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Abstract

Background: Due to their contribution to bacterial virulence, lipoproteins and members of the lipoprotein biogenesis
pathway represent potent drug targets. Following translocation across the inner membrane, lipoprotein precursors are
acylated by lipoprotein diacylglycerol transferase (Lgt), cleaved off their signal peptides by lipoprotein signal peptidase (Lsp)
and, in Gram-negative bacteria, further triacylated by lipoprotein N-acyl transferase (Lnt). The existence of an active
apolipoprotein N-acyltransferase (Ms-Ppm2) involved in the N-acylation of LppX was recently reported in M. smegmatis. Ms-
Ppm2 is part of the ppm operon in which Ppm1, a polyprenol-monophosphomannose synthase, has been shown to be
essential in lipoglycans synthesis but whose function in lipoprotein biosynthesis is completely unknown.

Results: In order to clarify the role of the ppm operon in lipoprotein biosynthesis, we investigated the post-translational
modifications of two model lipoproteins (AmyE and LppX) in C. glutamicum Dppm1 and Dppm2 mutants. Our results show
that both proteins are anchored into the membrane and that their N-termini are N-acylated by Cg-Ppm2. The acylated N-
terminal peptide of LppX was also found to be modified by hexose moieties. This O-glycosylation is localized in the N-
terminal peptide of LppX and disappeared in the Dppm1 mutant. While compromised in the absence of Cg-Ppm2, LppX O-
glycosylation could be restored when Cg-Ppm1, Cg-Ppm2 or the homologous Mt-Ppm1 of M. tuberculosis was
overexpressed.

Conclusion: Together, these results show for the first time that Cg-Ppm1 (Ppm synthase) and Cg-Ppm2 (Lnt) operate in a
common biosynthetic pathway in which lipoprotein N-acylation and glycosylation are tightly coupled.
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Introduction

Bacterial lipoproteins are a subgroup of exported proteins

anchored into the membrane surface by two or three acyl chains

covalently linked to their conserved N-terminal cysteine. They

represent a functionally heterogeneous family of proteins involved

in several functions ranging from cellular physiology to cell

division or virulence in pathogenic species [1]. In Gram-negative

bacteria, they are involved in crucial steps of cell envelope

biogenesis such as outer membrane protein insertion by the Bam

machinery [2] or peptidoglycan assembly with penicillin binding

protein machineries [3,4]. In Gram-positive bacteria, they often

act as substrate-binding proteins (SBP) associated with ATP

binding cassette (ABC) transporters [5].

The genome of Mycobacterium tuberculosis H37Rv encodes about

100 putative lipoproteins among which half of them are specific to

the genus Mycobacterium and have no assigned function [6].

Functional data on the involvement of mycobacterial lipoproteins

in ABC transporters (PhoS123), two component regulatory

systems (LpqB and LprF) [7,8], biosynthetic pathways of cell wall

components (LpqW, LppX) [9,10], resuscitation of dormant cells

(RpfB) [11], cytokine responses and regulation of antigen

presentation by host cells as Toll like-receptor ligands (LprA,

LprG, LpqH) have been reported [12,13]. Although very few of

them have been extensively characterized biochemically, it is

striking to note that most lipoproteins studied so far are also

glycosylated [14] as it was shown for PstS, a lipoprotein in the

related actinomycete Streptomyces coelicolor [15] This original feature

has been very clearly shown for LpqH [16], LprF [17], SodC [18]
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and PhoS1 [19]. The role of lipoprotein glycosylation is not yet

clear, but could be a common post-translational modification that

would act as a signal for protein export to the cell wall or the

extracellular medium. Alternatively, it has been suggested that

glycosylation might protect surface-exposed lipoproteins from

proteolytic degradation [16,18]. Speculatively, glycosylation of

mycobacterial lipoproteins might represent a signal to induce or to

avoid a ‘‘shaving’’ mechanism similar to that proposed by Tjalsma

[20] for the release of Bacillus subtilis lipoproteins in the culture

medium.

Lipoproteins are synthesized as prolipoproteins and translocated

across the plasma membrane via the Sec or TAT machinery.

Subsequent post-translational modifications take place on the

outer leaflet of the plasma membrane [21]. Typically, the acceptor

residue for lipid modification is a conserved cysteine included in a

consensus motif known as the lipobox (L(A,V)-4-L-3-A(S)-2-G(A)-1-

C+1). In the first step, the cysteine (C+1) residue that will become

the N-terminal amino acid of the mature lipoprotein receives a

diacylglyceride at its sulfhydryl group through the action of the

phosphatidylglycerol::prolipoprotein diacylglyceryl transferase

(Lgt). Then, the N-terminal signal peptide is processed by

prolipoprotein signal peptidase A (LspA), resulting in an apolipo-

protein. The third and last step is the acylation of the N-terminal

cysteine residue by apolipoprotein N-acyl transferase (Lnt),

generating a mature triacylated lipoprotein. This last step is

conserved throughout Gram-negative bacteria, and it was shown

to be a prerequisite for lipoprotein sorting to the outer membrane

by the Lol system [22]. Although recent results showed that

lipoproteins are also triacylated in low % G+C Gram-positive

bacteria [23,24,25,26], Lnt is only found in high % G+C Gram-

positive bacteria such as Mycobacterium or Streptomyces. Tschumi et al.

[27] clearly showed that LppX, a lipoprotein of M. tuberculosis

essential for Phthiocerol dimycocerosates (DIM) exposure at the

cell surface of M. tuberculosis, is triacylated in M. smegmatis by the

MSMEG_3860 gene product. This protein was formerly anno-

tated as Ms-Ppm2 because it interacts with Ms-Ppm1, a

polyprenol-monophosphomannose (PPM) synthase essential for

lipomannan (LM) and lipoarabinomannan (LAM) biosynthesis

[28,29]. In M. smegmatis, Ms-ppm2 is located upstream of Ms-ppm1

within the ppm operon, while M. tuberculosis Rv2051c (Mt-ppm1)

encodes a bi-domain protein in which the N-(D1) and C-terminal

(D2) domains carry Lnt and PPM synthase activities, respectively

[30]. This strong genetic link suggests that the ppm1 and ppm2 gene

products are involved in a common biosynthetic pathway.

However, functional connection(s) between lipoprotein and

lipoglycan biogenesis pathways are unknown. By analogy with

the mammalian dolichol-phosphomannose synthase, it has been

proposed that M. smegmatisMs-Ppm1 interacts with an inner

membrane protein and that this interaction is required for stability

and activity [29]. Consistent with this idea, Ms-Ppm2 has been

shown to interact with Ms-Ppm1 in a bacterial two-hybrid assay

[29]. The function of Ms-Ppm1 in lipoprotein biosynthesis has

never been tested in M. smegmatis since the corresponding mutant is

not viable. Corynebacterium glutamicum is a non-pathogenic bacterium

widely accepted as a useful model to depict the cell wall biogenesis

of Corynebacterineae including M. tuberculosis. The genetic organiza-

tion of the ppm genes is conserved between M. smegmatis and C.

glutamicum. Mutants in Cg-ppm1 (Dppm1) or Cg-ppm2 (Dppm2) have

been generated previously and are viable [28]. The Dppm1mutant

is highly affected in growth and do not synthetize any lipoglycans,

LM or LAM. In contrast, the Dppm2 mutant although affected in

LM and LAM biosynthesis is not impaired for growth (our

unpublished data and [28]). In this work, we investigated the

function of Cg-Ppm1, Cg-Ppm2 and their putative interplay in

lipoprotein biogenesis. We analyzed the acylation and the

glycosylation status of two model lipoproteins AmyE [31], an

abundant lipoprotein of C. glutamicum (a putative sugar substrate

binding protein) and LppX of M. tuberculosis [9,14,27] in various

strains affected in ppm1 or ppm2.

