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Background: The role of IL-7 in human pre-T cell development is controversial.
Results: Using IL-7R�-modified Molt3, we demonstrate a synergistic effect of pre-TCR and IL-7 involving STAT5, Akt, and
Erk1/2.
Conclusion: There is a stringent requirement for down-regulation of IL-7/IL-7R� signaling during human T cell
development.
Significance: Understanding how IL-7 regulates human T cell development will help future development of T cell
therapeutics.

The role of IL-7 in pre-T cell receptor (TCR) signaling during
human T cell development is poorly understood. To study this,
we engineeredMolt3, a T cell progenitor T-acute lymphoblastic
leukemia cell line, using lentiviral IL-7 receptor � (IL-7R�) to
serve as a model system. IL-7 promoted pre-TCR activation in
IL-7R�hi Molt3 as illustrated by CD25 up-regulation after anti-
CD3 stimulation. Anti-CD3 treatment activatedAkt and Erk1/2
signaling pathways as proven using specific inhibitors, and IL-7
further enhanced both signaling pathways. The close associa-
tion of IL-7R� with CD3� in the pre-TCR complex was illus-
trated through live imaging confocal fluorescence microscopy.
These results demonstrate a direct and cooperative role of IL-7
in pre-TCR signaling.

Maturation of T cell receptor (TCR)2 �� or �� T cells from
hematopoietic progenitor cells is a progressive and multistep
process. T cell development has been characterized by the
sequential expression of CD4 and CD8 coreceptors. The
CD8�CD4� double-negative (DN) thymocytes differenti-
ate through the CD8 immature single-positive (SP) stage in
mice and the CD4 immature SP stage in humans, followed by
CD8�CD4� double-positive (DP) cells and then CD4� and
CD8� SP cells (1–4). IL-7, pre-TCR, and Notch signaling plays
a crucial role in early T cell development. The transition from
DN to DP is regulated by pre-TCR (5, 6) and Notch (7–11)
signaling. IL-7 supports DN cell survival and proliferation;
however, the role of IL-7 duringDN-to-DP transition is notwell
characterized (12–17).
IL-7 is thought to play a cooperative role in pre-TCR signal-

ing (18, 19). However, there are contradicting reports of both

inhibitory and supportive roles of IL-7 during DN-to-DP tran-
sition. An IL-7 dose-dependent inhibition of DN-to-DP transi-
tion in vivo has been reported (20), and IL-7 blocks differentia-
tion at the DN3 stage in fetal thymus organ culture (21). In
addition, IL-7 suppresses anti-CD3 antibody-mediated DN-
to-DP transition in RAG-1 (recombination-activating gene-1)-
deficient pre-T cells (22), and furthermore, IL-7 inhibits DN-
to-DP transition in fetal thymus organ culture derived from
IL-7 receptor � (IL-7R�) transgenic mice by inhibiting tran-
scription of T cell factor, lymphoid enhancer factor, and reti-
noic acid-related orphan receptor�t (23). As pre-TCR signaling
is central in DN-to-DP transition (24, 25), the above studies
suggest that IL-7 signaling inhibits DN-to-DP transition by
inhibiting pre-TCR signaling. On the other hand, IL-7R��/�

mice display ��T cell deficiency and a reduced amount of ��T
cells (26, 27). In humans, mutation in IL-7R� is associated with
immunodeficiency (28). Anti-IL-7R� antibody inhibits DP
transition and TCR�� expression in human CD34 cells in fetal
thymus organ culture (29, 30). The latter studies suggest that
IL-7/IL-7R� signaling plays a supportive role in DN-to-DP
transition, which contradicts some other studies.
Insights into direct interaction of IL-7 and pre-TCR signaling

pathways could help resolve the controversy. During T cell
development, pre-TCR signals in an autonomous fashion inde-
pendent of extracellular ligands (5, 31, 32); however, anti-CD3
antibody can activate pre-TCR signaling (33, 34). A TCR��-
deficient Jurkat cell line has been used to study pre-TCR signal-
ing (35–37). However, Jurkat cells are considered to be mature
T cells and do not recapitulate T cell precursor activities during
pre-T cell development. Therefore, we evaluated different T
cell progenitor T-acute lymphoblastic leukemia (T-ALL) cell
lines and engineered an IL-7R�-expressing Molt3 cell line as a
model pre-T cell system. Our results indicate that IL-7
enhances pre-TCR signaling through Erk1/2 andAkt pathways.
This is consistent with the report that receptors with cytoplas-
mic domain-associated kinases aggregate with TCR and pro-
mote TCR signaling. On the other hand, the receptors with
phosphatase-associated cytoplasmic domains move away from
TCR (38). Further examination of themembrane compartmen-
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talization of IL-7R� and CD3� in live cells using confocal
microscopy indicated that IL-7R� co-localizes with CD3�, con-
firming a cooperative role of IL-7R� in pre-TCR signaling.

