100 000 per quality-adjusted life-year [QALY] is a commonly used threshold),
incremental costs are high relative to incremental benefits, and cost-effectiveness is
unfavorable. In contrast, when points lie to the right of that threshold, incremental costs are
low relative to incremental benefits, and cost-effectiveness is favorable. Our results became
notably less precise when stricter evidence criteria were applied, most dramatically with an
external validity (EV) criterion. IV = internal validity.
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Figure 3. Acceptability curves for directly observed therapy (DOT) in the absence of any
evidence criteria (A) and with strength of evidence criteria applied to research design (B),
internal validity (C), and external validity (D)
The horizontal axis shows a range of values that society may be willing to pay for health
benefits, and the curve’s elevation (on the vertical axis) denotes the probability that DOT
has an incremental cost-effectiveness that is more favorable than the corresponding
willingness to pay. DOT became notably less cost-effective when stricter evidence criteria
were applied, most dramatically with an external validity (EV) criterion. IV = internal
validity.
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Table 1

Strength of Evidence Hierarchy*

Study design

 Level 1: Evidence obtained from at least 1 properly designed randomized, controlled trial†

 Level 2-1: Evidence obtained from well-designed controlled trials without randomization

 Level 2-2: Evidence obtained from well-designed cohort or case–control analytic studies, preferably from more than 1 center or research
group

 Level 2-3: Evidence obtained from multiple time series with or without the intervention

 Level 3: Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees

Internal validity

 Good: Meets all criteria for study design

 Fair: Does not meet all criteria for study design but is judged to have no fatal flaw that invalidates its results

 Poor: Study contains a fatal flaw

 Criteria

  Systematic reviews

   Comprehensiveness of sources/search strategy used

   Standard appraisal of included studies

   Validity of conclusions

   Recency and relevance

  Case–control studies

   Accurate assessment of cases

   Nonbiased selection of cases/controls with exclusion criteria applied equally to both

   Response rate

   Diagnostic testing procedures applied equally to each group

   Appropriate attention to potential confounding variables

  Randomized, controlled trials

   Initial assembly of comparable groups (concealment and distribution of potential confounders)

   Maintenance of comparable groups (includes attrition, crossovers, adherence, contamination)

   Important differential loss to follow-up or overall high loss to follow-up

   Measurements: equal, reliable, and valid (includes masking of outcome assessment)

   Clear definition of interventions

   All important outcomes considered

   Intention-to-treat analysis

   Sample size/power

  Cohort studies

   Consideration of potential confounders; consideration of inception cohorts

   Adjustment for potential confounders

   Important differential loss to follow-up or overall high loss to follow-up

   Sample size/power

External validity

 High: Meets criteria

 Low: Does not meet criteria

 Criteria
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  Biological plausibility

  Similarities of the study sample to the target population (risk factor profile, demographics, ethnicity, sex, clinical presentation, and similar
factors)

  Similarities of the test or intervention studied to those that would be routinely available or feasible in clinical practice

  Clinical or social environmental circumstances in the studies that could modify the results from those expected in a primary care setting

*
Modified from the U.S. Preventive Services Task Force (4).

†
 Observational studies qualify as level 1 if they are used to estimate a parameter that cannot be determined experimentally (for example, mortality

rate due to age-, sex-, and race-related causes).
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