Results

AmyE is a Bona Fide Lipoprotein of C. glutamicum
According to predictions based on bioinformatics tools, the

genome of C. glutamicum strain ATCC 13032 encodes 84 putative

lipoproteins, representing about 2.8% of its total proteome

(DOLOP [32]). In C. glutamicum, as in other Actinomycetes, these

include many SBP of ABC transporters. Among these, AmyE

(NCgl2375) is annotated as a putative maltose-binding protein and

has been detected as a major spot in the proteome of C. glutamicum,

suggesting it is well expressed in standard laboratory conditions

[31]. We chose AmyE as a model to study the biogenesis of

lipoproteins in C. glutamicum. The DNA sequence corresponding to

the ORF of amyE including its putative promoter was amplified

and cloned in an E. coli/C. glutamicum shuttle vector pCGL482 in

frame with a 39 sequence encoding a 6xHis tag (AmyE). A variant

of amyE, with a point mutation converting the cysteine +1 of the

lipobox into a leucine (AmyEC1L), was obtained by site directed

mutagenesis and used as a control in all studies.

Plasmids expressing AmyE and AmyEC1L were transformed in

C. glutamicum ATCC 13032. To examine the fate of AmyE

proteins, cells were grown overnight, membranes and culture

supernatants were prepared and analyzed by SDS-PAGE and

immunoblotting (Fig. 1A). AmyE is detected as a 55 kDa

polypeptide mostly present in the membrane fraction. Its apparent

molecular weight on SDS-PAGE is slightly higher than the

calculated molecular weight of the mature AmyE (47895 Da).

Small amounts of a shorter form were found secreted in the culture

medium and may have been released by proteolysis. Such a

truncated form has also been detected previously by Hermann et

al. [31]. In contrast, AmyEC1L is highly expressed but only

detected in the culture supernatant as a 55 kDa species (Fig. 1A).

To gain some insight on AmyE modifications, both variant forms

were purified by affinity chromatography either from the

membrane fraction (AmyE) or the culture supernantant

(AmyEC1L). First, both proteins were subjected to SDS-PAGE

before or after Triton X114 extraction. While both forms have a

similar Rf on SDS-PAGE, AmyE is recovered in the detergent

phase and AmyEC1L remains in the soluble fraction (Fig. 1B). This

is an indication that AmyE, but not AmyEC1L, has a hydrophobic

moiety probably corresponding to acylation of its cysteine +1

(C+1). Second, purified AmyE and AmyEC1L were subjected to

protein sequence analysis. Edman degradation of AmyEC1L

resulted in an N-terminal sequence starting at the modified

leucine +1 residue (LSGSTD) while no sequence could be

obtained from AmyE. These results indicate that the mutant

protein has been cleaved off its signal peptide and that AmyE

carries a modification on its N-terminal amino group blocking its

degradation by Edman reagents. To further characterize this

modification, purified intact AmyE and AmyEC1Lwere analyzed

by MALDI. A significant difference of 918 Da between the

expected and the measured mass of AmyE (Mexpected = 47896

Da and Mmeasured = 488146150 Da) was observed, while there

was no significant difference between the expected and

the experimental measurement of AmyEC1L protein (Mexpected =

47896 and Mmeasured = 479816150 Da) (Fig. 1C). The 918 Da

mass difference is consistent with a putative triacylation of AmyE.

In order to characterize the post-translational modification of
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AmyE more precisely, MALDI peptide mass fingerprinting

analyses (PMF) were performed after in-gel trypsin digestion

followed by peptide extraction with dodecylmaltoside (DDM) and

chloroform/methanol. This procedure, describedby Ujihara et al.

[33], allowed the efficient detection of acylated peptides. AmyE

and AmyEC1L peptide profiles were very similar except for two

main peaks shown in Fig. 1D. The m/z 4097.10 peak was detected

exclusively in the AmyE spectrum while the m/z 3292.60 peak was

only associated to the AmyEC1L spectrum. The latter signal

matches to the unmodified N-terminal peptide of AmyEC1L (mass

accuracy = 14 ppm), while the former most likely corresponds to

the N-terminal peptide of AmyE harboring a post-translational

modification of 814 Da (estimated mass accuracy ,20 ppm). This

is consistent with triacylation of AmyE as the 814 Da modification

might correspond to the addition of a diacylglyceryl (576 Da) and

a palmitoyl moiety (238 Da). Additional peaks that are apparently

distinctive between the spectra of AmyE and AmyEC1L are

attributable to differential oxidation of internal tryptic peptides of

AmyEC1L compared to AmyE, as detailed in the Legend to Fig. 1.

Cg-ppm2 is Essential for N-palmitoylation of AmyE
In Gram-negative bacteria, lipoproteins are successively acylat-

ed by Lgt (formation of a thioester linkage between the conserved

C+1 and a diacylglycerol) and Lnt (aminoacylation of the N-

terminal C+1) to form mature triacylated proteins. While the Lgt-

mediated reaction is universally conserved in bacteria [1], N-

acylation was thought to be restricted to Gram-negative bacteria.

Yet, genomic analysis revealed the presence of Lnt homologs in

high % G+C Gram-positive bacteria, such as Actinomycetes

including Mycobacteria and Corynebacteria. More recently,

Sander and collaborators [27] convincingly showed that an Lnt

homolog (MSMEG_3860 or Ms-Ppm2) was fully active in M.

smegmatis and was able to N-acylate mycobacterial lipoproteins

such as LppX and LprF. The homolog of Ms-ppm2 was observed

in the genome of C. glutamicum and corresponds to NCgl1424

formerly known as Cg-ppm2. This gene is putatively co-transcribed

with Cg-ppm1, which encodes a polyprenol monophosphomannose

synthase involved in lipoglycan synthesis [28]. However, the

putative role of Cg-Ppm2 in N-acylation of lipoproteins in C.

glutamicum has never been tested. AmyE was expressed in a Dppm2

mutant and in a complemented strain in which Cg-ppm2 was

reintroduced in transon a plasmid under tac promoter control (pCg-

ppm2). In both cases, AmyE was mainly found in the membrane

fraction, similar to that observed in the wild-type strain (Fig. 2A

and Fig. 1A). AmyE proteins from the membrane fraction of

Dppm2 or the complemented strains (Dppm2-pCg-ppm2) were

purified to homogeneity and analyzed by MALDI PMF using

the same procedure as described above. Notably, the m/z 4097.10

peak detected for AmyE purified from the wt strain (Fig. 1D and

Fig. 2B) was absent from the spectrum of the AmyE purified from

the Dppm2mutant, but was detected again in the spectrum of

AmyE purified from the complemented strain (Fig. 2B). Instead, in

the Dppm2mutant, we identifieda new m/z 3858.98 peak. This

signal most likely corresponds to the N-terminal peptide of AmyE

covalently linked with a diacylglyceryl moiety (+576 Da assuming

1 C16:0 and 1 C18:1; estimated mass accuracy ,20 ppm). The

mass difference between the diacylglyceryl and the triacyl N-

terminal peptide is 238 Da, which corresponds to a palmitoyl

moiety. This result suggests that AmyE is diacylated in Dppm2 but

contains an additional modification with a palmitic acid in the

wild-type and complemented strains. The absence of the m/z

3858.98 peak in the wild type spectrum suggests that, under these

conditions, AmyE is fully tri-acylated. This was consistent with the

observation that the N-terminus of AmyE purified from the wild-

type strain was not accessible for sequencing by Edman

degradation (data not shown). As previously shown for

MSMEG_3860 (Ms-Ppm2), Cg-Ppm2 exhibits Lnt activity that

results in N-palmitoylation of lipoproteins such as AmyE.