EXPERIMENTAL PROCEDURES

Flow Cytometry and Antibodies—The antibodies used for sur-
face and intracellular stainingwere as follows: phycoerythrin-Cy7-
conjugated anti-CD3 (clone SK7), Pacific Blue-conjugated anti-
CD4 (clone RPA-T4), allophycocyanin-Cy7-conjugated anti-CD8
(clone SK1), FITC-conjugated anti-phospho-Tyr-694 STAT5
(clone 47), phycoerythrin-conjugated anti-phospho-Ser-473
Akt (clone M89-61), and Alexa Fluor 647-conjugated anti-
phospho-Thr-202/phospho-Tyr-204 Erk1/2 (clone 20A) (BD
Biosciences); anti-CD127 (clone 40131; R&D Systems, Minne-
apolis, MN); and anti-pre-T� (G-14; Santa Cruz Biotechnol-
ogy). For flow cytometry staining, cells were first washed with
PBS plus 2% FBS and blocked with mouse and human serum at
4 °C for 30 min. Cells were incubated with antibodies follow-
ing the manufacturers’ instructions. For each fluorochrome-
labeled antibody used, an appropriate isotype control was
included. After antibody staining, the cells were washed
twice with FACS buffer and fixed with 2% paraformaldehyde.
Intracellular staining was performed using a BD Cytofix/
Cytoperm kit (BD Biosciences) according to themanufactur-
er’s protocol. For detection of phosphorylated proteins, cells

were stimulated using the indicated stimulus for 15 min. The
cells were then fixed by adding an equal amount of pre-
warmed 2% paraformaldehyde and permeabilized with 90%
methanol for 30 min on ice or at �20 °C overnight. Next, the
cells were washed and incubated with the indicated antibod-
ies for 1 h at room temperature, followed by two washes with
FACS buffer. Data were acquired using BD FACSDiva soft-
ware (Version 5.0.1) on a BD LSR II flow cytometer and
analyzed using FlowJo software (Version 7.1.3.0, Tree Star
Inc., Pasadena, TX).
Lentiviral Vector Construction andTransduction—Lentiviral

vectors were generated using the NHP/TYF lentiviral vector
system as described previously (39, 40). IL-7R� cDNA was
cloned into the pTYF transducing vector behind the human
EF1� promoter.
Inhibitors—Jak3 inhibitor V was purchased from Calbi-

ochem.MEK1/2 inhibitor U0126 and PI3K inhibitor LY294002
were purchased fromCell Signaling Technology, Inc. (Danvers,
MA).
RNA Extraction and Semiquantitative RT-PCR—RNA was

harvested from cells using TRI Reagent (Sigma-Aldrich). 1 �g
of RNA was reverse-transcribed into cDNA using a two-step
avianmyeloblastosis virus RT-PCR kit (GeneChoice, Frederick,
MD). The following primers were used for PCR: GAPDH,

FIGURE 1. Analysis of pre-T signaling receptor molecules in Molt3, SupT1, and Jurkat T-ALL cell lines. A, schematic illustration of human T cell
development. Results from the RT-PCR analysis of transcripts of CD3�, pre-T�, and IL-7R� using GAPDH as a control are also shown. PBMC, peripheral
blood mononuclear cells. B, flow cytometry analysis of surface expression of CD8, CD4, CD3, pre-T�, and IL-7R� and intracellular expression of CD3,
pre-T�, and IL-7R�.
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5�-CCG ATG GCA AAT TCG ATG GC-3� (forward) and 5�-
GAT GAC CCT TTT GGC TCC CC-3� (reverse); pre-T�,
5�AGTACACAGCCCATGCATCTGTCA-3� (forward) and
5�-AAT GCT CCA AGA CTG GAG GAA GGA-3� (reverse);
CD3�, 5�-TGA AGC ATC ATC AGT AGT CAC AC-3� (for-
ward) and 5�-GGCCTCTGTCAACATTTACC-3� (reverse);
and IL-7R�, 5�-TCG CAG CAC TCA CTG ACC-3� (forward)
and 5�-GTC ATT GGC TCC TTC CCG-3� (reverse). After 30
cycles of amplification (95 °C for 30 s, 55 °C for 30 s, and 72 °C
for 60 s), PCR products were separated on a 2% agarose gel.
Intracellular Free Ca2� Measurements—Molt3 and Jurkat