The genetic proximity between Cg-ppm1 and Cg-ppm2 and the

fact that both corresponding proteins are encoded by the same

ORF in M. tuberculosis, suggests that Cg-Ppm1 could be involved in

lipoprotein biosynthesis in C. glutamicum. In order to investigate this

possibility, we analyzed modifications of AmyE from a Dppm1

mutant by MALDI PMF. Results showed no difference in the

acylation status of AmyE between the wild type strain and the

Dppm1 derivative (data not shown).

Cg-Ppm1 is Essential for Glycosylation of LppX in
C. glutamicum

Ppm1 proteins from C. glutamicum, M. smegmatis and M.

tuberculosis have been characterized as PPM synthases, enzymes

that transfer mannose (Man) moieties on polyprenol monophos-

phate from GDP-Man to produce PPM molecules that constitute

Man-donors for lipoglycan biosynthesis [28,30]. Glycoproteomics

studies based on ConA lectin affinity capture of mannosylated

proteins revealed that 41 proteins of M. tuberculosis are potentially

glycosylated [14]. Among these, 18 were lipoproteins, suggesting a

possible connection between protein glycosylation and acylation

pathways in Mycobacteria. Tschumi et al., recently described the

N-acylation of lipoprotein LppX in M. smegmatis [27]. Because

LppX was also one of the proteins found to be putatively

glycosylated in the glycoproteomic study [14], we sought to

investigate the role of Cg-Ppm1 in post-translational modification

of LppX. The DNA sequence encoding LppX-HA-His (LppX

with C-terminal hemagglutinin and 6xHis epitopes [27]) was

amplified by PCR from pMV261-Gm-FusLppX-HA-His and

cloned under the amyE promoter in the shuttle E. coli/C. glutamicum

vector pCGL482. When expressed in wild-type C. glutamicum,

LppX was mainly found associated with the membrane fraction

(Fig. 3A). LppX was purified by affinity chromatography from the

membranes, in-gel digested with trypsin, andthe peptide mixture

was analyzed by liquid chromatography-electrospray-ionization-

tandem mass spectrometry (LC-ESI-MS/MS). The MS/MS data

were analyzed with the Mascot Error Tolerant Search software

against the recombinant LppX protein sequence. Protein coverage

was 90% (Fig. 3A) and the N-terminal 6PDAEEQGVPVSP-

TASDPALLAEIR29 peptide was found to be heterogenously

glycosylated with hexose units. Accurate analysis of the MS data

after deconvolution within 21.5 and 23.5 minutes of retention time

revealed 1 [M+H]+1 molecular ion corresponding to the unmod-

ified LppX6–29 (m/z 2462.17) and 4 [M+H]+1 molecular ions

differing by 162 Da which correspond to the LppX6–29 glycopep-

tides with 1, 2, 3 and 4 hexose units (m/z2624.21, 2786.26,

2948.30, 3110.35). Curiously enough, we also observed 4

[M+H]+1 molecular ions corresponding to the unmodified, mono,

di and tri-glycosylated LppX6–29 peptides with an additional single

modification of 262 Da (m/z2724.23, 2886.28, 3048.34, 3210.37)

(Fig. 3B). This modification is, however, still unknown. MS/MS

data of LppX6–29 glycopeptides were analyzed and neutral losses

of 162 Da were observed in all the MS/MS spectra of

glycopeptides. This well known property is diagnostic of dissoci-

ation of hexose units from singly charged glycopeptides [34]. The

MS/MS spectra of the unmodified and tetraglycosylated LppX6–

29 peptide produced intense b8, y8 and y16 ions that were

systematically detected in the MS/MS spectra of all the

glycopeptides (data not shown and Fig. 3C). Hence these ions

were considered as diagnostic to ascertain the amino-acidic nature

of the LppX6–29 peptide. In the MS/MS spectrum of the

Lipoprotein Acylation and Glycosylation
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Figure 1. Lipoprotein AmyE is triacylated. A. AmyE localization in C. glutamicum wild-type cells expressing AmyE (pAmyE) or a variant of AmyE
with a point mutation substituting the cysteine +1 by a leucine (pAmyEC1L). An empty vector (pCGL482) was used as a control. Membrane and
secreted proteins were analyzed by SDS-PAGE followed by immunoblotting using monoclonal anti-his antibodies. The band labeled with an asterisk
corresponds to a shorter form of AmyE. B. AmyE (left panel) and AmyEC1L (right panel) were purified and analyzed by SDS PAGE before (lane 1) or
after Triton X114 extraction. Proteins from both aqueous (lane 2) and detergent (lane 3) phases were precipitated and loaded on the gel. C. MALDI
mass measurements of intact purified AmyE and AmyEC1L proteins. Estimated mass accuracy is 150 Da. D. MALDI PMFs of AmyE and AmyEC1L

proteins purified from C. glutamicum wild-type strain. The m/z 3200–4800 region of the mass spectra of AmyE and AmyEC1L tryptic peptides after
DDM/CHCl3-CH3OH treatment is shown and significant monoisotopic [M+H]+1 peaks are indicated. Upper panel: m/z 4097.10 (bold) corresponds to
the triacylated AmyE1–29 peptide while m/z 3451.65, 3821.53 and 4045.88 match to internal tryptic peptides, AmyE334–365, AmyE366–397 and AmyE55–91

respectively. m/z 4061.74 and 4077.54 peaks could correspond to mono- and di- oxidized AmyE55–91 peptides. Bottom panel: m/z 3292.60 (bold)
corresponds to the C1L-mutated AmyE1–29 peptide while m/z 3451.65 and 3821.72 match to AmyE334–365 and AmyE366–397 peptides. The m/z 4061.79,
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tetraglycosylated LppX6–29 peptide, 4 neutral losses of 162 Da

were efficiently observed, generated from the intact glycopeptide

as well as from its y16 ion (Fig. 3C, right panel).

Together, these results show that the LppX6–29 peptide is highly

and heterogeneously O-glycosylated in C. glutamicum. Similar LC-

MS/MS analyses were performed with LppX protein purified

from the Dppm1 mutant andcomplementedstrain Dppm1 (pCg-

ppm1). While the unmodified LppX6–29 peptide was efficiently

detected in both strains, LppX glycopeptides were only observed

in the complementedstrain (data not shown). These data

demonstrate that Cg-Ppm1 is absolutely required for LppX

glycosylation in C. glutamicum.

The N-terminal LppX1–29 Peptide is Acylated and
Glycosylated

Purified LppX partitioned in the detergent phase when treated

with Triton X-114 (Fig. 3A) suggesting that it is acylated in C.

glutamicum. In order to evaluate the nature of this modification and

its potential coexistence with glycosylation, we submitted trypsin-

digested LppX to mass spectrometry analyses. The LC-ESI-MS/

MS approach could not be used because triacylated peptides were

not detected under standard liquid chromatography conditions

(data not shown). Hence, as for AmyE, LppX peptides were

extracted with dodecylmaltoside (DDM) and chloroform/metha-

nol, then analyzed by MALDI-PMF. Two main peaks (m/z

4103.09 and 4427.11) were detected in the spectrum from the

wild-type strain (Fig. 4A). They match to the N-terminal

triacylated and glycosylated LppX1–29 N-terminal peptide with 2

and 4 mannose residues respectively. In the Dppm1 context, these

peaks were absent but a single m/z 3779.28 peak was detected

(Fig. 4A). This peak matched to the N-terminal triacylated LppX1–

29 peptide. All experimentally found m/z values are summarized

and compared to the calculated m/z values in Table 1. The

presented results clearly show that LppX N-terminus is acylated

and glycosylated in C. glutamicum and that these modifications are

not mutually exclusive.

Deletion of Cg-ppm2 Affects both N-acylation and
Glycosylation of LppX

In order to test the role of Cg-Ppm2 on post-translational

modifications of LppX, the protein was expressed in the Dppm2

mutant. The protein, which is still associated with the membrane,

was purified and analyzed exactly as the one from the wild type

strain. As expected from our results on AmyE, only the diacylated

N-terminal LppX1–29 peptide was detected (m/z 3540.89) in the

spectrum (Fig. 5), confirming that Cg-Ppm2 has apolipoprotein N-

acyltransferase activity and that it is also active on heterologously

expressed mycobacterial lipoproteins. The m/z 3540.89 peak

(diacylated peptide) is observed neither in the wild type nor in the

ppm1 background suggesting that, in these conditions, LppX is

fully triacylated exactly as AmyE. Interestingly, this peak

corresponds to the non-glycosylated diacylated LppX1–29 N-

terminal peptide. Moreover, only the non-glycosylated form of

the LppX6–29 peptide was detected (data not shown), further

confirming that LppX is not glycosylated when expressed in the

Dppm2 mutant. This could be an indication that protein

glycosylation occurs downstream of protein acylation or that the

absence of Cg-Ppm2 affects the stability and/or the activity of

enzymes that directly contribute to lipoprotein glycosylation. The

observation that post-translational modifications (triacylation and/

or glycosylation) were recovered when LppX was purified from the

Dppm2 (pCg-ppm2) and the Dppm2(pCg-ppm1) strains (Fig. 5)

favored the second functional hypothesis.

Mt-ppm1 (Rv2051c) can Complement C. glutamicum
Dppm1and Dppm2 Mutants

LppX is triacylated but not glycosylated in a Dppm1mutant and

only diacylated in a Dppm2mutant. Mt-Ppm1 exhibits polyprenol-

monophosphomannose activity and it is also able to complement

Ms-Ppm2 activity in M. smegmatis [27]. Here, Mt-ppm1 was

introduced in trans in C. glutamicumDppm1 and Dppm2 mutants.

LppX purified from these strains indicated restoration of both N-

palmitoylation and mannosylation (Fig. 6). This result indicates

that both apolipoprotein N-acyltransferase (Lnt) and polyprenol-

monophosphomannose (PPM) synthase activities of Mt-Ppm1 are

functional in C. glutamicum. Interestingly, the N-terminal domain

alone of Mt-Ppm1(D1) that contains Lnt activity was not able to

restore N-acylation of LppX, but restored glycosylation (Table 1).

This result confirms that glycosylation does not require N-

acylation and suggestsa functional interplay between protein N-

acylation and glycosylation in C. glutamicum.

Discussion

Lnt Activity is Present in C. glutamicum
In Gram negative bacteria, the lipoprotein biosynthesis pathway

is well understood and consists in a three-step post-translational

mechanism that successively involves the enzymes Lgt, LspA and

Lnt. Additional determinants are required for the transport of

lipoproteins to the outer membrane. In the Corynebacterineae, only a

few lipoproteins have been functionally characterized and little is

known about their biosynthesis and localization. This is of medical

importance since lipoproteins have been shown to contribute to

virulence in M. tuberculosis. Lnt homologues are present in

Mycobacteria, Corynebacteria and Streptomyces species. In M.

tuberculosis, Mt-Ppm1 (Rv2051c) is a bi-domain enzyme with a N-

terminal Lnt domain and a C-terminal PPM synthase domain.

Interestingly, these two domains are encoded by individual

adjacent ORF – named ppm1 and ppm2 – in the genomes of

other Mycobacteria and Corynebacteria. A detailed study

demonstrated that Ms-Ppm2 (MSMEG_3860) and Mt-Ppm1

(Rv 2051c) exhibit Lnt activity in M. smegmatis and M. tuberculosis,

respectively, generating triacylated lipoproteins [27] The function

of Ms-Ppm1 and the D2 domain of Mt-Ppm1 are supposed to be

essential for lipoglycan synthesis but their role in lipoprotein

biosynthesis has never been tested so far. In C. glutamicum, the ppm

operon has been described to be essential for the synthesis of

lipoglycans. While the Dppm1 mutant displayed altered growth

rate, inability to synthesize PPM molecules and lipoglycans, the

Dppm2 has a lower content of lipoglycans but no growth defect.

Here, we studied the role of ppm1 and ppm2 of C. glutamicum in the

post-translational modification of lipoproteins. For this purpose,

4077.80, 4093.86 and 4109.83 peaks match to mono-, di-, tri- and tetra-oxidized AmyE55–91 peptides. The m/z 4342.89 peak corresponds to the di-
oxidized AmyE277–315 peptide. It’s worth noting that AmyEC1L peptides were more often detected in the oxidized state than AmyE peptides. Insets
aim at emphasizing the specificity of the m/z 4097.10 signal detected only in the AmyE spectrum. Asterisks indicate that m/z assignments are not
accurate because of low mass resolution and weak signal/noise ratio. E. Sequence of the recombinant purified wild-type AmyE protein. Identified
unmodified peptides after trypsin digestion and DDM/CHCl3-CH3OH treatment are shown in boldface type on the amino acid sequence of
recombinant AmyE.
doi:10.1371/journal.pone.0046225.g001
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we first focused on AmyE, a predicted lipoprotein, highly

expressed in C. glutamicum. We report that AmyE is indeed a

lipoprotein, post-translationally modified on its C+1 cysteine and

anchored in the membrane. Experiments of membrane separation

on sucrose gradients further indicated that AmyE was primarily

present in the inner membrane fractions (data not shown),

consistent with its function of SBP of an ABC transporter. As

expected, AmyEC1L is no longer post translationnally modified

and therefore not associated with the membrane. Instead,

AmyEC1L is released from intact cells in the culture medium.

This localization is surprising and suggests that the mycomem-

brane integrity has been compromised by the overexpression of

this non-lipidated variant. Both the cell-bound wild-type and the

released non-lipidated forms of AmyE were of the same size and

cleaved off their signal sequence, indicating that Lsp of

C. glutamicum is active on preprolipoproteins. This behaviour is

similar to that of other Gram-positive bacteria, while Gram-

negative Lsps are only active on diacylated prolipoproteins [35].

MALDI analysis of AmyE showed a difference between the

calculated and the experimental mass of the intact protein, fully

compatible with a triacylation. In addition, after trypsin cleavage,

the N-terminal peptide of AmyE from the parental strain has a

mass of 4097.10 Da instead of 3283.52 Da expected for the

unmodified peptide, while the same N-terminal peptide from the

isogenic Dppm2 showed a mass of 3858.98 Da. After calculating all

theoretical combinations of the main fatty acids found in C.

glutamicum, we inferred that our results are a strong indication of

the addition of a diacylglyceryl moiety (C16:0 and C18:1)

completed by an N-palmitoylation (C16:0). In total, the observed

modification accounts for 814 Da. We found exactly the same

modifications on M. tuberculosis LppX expressed in C. glutamicum.

This result indicates that lipoprotein-modifying enzymes (including

Lgt and Lnt) of C. glutamicum are active on heterologously

expressed mycobacterial lipoproteins. In a previous report,

Tschumi et al. found a mass difference of 831 Da due to post-

translational modification of LppX expressed in M. smegmatis [27].