cells were loaded with the Ca2� indicator dye Indo-1/AM
(Molecular Probes) and stimulated with HIT3a (5 �g/ml), anti-
mouse IgG (0.15 mg/ml), or ionomycin (1 �g/ml). A 1-ml vol-
ume of cells at a density of 2� 106 cells/mlwaswarmed to 37 °C
and placed onto the BD LSR II flow cytometer. Base-line mea-
surements were collected for 1 min, anti-CD3 antibody and
anti-mouse IgG were added, and measurement was continued
for an additional 5 min, followed by the addition of ionomycin
andmeasurement for an additional 1–2min. Stimulus-induced
changes in the intracellular Ca2� concentration were deter-

mined over time bymonitoring the fluorescence emission ratio
of the Ca2�-bound versus free form of Indo-1 at 405 and 495
nm, respectively; data were analyzed and plotted using FlowJo
software.
Western Blotting—Antibodies for phospho-Erk1/2 (Thr-

202/Tyr-204; D13.14.4E and 137F5) were obtained from Cell
Signaling Technology, Inc. For Western blot analysis, cells
were collected at specific time points post-treatment and
washed with cold PBS before being lysed in Blue loading
buffer with DTT (Cell Signaling Technology, Inc.) and sup-
plemented with protease inhibitor mixture (Roche Diagnos-
tics). Protein was separated on a 10% gel and then transferred to
PVDF membrane (Millipore). The membrane was blocked and
probed with antibodies as indicated and then incubated with per-
oxidase-conjugated secondary antibody (Cell Signaling Technol-
ogy, Inc.). Bound proteins were visualized by SuperSignal West
Pico chemiluminescent substrate (Thermo Scientific, Waltham,
MA).
Statistical Analysis—Statistical analysis was performed by

applying the Wilcoxon matched-pairs signed-rank test using
GraphPad Prism 5 software.

FIGURE 2. Analysis of IL-7 and anti-CD3 signaling in lentiviral vector-modified IL-7R�hi Molt3. A, surface expression of IL-7R� on Molt3 (no infection) and
lentiviral vector-modified IL-7R�hi Molt3 (�LV IL-7R�). B, STAT5 activation in response to 100 ng/ml IL-7 by Phosflow antibody staining and flow cytometry
analysis. C, surface expression of activation markers CD25 and CD69 in Molt3, IL-7R�hi Molt3, and Jurkat cells after overnight incubation with anti-CD3/CD28
beads. D, intracellular free calcium measurement in Indo-1/AM-loaded Molt3, IL-7R�hi Molt3, and Jurkat cells in response to anti-CD3 antibody (clone HIT3a)
and ionomycin.
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RESULTS
IL-7R Expression and Pre-TCR Signaling in T-ALL Cell Lines—

Key stages of human T cell development have been character-
ized asDN,CD3lowDP,CD3hi TCR���DP,CD8SP, orCD4SP

as shown at top of Fig. 1. Full-length transcripts of TCR� and
pre-T� have been detected in the CD3low DP stage, and pre-
TCR signaling drives progression to CD3hi DP and induces
allelic exclusion at the TCR� locus, followed by TCR� locus

FIGURE 3. IL-7 enhances anti-CD3 antibody-induced pre-TCR signaling but not calcium flux induction in IL-7R�hi Molt3. A, flow cytometry analysis of
activation markers CD25 and CD69 in IL-7R�hi Molt3 after overnight treatment as indicated. B, statistical analysis using the Wilcoxon matched-pairs signed-rank
test (n � 10). C, intracellular free calcium measurement in Indo-1/AM-loaded IL-7R�hi Molt3 in response to anti-CD3 antibody (clone HIT3a) and IL-7 using
ionomycin as a control. D, the area under curve was quantified using FlowJo software, and data were analyzed using GraphPad Prism 5 (n � 6). ns, not
significant.

FIGURE 4. Analysis of pre-TCR signaling pathways in IL-7R�hi Molt3 using specific kinase inhibitors. A, analysis of pre-TCR activation markers in IL-7R�hi

Molt3 after overnight activation and inhibitor treatment as indicated. B, percentage of CD25 expression in inhibitor-treated versus control anti-CD3 antibody-
stimulated cells after subtraction of the non-stimulated control. Data represent at least three independent experiments.
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rearrangement (41).Wehave recently established that concom-
itant IL-7/IL-7R� signaling and pre-TCR activation play a central
role inpromotingDN-to-DPtransitionaswell asTcellmaturation
during human T cell development in vitro (73). To investigate the
direct effect of IL-7 on pre-TCR signaling, we examined several
T-ALL cell lines, including Jurkat, SupT1, andMolt3.
Inmice, pre-TCR signaling is initiated at theDN3 stage in the

absence of coreceptors. In humans, pre-TCR signaling is initi-
ated at the CD4 immature SP and early DP stages of develop-
ment. Molt3 resembles an early stage of DP T cells character-
ized by low CD3 and low CD4/CD8 coreceptor expression;
SupT1 resembles a later stage of DP T cell development with
high CD3 and coreceptor expression. As Molt3 has a rear-
ranged TCR� chain and is positive for intracellular TCR�
expression (42, 43), we further evaluated the intracellular and
extracellular expression of CD3, pre-T�, and IL-7R�.
RT-PCR analysis of RNA showed comparable levels of CD3

and pre-T� but reduced IL-7R� transcripts inMolt3 compared

with SupT1 and Jurkat cells (Fig. 1A). Analysis of surface mark-
ers showed that Molt3 is CD4lowCD8low DP with low surface
CD3 expression (Fig. 1B, upper panels), but intracellular stain-
ing revealed that cytoplasmic CD3 expression in Molt3 was
similar to that in SupT1 and Jurkat cells (Fig. 1B, lower panels).
Intracellular staining of IL-7R� and pre-T� showed compara-
ble expression of IL-7R� but higher pre-T� inMolt3 compared
with SupT1 and Jurkat cells (Fig. 1B). In addition, Molt3
showed CD7�CD1alow expression (data not shown). Together,
these results suggest that Molt3 is arrested in the CD3low DP
pre-T cell development stage, during which pre-TCR signaling
occurs (44). However, it lacks surface IL-7R� expression, a crit-
ical requirement for IL-7 signaling (45–47).
Ectopic Up-regulation of IL-7R� in Molt3 and Response to

IL-7 and Anti-CD3 Stimulation—SupT1 expresses high levels
of CD3 and IL-7R� and would be an ideal choice to study the
effect of IL-7 on pre-TCR signaling. However, we found that
SupT1 failed to respond to both IL-7 and anti-CD3 stimulation

FIGURE 5. Synergy of IL-7 with pre-TCR signaling through activating Akt and Erk1/2. IL-7R�hi Molt3 cells treated with 100 ng/ml IL-7 and anti-CD3/
CD28 beads for 15 min. Cells were fixed; permeabilized; stained with antibodies against activated STAT5 (A), Akt (B), and Erk1/2 (C); and subjected to flow cytometry
analysis. The mean fluorescence index (MFI) for STAT5 and Akt and the percentage for Erk1/2 are shown and are summarized on the right via the Wilcoxon matched-
pairs signed-rank test (n � 10). D, Western analysis of Erk1/2 activation in response to the indicated treatment. ns, not significant.
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as assessed by the lack of STAT5 activation, lacked up-regula-
tion of T cell activation markers CD25 and CD69, and did not
show induction of calcium flux. Hence, we constructed a lenti-
viral vector encoding IL-7R� and established an IL-7R�hi