This included a diacylglycerol modification (tuberculostearic acid

C19:0 and C16:0)and an N-palmitoylation (C16:0). The slightly

smaller value we found (814) when LppX was expressed in C.

glutamicum is likely due to the absence of mycobacterial specific

fatty acids. Indeed, tuberculostearic acid is a 10-methyloctande-

canoic acid that may account for the mass difference of +17 Da

observed for LppX modification in M. smegmatis as compared to

the C18:1 in C. glutamicum. The N-palmitoylation of AmyE and

LppX (+238 Da) does not occur in a Dppm2 mutant, confirming

that Cg-ppm2 has Lnt activity similar to that of its homolog in M.

smegmatis. All together, our results constitute a second report that

shows the presence of an Lnt activity in Corynebacterineae and

therefore confirms that these outer membrane-containing Gram-

positive bacteria are able to triacylate lipoproteins, just as Gram-

negative bacteria. In Gram-negative bacteria, depletion of Lnt

causes mislocalization of outer membrane proteins [36]. In C.

glutamicum, both AmyE and LppX were anchored to the

membrane in the presence or in the absence of Cg-Ppm2,

indicating that protein diacylation is sufficient for membrane

tethering. Because AmyE and LppX are found mainly associated

to the cytoplasmic membrane (data not shown), we cannot

determine a putative role of Cg-Ppm2-mediated triacylation in the

export of lipoproteins to the mycomembrane. In any case, the

Figure 2. Cg-Ppm2 exhibits apolipoprotein N-acyltransferase
activity. A. Localization of AmyE in C. glutamicum Dppm2 or Dppm2
(Cg-ppm2) strains. Membrane (M) and secreted (S) proteins were
analyzed by SDS-PAGE followed by immunoblotting using monoclonal
anti-his antibodies. The band labeled with an asterisk corresponds to a
shorter form of AmyE. B. MALDI PMFs of AmyE protein purified from
DCg-ppm2 and DCg-ppm2 (Cg-ppm2) strains. The m/z 3200–4800
region of the mass spectra of AmyE tryptic peptides after DDM/CHCl3-
CH3OH treatment is shown and significant monoisotopic [M+H]+1 peaks
are annotated. Upper panel: m/z 3858.98 (bold) corresponds to the
diacylated AmyE1–29 peptide while m/z 3451.65, 3547.59 and 4045.88

match to internal tryptic peptides, AmyE334–365, AmyE60–91 and AmyE55–

91, respectively. Bottom panel: m/z 4097.21 (bold) corresponds to the
triacylated AmyE1–29 peptide while m/z 3451.65, 3547.61 and 4045.88
match to AmyE334–365, AmyE60–91 and AmyE55–91 peptides.
doi:10.1371/journal.pone.0046225.g002
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absence of Cg-Ppm2 did not cause any defect in cell envelope

stability or cell growth. The precise role of protein N-palmitoyla-

tion in the cell physiology remains to be elucidated.

Lipoprotein Glycosylation in C. glutamicum
Besides acylation, LppX was found to be O-glycosylated in C.

glutamicum. This glycosylation is attributable to hydroxyl-bearing

amino acids within the peptide 6PDAEEQGCPVSPTASDPAL-

Figure 3. M. tuberculosis LppX is O-glycosylated in C. glutamicum. A. Localization of LppX in C. glutamicum wild-type strain: Membrane (M) and
secreted (S) proteins were analyzed by SDS-PAGE, followed by immunoblotting using monoclonal anti-his antibodies (left). Purification of LppX: LppX
was purified and analyzed by SDS PAGE before (lane 1) or after Triton X114 extraction. Proteins from both aqueous (lane 2) and detergent (lane 3)
phases were precipitated and loaded on the gel (right). LC-ESI-MS/MS analysis of LppX peptides: Identified peptides generated by standard extraction
procedures are shown in boldface type on the amino acid sequence of recombinant LppX. * indicates hydroxyl amino acid residues of the LppX6–29

peptide. B. LC-MS analysis of LppX6–29 glycopeptides. The deconvoluted LC-MS chromatogram is shown (21.5,RT,23.5 minutes). [M+H]+1 ions
corresponding to the unmodified peptide (m/z 2462.17), glycosylated forms with 1 to 4 hexose units (m/z 2624.21, 2786.26, 2948.30, 3110.35) and
D262- glycosylated forms with 0 to 3 hexose units (m/z 2724.23, 2886.28, 3048.34, 3210.37) are shown. N= 1 hexose (Dm = 162). = unknown
modification (Dm = 262). C. Deconvoluted MS/MS spectra of unmodified and tetraglycosylated peptides. Fragmentation patterns of the triply
charged ions corresponding to unmodified (left) and tetraglycosylated (right) LppX6–29 peptides are shown. b8, y8 and y16 most intense fragment
ions are annotated in both MS/MS spectra. Fragmentation pattern of the tetraglycosylated LppX6–29 peptidereveals 4 neutral losses of 162 Da coming
from the intact tetraglycosylated peptide (m/z 3110.38) and from the tetraglycosylated y16 fragment ion (m/z 2285.03). N= 1 hexose (Dm = 162 Da).
doi:10.1371/journal.pone.0046225.g003

Lipoprotein Acylation and Glycosylation

PLOS ONE | www.plosone.org 7 September 2012 | Volume 7 | Issue 9 | e46225



LAEIR29. This peptide contains two serines (S16 and S20) and

one threonine (T18) in proximity to prolines, a feature reminiscent

of glycosylation targets in Actinomycetes [15,16,34,37]. Ser 16 and

Thr 18 were also predicted as potential targets for O-glycosylation

by the Net-OGlyc 3.1 software (data not shown). However, we

were not able to locate the exact sites of glycosylation using

conventional CID MS/MS techniques because of the lability of

glycosidic bonds. Since in Gram-negative bacteria amino acids at

positions +2 and +3 are essential for the correct localization of

protein in the inner or the outer membrane [38] it is interesting to

note that the atypical double serine residues at the +2 and +3

position of LppX were not found to be glycosylated in our study.

This is similar to LpqH from M. tuberculosis, which also contains a

double serine at positions +2 and +3, but has been shown to be

Figure 4. Cg-Ppm1 is required for LppX glycosylation. Comparison of MALDI PMF profiles of LppX protein purified from C. glutamicum wild-
type and Dppm1 strains. The m/z 3500–4550 region of the mass spectra of LppX tryptic peptides after DDM/CHCl3-CH3OH treatment is shown and
significant monoisotopic [M+H]+1 peaks are annotated. Upper panel: m/z peaks correspond to glycosylated and triacylated LppX1–29 peptides are
indicated in bold (m/z 4103.09, 4203.03, 4427.11 and 4526.95). Three peaks (m/z 3624.65, 3794.74 and 3808.88) were detected but not identified.
Bottom panel: the m/z peak corresponding to the non-glycosylated triacylated LppX1–29 peptide was specifically observed in the Dppm1mutant (m/z
3779.28, in bold). The m/z 3795.28 peak was not identified. N= 1 hexose (Dm = 162 Da). = unknown modification (Dm = 262 Da). ‘‘ni’’ means not
identified and asterisks indicate that m/z assignments are not very accurate. Inset: SDS PAGE of the purified LppX proteins from the wild type and the
Dppm1 strains.
doi:10.1371/journal.pone.0046225.g004
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glycosylated somewhere in the threonine cluster, located between

amino acids 13 and 20. Even though there is no sequence

homology between LpqH and LppX, the position of the

glycosylation sites may have been conserved in the two proteins.

The glycosylation of LppX observed in C. glutamicummost likely

reflects its modification in Mycobacteria. Indeed, in M. smegmatis,

LppX has been shown to be post-translationally modified by

hexoses (P. Sander, personal communication) and in M. tuberculosis,

LppX has a high affinity for ConA-lectins [14]. This latter result

suggests that LppX is indeed mannosylated, which is in line with

our results, showing that the LppX6–29 glycopeptide can be

deglycosylated by treatment with alpha-mannosidase (data not

shown). The function of LppX glycosylation is still unknown but,

might be related to its cell wall localization and could be essential

for translocation of complex lipids (DIM) to the outer leaflet of the

outer membrane as it was proposed for SodC [18] or LpqH

[16,39]. Finally, it is worth noting that besides mannosylation, an

additional modification of 262 Da was consistently observed for

the LppX6–29 peptide. Putatively, it could represent a mannose

hydrophobic derivative, since it increases the hydrophobicity of

the modified peptide (data not shown). To our knowledge, this

difference of mass does not correspond to any known post-

translational modification and it has been described once without

molecular assignment [40].