Molt3 cell line. Flow cytometry analysis confirmed surface
IL-7R� expression in the lentiviral IL-7R�-transduced Molt3
cell line (Fig. 2A, �LV IL-7R�). IL-7 responsiveness was then
assessed by the induction of STAT5 phosphorylation; the result
illustrated that IL-7 induced STAT5 (Tyr-694) activation in
IL-7R�hi Molt3 but not in unmodifiedMolt3 (Fig. 2B). We fur-
ther evaluated the response to anti-CD3 stimulation by the
analysis of T cell activation markers CD25 and CD69 (48).
Whereas anti-CD3 antibody activated CD25 and CD69 in Jur-
kat cells, both the unmodified and IL-7R�hi Molt3 cell lines
up-regulated CD25, but only induced low levels of CD69 in
response to anti-CD3 stimulation (Fig. 2C). TCR stimulation
directly corresponds to calcium flux, which can bemeasured by
Indo-1/AM violet/blue ratio. Thus, we evaluated induction of
calcium flux, and the results showed a low level of response to
anti-CD3 stimulation of both unmodified and IL-7R�hi Molt3
compared with control ionomycin treatment or anti-CD3 anti-
body-stimulated Jurkat cells (Fig. 2D). Therefore, the anti-CD3
signaling consequence differed between the early T cells
(Molt3) and the mature T cells (Jurkat).
Effect of IL-7 on Anti-CD3 Antibody-induced Pre-TCR

Signaling—To more precisely assess the effect of IL-7 on anti-
CD3 antibody-mediated pre-TCR activation, we tested four
conditions( no treatment, anti-CD3Ab, anti-CD3Ab plus IL-7,
and IL-7) using IL-7R�hi Molt3 cells (Fig. 3A). The results
showed a consistent increase (n � 10, p � 0.002) in the expres-
sion of CD25 after anti-CD3 Ab plus IL-7 treatment (Fig. 3B).
Interestingly, IL-7 alone also induced a slight increase in CD25
(p� 0.002) (Fig. 3,A and B). The intensity and duration of TCR
stimulation directly correspond to calcium flux, which can be
measured by Indo-1/AMviolet/blue ratio over time. Evaluation
of the effect of IL-7 on anti-CD3 antibody-induced calcium flux
showed no change in both the intensity and duration of calcium
flux (Fig. 3, C and D).
Identification ofMultiple Pre-TCR Signaling Pathways—Pre-

TCR signaling drives DN-to-DP transition, but the signaling
partners of the cytoplasmic tail of the human pre-TCR complex
have not yet been identified (6). Pre-TCR signaling occurs
through pathways reminiscent of signaling after TCR ligation
in mature T cells based on knock-out and transgenic mouse
studies (6, 31, 49–53). However, critical differences exist
between the mouse and human cytoplasmic domains of the
pre-T� chain (5, 25, 54, 55).

There are three potential pathways for human pre-TCR sig-
naling: Erk1/2-, PI3K-, and �c-mediated signaling pathways. To
understand how IL-7 enhances pre-TCR signaling, we first
examined the candidate pathways involved in pre-TCR signal-
ing in IL-7R�hi Molt3. For the PI3K pathway, we tested the
inhibitor LY294002. Erk1/2 signaling pathway activation is
important for DN-to-DP transition, so we tested the inhibitor
U0126 (56). To evaluate the �c signaling pathway, we utilized a
Jak3 inhibitor, as �c chain signal transduction begins with the
binding of Jak3 (57–59). IL-7R�hi Molt3 was pretreated with
the indicated inhibitors for 2 h, followed by anti-CD3 stimula-

tion and overnight incubation. Analysis of CD25 and CD69 by
surface staining and flow cytometry showed that the Erk1/2 and
PI3K-Akt pathways were required for pre-TCR signaling, yet
the �c signaling pathway was dispensable (Fig. 4,A and B). Sim-
ilar results were obtained using unmodified Molt3 (data not
shown).
Effect of IL-7 on Pre-TCR-mediated Erk1/2 and Akt Acti-

vation—To further characterize the effect of IL-7/IL-7R� sig-
naling on the Erk1/2 and PI3K-Akt pathways in pre-TCR sig-
naling, we treated IL-7R�hi Molt3 with IL-7 and anti-CD3 Ab.
Activation of STAT5 served as a control for IL-7 signaling. We
used phosphorylation-specific antibodies and flow cytometry
analysis for quantitative assessment of STAT5, Akt, and Erk1/2
activation. Preliminary flow cytometry analyses of these target
proteins at 5, 15, 30, and 60 min post-stimulation established
that all three proteinswere optimally phosphorylated at 15min,
and thus, we chose this time point for further experiments. The
results showed no STAT5 activation in response to anti-CD3
stimulation, but a large population of cells exhibited phospho-