We showed that the PPM synthase Cg-Ppm1 is required for

LppX glycosylation in C. glutamicum. PPM synthases are ubiquitous

throughout Corynebacterineae in which they catalyze the transfer of

mannose from GDP-mannose to lipid carriers polyprenol phos-

phates [28,30]. Then, cytoplasmic PPM flips the inner membrane

to act as a mannose donor for the biosynthesis of LM and LAM

(see Briken et al., for a review [41]). The direct involvement of

Ppm1 in protein glycosylation in Actinomycetes has been

demonstrated recently. In Streptomycescoelicolor,both Ppm1 and the

O-mannosyltransferase Pmt are part of a protein glycosylation

pathway [15,42]. This closely resembles the pathway for the

biosynthesis of O-mannosylated proteins in eukaryotes [43,44].

Similarly to S. coelicolor, Pmt of C. glutamicum (NCgl0854) and M.

tuberculosis (Rv1002c) are functional orthologs of eukaryote PMTs

[44,45,46]. Cg-Pmt is required for the glycosylation of secreted

proteins including the resuscitation promoting factor 2 (Rpf2) and

the putative lipoprotein LppS [45]. In this context, our results

indicate that, in addition to its essential role in LAM and LM

synthesis, Cg-Ppm1 is also a key element for the glycosylation of

lipoproteins in C. glutamicum.

Mt-Ppm1 is Active in C. glutamicum
In M. tuberculosis, Ppm1 and Ppm2 proteins are encoded by the

single ORF Rv2051c (Mt- ppm1). Here we show that Mt-Ppm1 is

able to complement the Dppm2 mutant for LppX acylation and

glycosylation and the Dppm1 mutant for LppX glycosylation. This

result indicates that Mt-Ppm1 is functional in C. glutamicum and

does not show any host specificity. Tschumi et al. [27] previously

reported that Ms-Ppm2 was not able to complement its E. coli

homolog even after exchange of the two essential amino acids

differing between E. coli and M. smegmatis. The authors suggested

that this lack of complementation could be due to the fact that Ms-

Ppm2 only recognizes lipoproteins modified with a diacylglyceryl

residue carrying at least one long chain fatty acid, the

tuberculostearic acid. Our data show that Mt-Ppm1is able to

complement Cg-Ppm2 and is therefore able to recognize a

diacylglyceryl residue without tuberculostearic acid. Hence, the

absence of complementation of Ms-Ppm2 observed by Tschumi et

al. [27] could be due to low expression level or low enzymatic

Table 1. Summary of the N-terminal LppX1–29 peptides detected by MALDI-PMF after DDM/CHCl3-CH3OH treatment in different
genetic backgrounds.

Strains
Triacylated LppX1–29

MH+ = 3778.46

Triacylated and glycosylated
LppX1–29 (triacylated LppX +
n6162)

Diacylated LppX1–29

MH+ = 3540.46

Diacylated and glycosylated
LppX1–29 (diacylated LppX+
n6162)

WT 4103.09 (n = 2)

4427.11 (n = 4)

Dppm1 3779.28

Dppm1(pCg-ppm1) 4103.03 (n = 2)

4427.05 (n = 4)

Dppm1(pMt-ppm1/D1+D2) 4103.22 (n = 2)

4427.18 (n = 4)

Dppm2 3540.89

Dppm2(pCg-ppm2) 3779.23 3941.15 (n = 1)

4103.22 (n = 2 )

Dppm2(pMt-ppm1/D1+D2) 3779.20 3941.22 (n = 1)

4103.26 (n = 2)

4427.28 (n = 4)

Dppm2(pCg-ppm1) 3864.99 (n = 2)

4188.82 (n = 4)

Dppm2(pMt-ppm1/D1) 3702.89 (n = 1)

3864.87 (n = 2)

Triacylated peptides are in bold. Glycosylated peptides are in italic. n represents the number of hexoses associated with the peptide.
Unmodified LppX 1–29 MH+ = 2964.46.
doi:10.1371/journal.pone.0046225.t001
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activity of Ms-Ppm2, which may not sustain growth of E. coli,

rather than to substrate specificity.

Glycosylation of LppX is Dependent on the Presence of
Cg-Ppm2

Interestingly, we found that the deletion of the Cg-ppm2 gene

caused the complete loss of glycosylation of LppX. This

observation was unexpected and might be explained as follows.

First, the absence of glycosylation of LppX may suggest that tri-

acylation of LppX is a prerequisite for glycosylation. This

hypothesis has been ruled out since overexpression of Cg-ppm1

in a Dppm2 mutant restores glycosylation and that Mt-Ppm1/D1

(N domain of Rv2051c),which is not able to restore acylation in

the Dppm2 mutant,is nevertheless able to restore glycosylation.

Second,because Cg-ppm1 is located immediately downstream of

Cg-ppm2, a possible decrease in Cg-ppm1 transcription could not

be excluded and may explain our observations. LAM and LM

production as well as in vitro activity of Cg-Ppm1 on artificial

acceptors are decreased in the Dppm2 mutant as compared to the

wild type strain and could not be restored by complementation

(our unpublished data and [28]). This observation clearly indicates

that there is indeed a polar effect of Cg-ppm2 deletion on Cg-ppm1

expression. However, this decrease in Cg-ppm1 transcription, could

notalone explain the absence of LppX glycosylation in the Dppm2

mutant since glycosylation (and triacylation)were recovered when

LppX was purified from the Dppm2 complemented strain (Dppm2

(pCg-ppm2)). Finally, a third possibility could be that Cg-Ppm2, in

addition to its apolipoprotein N-acyltransferase activity, is able to

interact with Cg-Ppm1 and increase its activity by anchoring the

protein at the membrane surface. This hypothesis is in line with

the results of Baulard et al. who demonstrated a direct interaction

between Ms-Ppm1 and Ms-Ppm2 in M. smegmatis [29]. Because

lipoprotein glycosylation, but not lipoglycans synthesis, can be

restored by complementation of the Dppm2 mutant with pCg-

ppm2, we propose that Cg-Ppm2 could even mediate a physical

interaction between Cg-Ppm1 and Pmt in order to efficiently drive

the transfer of mannose directly from the phosphoprenol carrier to

the lipoprotein. This interesting perspective pointing to unexpect-

ed links between lipoglycans and lipoprotein biogenesis awaits

further analysis.

Experimental Procedures

Strains and Plasmids
All C. glutamicum strains used in this study are derivatives of

ATCC13032 RES167 [47]and were routinely cultured on Brain

Heart Infusion (BHI) medium (DIFCO) at 30uC. The construction

of mutants Dppm1and Dppm2 has been described elsewhere [28], E.

coli DH5a was used as a host for cloning. C. glutamicum strains

carrying pCGL482 [48] or pVWEx2 [49] derivativeplasmids were

grown in the presence of chloramphenicol (Cm) and tetracycline

Figure 5. Cg-Ppm2 activity affects LppX glycosylation. Compar-
ison of MALDI PMF profiles of LppX protein purified from DDppm2,
Dppm2 (pCg-ppm2) and Dppm2 (pCg-ppm1). The m/z 3500–4550 region
of the mass spectra of LppX tryptic peptides after DDM/CHCl3-CH3OH
treatment is shown and significant monoisotopic [M+H]+1 peaks are
annotated. Upper spectrum: in the the Dppm2 strain, only the m/z peak
corresponding to the non-glycosylated diacylated LppX1–29 peptide is
identified (m/z 3540.89, bold). Five peaks were assigned but not
identified (m/z 3624.64, 3635.96, 3794.77, 3808.89 and 4518.28). These

peaks do not match to internal tryptic LppX peptides. Middle spectrum:
in the Dppm2 (pCg-ppm2) strain, m/z peaks corresponding to different
glycosylated forms of the triacylated LppX1–29 peptide are observed (m/
z 3941.15, 4041.13 and 4103.22, in bold) as well as the peak
corresponding to the non-glycosylated triacylated LppX1–29 peptide
(m/z 3779.23, in bold). The m/z 3624.63 peak was detected but not
identified. Bottom spectrum: in the Dppm2 (pCg-ppm1) strain different
glycosylated forms of the diacylated LppX1–29 peptide are detected (m/
z 3864.99, 3964,86, 4188.82 and 4288.85, in bold). N= 1 hexose
(DDm = 162 Da). = unknown modification (Dm = 262 Da). ‘‘ni’’ means
not identified and asterisks indicate that m/z assignments are not very
accurate. Inset: SDS PAGE of the purified LppX proteins from the wild
type, the Dppm2 and the complemented strains.
doi:10.1371/journal.pone.0046225.g005