FIGURE 6. Live imaging and functional analysis of an IL-7R�-red fluores-
cent protein fusion. A, functional IL-7R�-mApple lentiviral vector construct
with a helix-turn-helix hinge domain. CMV-TAR, cytomegalovirus-TAT trans-
activation response element; cPPT, central polypurine tract; hu, human; SIN-
LTR/bGHpA, self-inactivating long terminal repeat/bovine growth hormone
polyadenylation signal. B, fluorescence images of HeLa and Molt3 cells
infected with IL-7R�-hinge-mApple. C, STAT5 activation in response to IL-7 in
Molt3 cells infected with lentiviral IL-7R�-hinge-mApple.
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STAT5 in response to IL-7 treatment (Fig. 5A). Molt3 is a
�-secretase inhibitor-resistant cell line and has PTEN defi-
ciency and therefore has constitutively active Akt (60). We
found that pre-TCR signaling enhancedAkt activation on some
occasions, but the effect lacked statistical significance. On the
other hand, IL-7 alone significantly increased Akt activation
based on mean fluorescence index (Fig. 5B). Anti-CD3 stimu-
lation activated Erk1/2 (from 0.8 to 9.8%) (Fig. 5C); interest-
ingly, IL-7 alone was able to activate Erk1/2 (8%) and showed a
synergistic effect upon anti-CD3 stimulation (28%, n� 10) (Fig.
5C), which was further confirmed by Western blotting (Fig.
5D).
Dynamic Interaction of IL-7R�andCD3�—As IL-7 enhanced

pre-TCR signaling, we further evaluated a possible direct inter-
action between IL-7R� and CD3�, the latter being a central
component of the pre-TCR signaling complex. We engineered
an IL-7R�-mApple (monomeric red fluorescent protein) fusion
to track IL-7R� in live cells. Lentiviral IL-7R�-mApple gene-
transduced cells expressed a membrane form of the IL-7R�
fusion but lacked STAT5 activation function in response to
IL-7 (data not shown). To overcome this defect, we inserted a
helix-turn-helix spacer between IL-7R� and mApple as illus-
trated in Fig. 6A. HeLa and Molt3 cells were transduced with
the lentiviral IL-7R�-hinge-mApple fusion gene. Immunofluo-
rescence detection showed abundant expression of the fusion
protein in the perinuclear compartment (Fig. 6B). We treated
IL-7R�-hinge-mApple Molt3 cells with IL-7 and examined

STAT5 activation through phospho-STAT5 intracellular Ab
staining and flow cytometry. The result showed that IL-7 treat-
ment markedly induced phospho-STAT5 in IL-7R�-
hinge-mApple Molt3 cells (Fig. 6C). To evaluate the localiza-
tion of IL-7R� with respect to CD3�, a CD3�-eGFP fusion gene
(kindly provided by Dr. M. Krummel, University of California,
San Francisco) was cloned into a lentiviral expression vector.
The functional analysis of the CD3�-eGFP fusion protein has
been reported previously (61). Jurkat and Molt3 cells were
cotransduced with lentiviral vectors encoding IL-7R�-hinge-
mApple andCD3�-eGFP, and the transduced cells were imaged
live under a confocal microscope. We found that IL-7R� (red)
and CD3� (green) tended to co-localize (yellow) in microclus-
ters formed intracellularly or on the cell surface (Fig. 7A). Time-
lapse images illustrated that IL-7R� was moving in close prox-
imity with CD3� in Molt3 (Fig. 7B), suggesting a cooperative
role of IL-7R� in pre-TCR signaling.

DISCUSSION

IL-7 inhibits pre-TCR signaling both in vitro and in trans-
genic mice (20–23). However, studies of in vitro human T cell
development and patients withmutations in IL-7R� suggest an
important role of IL-7 signaling in early T cell development (28,
29). Because of the complexity of these systems, the involve-
ment of IL-7 in pre-TCR signaling has not been characterized.
The goal of this study was to decipher the role of IL-7 in pre-
TCR signaling. After extensive analysis of existing human