Lipoprotein Acylation and Glycosylation

PLOS ONE | www.plosone.org 10 September 2012 | Volume 7 | Issue 9 | e46225



Figure 6. M. tuberculosis Ppm1 is active in C. glutamicum. Comparison of MALDI PMF profiles of LppX protein purified from Dppm2 (pMt-ppm1)
and Dppm1 (pMt-ppm1). The m/z 3500–4550 region of the mass spectra of LppX tryptic peptides after DDM/CHCl3-CH3OH treatment is shown and
significant monoisotopic [M+H]+1 peaks are indicated. Upper spectrum: in the Dppm2 (pMt-ppm1) m/z peaks corresponding to different glycosylated
forms of the triacylated LppX1–29 peptide were observed (m/z 3941.22, 4041.18, 4103.26, 4203.25, 4427.28 and 4527.23) as well as the peak of the
non-glycosylated triacylated LppX1–29 peptide (m/z 3779.20) Bottom spectrum: in the Dppm1 (pMt-ppm1) strain, peaks corresponding to different
glycosylated forms of the triacylated LppX1–29 peptide were observed (m/z 4103.22, 4203.26, 4427.18 and 4527.12, in bold). Three peaks (m/z 3547.83,
3662.78 and 3943.95) were detected but not identified. N= 1 hexose (Dm = 162 Da). = unknown modification (Dm = 262 Da). ‘‘ni’’ means not
identified and asterisks indicate that m/z assignments are not very accurate.
doi:10.1371/journal.pone.0046225.g006
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(Tet) at final concentrations of 25 mg ml21 and 5 mg ml21

respectively. Transformations of C. glutamicumwere performed by

electroporation as described by Bonamy et al. [50]. Primers

synthesis and DNA sequencing were performed by Eurofins

MWG operon.

Construction of Expression Vectors
The DNA region encoding AmyE-6his was amplified by PCR

using genomic DNA from C. glutamicum ATCC 13032 as a

template, the forward primer (59-AGCGGAGGATCCTG-

TATTTGTATGTTTTAGGCCCG-39) with a BamHI site and

the reverse primer (59-CGTCTCGAGTTAATGATGATGAT-

GATGATGGCCCCAGTTGGATTCC-39) with a XhoI site.

The reverse primer also contained a sequence encoding an in

frame C-terminus hexahistidine tag (underlined). The resulting

PCR product – amyE-his with a 200 bp upstream region – was

digested with XhoI and BamHI and ligated into the same sites of

pCGL482, generating pCGL482-AmyE. Expression of amyE from

this plasmid was driven by its own native promoter.

The DNA region encoding LppX-HA-His was amplified by

PCR from plasmid pMV261-Gm-Fus-LppX-HA-His [27] with

the forward primer (59-CGTAGTCCTCGAGAAGCTTG-

CATGCCTGC-39) with a XhoI site and the reverse primer (59-

CGTGATATCACGACAGGCAAAGGAGCACAGGATGAAT-

GATGG-39) with an EcoRV site. After digestion with EcoRV and

XhoI, the PCR product was inserted into appropriately restricted

pCGL482-AmyE, resulting in pCGL482-LppX, in which expres-

sion of lppX is under the control of the amyE promoter.

Construction of Plasmids Expressing ppm Genes
Cg-ppm1 was cloned under the tac promoter in pVWEx2 as

described previously [28]. Cg-ppm2, Mt-ppm1/D1 and Mt-ppm1/

D1+D2 were similarly cloned in the same vector by using the

following primers:

Cgppm2_XbaI_F CAT GCA TGTCTA GAA AGG AGA TAT

AGA TAT GAC ACT GTT TGT TCG GCT C, Cgppm2_Bam-

HI_R CAT GCA TGG GAT CCT TAT TTT ACT TTT CGA

CGA TT, Mtppm1D1_XbaI_F CAT GCA TGTCTA GAA AGG

AGA TAT AGA TAT GAA GCT TGG CGC CTG GGT G,

Mtppm1D1_BamHI_R CAT GCA TGGGAT CCT TAC ATG

TAA CTC CTC GAT GT, Mtppm1D1_XbaI_F CAT GCA

TGTCTA GAA AGG AGA TAT AGA TAT GAA GCT TGG

CGC CTG GGT G and MtppmD2_XbaI_R GAT CTC TAG

ATC ATT CGG TCA CGT CGG CGC GGC.

Site-directed Mutagenesis
Site-directed mutagenesis of the amyE gene was performed with

a QuickChange XL mutagenesis kit (Stratagene) according to the

manufacturer’s protocol.In order to replace the cysteine +1 by a

leucine in the ORF of AmyE, we performed a PCR reaction on

pCGL482-AmyE with primers Cys/Leu1 (59GTC GGT GGA

GCC GGA CAACGC GAC GAG ACT TGC 39) and Cys/Leu2

(59GCA AGT CTC GTC GCG TTG TCC GGC TCC ACC

GAC 39). The resulting product was treated with DpnI to degrade

the parental plasmid and directly transformed into DH5a E. coli

cells. The presence of the mutation was confirmed by sequencing

pCGL482-AmyEC1L with the primer 482S (59 GCAGAA-

TAAATGATCCGTCG 39) and was introduced in C. glutamicum

strain ATCC 13032.

Cell Fractionation
10 ml cultures of C. glutamicum were grown overnight in BHI

medium at 30uC with vigorous shaking (200 rpm). 1 ml culture

aliquots were centrifuged, cell pellets were resuspended 1 ml of

50 mM Tris-HCl pH 7.0 with glass beads and vortexed for

15 min. Unbroken cells were discarded and total membranes were

collected by centrifugation (65,0006g, 30 min.) in a Beckman

TLA 100.3 rotor. Proteins in the supernatant were precipitated

with 10% trichloroacetic acid (TCA) at 4uC for 30 min. The

precipitated proteins were recovered by centrifugation (13,0006g;

15 min) and washed with cold acetone. Protein samples were

analyzed on SDS-PAGE and immunoblotting.

Purification of 6His-tagged Proteins
6His-tagged AmyE and LppX proteins were expressed in wild-

type C. glutamicum, Dppm1 and Dppm2 mutants and purified from

their respective membrane fractions. 300 ml of BHI was

inoculated with the appropriated strain and incubated at 30uC
with vigorous shaking (200 rpm) overnight. Cell pellets were

collected by centrifugation, washed and resuspended in 10 ml of

25 mM HEPES pH 7.4. Cells were broken by three passages

through a French pressure cell at 18,000 psi. Unbroken cells were

removed by low-speed centrifugation (4,0006g for 15 min) and

the cleared supernatant was then centrifuged at 65,0006g for

30 min (rotor Beckman TLA 100.3). Total membranes were

homogenized in 25 mM phosphate buffer pH 8.0 containing

0.1 mg/ml Pefabloc and 4% LDAO (lauryl-dimethylamine-oxide),

and stirred for 30 min room temperature. Insoluble material was

removed by centrifugation at 65,0006g for 30 min. Solubilized

membrane protein extracts were saved and loaded on a Ni-NTA

column (Quiagen Ni-NTA superflow) previously equilibrated with

25 mM phosphate buffer pH 8.0, 2% LDAO (buffer A). The

column was washed with ten column volume of buffer A

containing 10 mM imidazole and His-tagged proteins were eluted

with buffer A containing 250 mM of imidazole. AmyEC1L was

concentrated from a 300 ml-cell culture supernatant using

ultrafiltration units (Amicon YM 10 kDa) (1 ml/min for 5 h at

4uC). The resulting protein concentrate was dialyzed extensively

against 25 mM phosphate buffer pH 8.0 at 4uC and loaded on a

Ni-NTA column and purified as described. Elution fractions were

analyzed by SDS-PAGE and Coomassie Brilliant Blue staining.

Purified proteins were dialyzed against buffer A and stored at

220uC until use.

Triton X114 Extraction
Purified proteins were diluted 10-fold in 25 mM HEPES buffer

pH 7.4 containing 2% Triton X-114. Lipoprotein extraction was

performed at 4uC for 2 h 30 min. on a rocking platform. After

incubation at 37uC for 10 min and centrifugation at 12, 0006g for

10 min., the detergent phase and the aqueous phase were

separated. Proteins in both phases wereTCA-precipitated as

described, resuspended in Laemmli buffer and analyzed by SDS-

PAGE and immunoblotting.

Mass Spectrometry Analysis
MALDI (matrix-assisted laser desorption/ionisation)

protein mass measurements. Purified recombinant proteins

(0.5 ml) were mixed with an equal volume of the sinapic acid

matrix (Sigma-Aldrich; 10 mg/ml, 50% CH3CN, 1% trifluoroa-

cetic acid (TFA)). Crystals were obtained using the dried droplet

method, and ,300 mass spectra were averaged per spot.

Acquisitions were performed in positive linear mode with the

Voyager-DE STRMALDI-TOF mass spectrometer (ABSCIEX).

External calibration was performed with enolase (M = 46672 Da)

and bovine serum albumin (M = 66431 Da) of the promix 3

mixture (LaserBio Labs).
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MALDI Peptide Mass Fingerprinting (PMF). Enzymatic

digestion of excised bands was performed using the Progest robot

(Genomic Solutions). Briefly, protein bands were extensively

washed with CH3CN and 25 mM NH4HCO3. The excised bands

were treated with 100 ml 10 mM DTT at 57uC for 30 min. After

DTT removal, 100 ml of 55 mM iodoacetamide was added for

cysteine carbamidomethylation, and the reaction was left to

proceed at room temperature for 30 min. After removal of the

supernatant, the washing procedure was repeated, and then gel

slices were dried. Twenty microliters of 10 ng/ml Porcine Gold

Trypsin (Promega) diluted in 25 mM NH4HCO3 was added, and

enzymatic digestion was performed overnight at room tempera-

ture. Peptides were extracted either with standard procedures

(40%H2O, 60% CH3CN, 0.1%TFA) or following a protocol

described by Ujihara [33] with minor modifications. 20 ml of 1%

dodecyl maltoside (Anatrace, n-Dodecyl-b-D-Maltopyranoside

DDM, Sol-Grade) was added and the solution was mixed

(1500 rpm) for 1 hour at room temperature; 35 ml of a 2:1

chloroform:methanol solution (CHCl3-CH3OH) was added and

the solution mixed as before. Peptide extracts from the aqueous

and organic phases (0.5 ml) were quickly spotted onto a 0.5 ml

droplet of 2,5-dihydroxybenzoic acid (Sigma-Aldrich; 20 mg/ml,

50% CH3CN, 0.1%TFA). Peptide mixtures were analyzed in

positive reflectron mode with the Voyager-DE STRMALDI-TOF

mass spectrometer (ABSCIEX) and ,500 mass spectra were

averaged per spot. Mass spectral analyses were performed with the

Data Explorer software (ABSCIEX). MALDI PMF spectra were

internally calibrated with tryptic peptides of recombinant proteins:

m/z 3451.65 and 4045.88 for AmyE in C. glutamicum wild-type,

Dppm2 and Dppm2(pCg-ppm2) strains. m/z 2760.30 and 3451.65

for AmyEC1L in the wild-type strain. m/z3296.76 and m/z

2211.10(autolytic peptide of trypsin) forLppX in wild-type, Dppm2,

Dppm2(pCg-ppm2), Dppm2(pCg-ppm1), Dppm2(Mt-ppm1) and

Dppm1(Mt-ppm1) strains. m/z 2462.24 and 3296.76 for LppX in

Dppm1strain.
NanoLC-ESI-MS/MS analyses. Trypsin-generated peptide

mixtures extracted with standard procedures (see above) were

dried under vacuum, then resuspended in aqueous solution (0.1%

HCOOH) and finally analyzed with the Q/TOF Premier mass

spectrometer (Waters) coupled to the nanoRSLC chromatography

(Dionex) equipped with a trap column (Acclaim PepMap100 C18,

75 mm I.D.62 cm, 3 mm, nanoViper) and an analytical column

(Acclaim PepMapRSLC C18, 75 mmI.D.615 cm, 2 mm, 100 Å,

nanoViper). The loading buffer was H2O/CH3CN/TFA (98%/

2%/0.05%), buffer A and B were H2O/HCOOH (0.1%) and

CH3CN/HCOOH (0.1%), respectively. A 2–50% B gradient was

set for 40 minutes with a flow rate of 0.3 ml/min. Data-dependent

scanning was applied to generate MS/MS spectra with a collision

energy ramp of 15 to 40 volts. Standard MS/MS acquisitions were

performed on the top of the three most intense parent ions of the

previous MS scan. Raw data were processed with ProteinLynx

Global Server (Waters). Peptide identification was achieved using

the Mascot software with the following parameters: data bank

recombinant LppX protein; peptide tolerance 15 ppm; fragment

tolerance 0.1 Da; digest reagent trypsin (cleavage allowed even

before proline); variable modification oxidation of methionine;

fixed modification carbamidomethylation of cysteines. MS and

MS/MS spectra of glycosylated peptides were processed and

analyzed using the MassLynxV4.1 and the PepSeq software

(Waters).

Mannosidase treatment. LppX tryptic peptides extracted

with standard procedures, were dried and resuspended in 8 ml of

25 mM NH4HCO3. 2 ml (10 mg) of Jack bean a-Mannosidase

solution (Sigma-Aldrich) was added and the reaction was left to

proceed for 3 h at 37uC, while shaking (1500 rpm). Mannosidase-

treated peptides (0.5 ml) were mixed with an equal volume of DHB

matrix solution (Sigma-Aldrich; 20 mg/ml, 50% CH3CN,

0.1%TFA) and spotted using the dried-droplet method. MALDI-

PMF acquisitions and data analyses were performed as described

above.

Standard Biochemical Analysis
For Western blotting, protein samples were analyzed on 12%

SDS-PAGE minigels and transferred for 1 h at 30 V onto

nitrocellulose membrane (Whatman Protran BA85 0.45 mm).

The membranes were probed with horseradish peroxidase-

conjugated anti-His antibodies diluted at 1/3000(Roche). Western

LightningH Plus–ECL (Perkin Elmer) was used for detection.

For N-terminal sequencing, proteins were separated by 12%

SDS-PAGE, blotted onto a PVDF membrane and stained with

Amido Black (0.1% (w/v) Amidoblack, 40% (v/v) methanol, 1%

(v/v) acetic acid) for 10 min. The membrane was washed with

distilled water. Visible bands were cut out and analyzed by Edman

degradation at the Proteomics Platform of the Institut Pasteur

Paris.
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