FIGURE 7. Dynamic intracellular interaction of IL-7R� and CD3�. A, confocal images of Molt3 and Jurkat cells infected with lentiviral IL-7R�-hinge-mApple
and CD3�-eGFP. B, time-lapse confocal fluorescence images of Molt3 cells co-infected with lentiviral IL-7R�-hinge-mApple and CD3�-eGFP.
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T-ALL cell lines, we established an IL-7R�-modifiedMolt3 cell
line as aDPpre-Tmodel systemanddemonstrated a synergistic
role of IL-7 in pre-TCR signaling. Additionally, we reported
that, in addition to STAT5 and Akt, IL-7 activated the Erk1/2
pathway in IL-7R�hiMolt3. It has been shown that the cytoplas-
mic tail of IL-7R� is associated with Lck, the kinase normally
associated with T cell coreceptors CD4 and CD8. Thus, the
observation that IL-7 suppresses DP transition could be a result
of indirect transcriptional regulation of the coreceptor CD4
gene rather than a direct effect on pre-TCR signaling; in fact,
IL-7 is known to enhance the expression and activity of CD4
silencer-binding factors such as c-Myb (62).
There is discordance in the RNA and intracellular and sur-

face protein expression of the CD3, pre-T�, and IL-7R� genes
in the three T-ALL cell lines analyzed here. The levels of CD3
RNA and intracellular protein expression in Molt3 were com-
parable with those in SupT1 and Jurkat cells, but surface CD3
expression wasmarkedly different (highest in Jurkat and lowest
in Molt3 cells), suggesting possible post-translational regula-
tion of surface CD3 expression. Molt3 was previously charac-
terized as CD3-negative; however, this could be an artifact of
the anti-CD3 antibody clones used (63). Many studies use anti-
body clones specifically recognizing CD3� paired with CD3� or
CD3�; the anti-CD3 antibody clone used in our study does not
require such pairing. Moreover, pre-TCR does not require
CD3� for its function (64). Unlike murine pre-T�, human
pre-T� has an endoplasmic reticulum retention signal in its
cytoplasmic domain and is strongly associated with the CD3�
chain (54, 55). We detected abundant pre-T� RNA expression
in all three T-ALL cell lines, yet surface pre-T� was barely
detected, and only Molt3 showed increased intracellular
pre-T� expression. Interestingly, IL-7R� transcripts were pres-
ent at extremely low levels in Molt3 compared with SupT1 and
Jurkat cells, but the levels of intracellular protein expression
were comparable. However, surface IL-7R� expression was
detected only in SupT1. Thus, the modified Molt3 cell line
expressing high surface IL-7R� (IL-7R�hi Molt3) represents a
rational model system for the study of pre-TCR and IL-7/IL-
7R� signaling in pre-T cells.
IL-7 has been shown to activate the Erk1/2 pathway in pre-B

cells but not in mature T cells (65, 66). Activation of the PI3K
and Erk1/2 pathways in pre-T cells in response to IL-7 has not
been previously evaluated (67). We found that IL-7 activated
Akt and STAT5, as well as Erk1/2, which is in line with the
finding that IL-7 activates Erk1/2 in an IL-7-dependent imma-
ture T cell line, TAIL-7 (68, 69). Unlike STAT5 and Akt activa-
tion, both of which showed substantial increases upon IL-7
treatment, IL-7 activated Erk1/2 only in a small percentage of
cells (�8%), which correlatedwell with themarginal increase in
CD25 expression in response to IL-7. Our findings suggest that
IL-7 activates Erk1/2 in pre-T cells through a separate pathway
in parallel to the canonical �c-dependent Jak-STAT activation
pathway.
During mouse T cell development, IL-7R� is expressed in

DN cells, shut down in DP cells, and then re-expressed in
mature T cells (70, 71). Different from mouse thymocytes,
IL-7R� is expressed in all stages of developing T cells in
humans, but its binding partner �c is down-regulated during

the CD3low DP and CD3hi DP stages, resulting in a loss of
STAT5 activation (72). During human T cell development, we
found that there is a stringent requirement for down-regulation
of IL-7/IL-7R� signaling in pre-TCR signaling (73). Here, we
reported that IL-7 delivers additional signals similar to pre-
TCR signals in aT-ALL cell line. The lack of down-regulation of
IL-7may aberrantly allow the precursors to bypass TCR� selec-
tion and progress toward the next stage with an improperly
rearrangedTCR� chain.Our finding provides a plausible expla-
nation for the necessary down-regulation of IL-7 signaling dur-
ing the pre-TCR stage of T cell development.
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