Skip to main content
. 2012 Sep 28;7(9):e46257. doi: 10.1371/journal.pone.0046257

Table 1. Mean species richness of marsupials in Brazil (S) projected for current and future climatic conditions, different between future & current species richness (Δ), mean turnover, and percent variation (median) of species range size and its interquartile deviation obtained in each Green house gases emission scenario, modeling method, and climate model.

Emission scenario Modeling method Climate Model Species richness (current climate) Species richness (future climate) Δ species richness Turnover % Range size variation (interquartile deviation)
A2a GAM CCCMA-CGCM2 11.28 10.79 0.49 0.50 −44.35 (51.98)
CSIRO-MK2 11.28 10.63 0.65 0.37 −26.75 (30.59)
HCCPR-HadCM3 11.28 9.88 1.40 0.55 −52.76 (40.44)
NIES99 11.28 10.01 1.27 0.48 −30.77 (41.22)
GBM CCCMA-CGCM2 10.85 9.46 1.39 0.45 −44.97 (44.41)
CSIRO-MK2 10.85 9.85 1 0.38 −26.93 (30.14)
HCCPR-HadCM3 10.85 8.27 2.57 0.54 −49.66 (28.88)
NIES99 10.85 8.97 1.87 0.48 −39.03 (30.43)
GLM CCCMA-CGCM2 14.2 15.4 −1.2 0.49 −33.19 (41.91)
CSIRO-MK2 14.2 14.78 −0.58 0.35 −7.76 (26.26)
HCCPR-HadCM3 14.2 15.05 −0.85 0.53 −34.12 (60.03)
NIES99 14.2 14.21 −0.01 0.49 −21.18 (42.1)
MARS CCCMA-CGCM2 11.65 10.34 1.31 0.52 −52.04 (41.18)
CSIRO-MK2 11.65 10.83 0.82 0.40 −28.72 (26.03)
HCCPR-HadCM3 11.65 8.86 2.79 0.57 −46.32 (29.14)
NIES99 11.65 9.21 2.44 0.50 −34.75 (40.05)
RF CCCMA-CGCM2 8.53 8.22 0.31 0.43 −21.17 (38.52)
CSIRO-MK2 8.53 8.36 0.16 0.36 −7.83 (33.13)
HCCPR-HadCM3 8.53 7.34 1.19 0.54 −35.58 (49.38)
NIES99 8.53 8.27 0.25 0.45 −0.21 (0.39)
ANN CCCMA-CGCM2 14.42 11.83 2.59 0.45 −21.17 (38.52)
CSIRO-MK2 14.42 12.15 2.27 0.37 −7.83 (33.13)
HCCPR-HadCM3 14.42 10.16 4.26 0.51 −35.58 (49.38)
NIES99 14.42 11.66 2.76 0.47 −21.04 (38.79)
B2a GAM CCCMA-CGCM2 11.28 10.77 0.51 0.32 −4.21(23.94)
CSIRO-MK2 11.28 10.86 0.42 0.35 −20.24 (30.20)
HCCPR-HadCM3 11.28 9.64 1.64 0.52 −38.78 (39.34)
NIES99 11.28 10.53 0.75 0.42 −30.70 (32.26)
GBM CCCMA-CGCM2 10.85 10 0.85 0.38 −22.36 (23.24)
CSIRO-MK2 10.85 9.97 0.88 0.37 −29.68 (27.66)
HCCPR-HadCM3 10.85 8.47 2.37 0.53 −42.72 (35.93)
NIES99 10.85 9.38 1.47 0.45 −34.01 (26.55)
GLM CCCMA-CGCM2 14.2 15.05 -0.85 0.31 1.49 (19.73)
CSIRO-MK2 14.2 14.44 -0.24 0.35 −13.91 (26.46)
HCCPR-HadCM3 14.2 14.85 -0.65 0.52 −25.3 (56.3)
NIES99 14.2 13.59 0.61 0.44 −22.71 (34.9)
MARS CCCMA-CGCM2 11.65 10.98 0.67 0.37 −10.82 (20.23)
CSIRO-MK2 11.65 10.97 0.68 0.38 −21.31 (23.62)
HCCPR-HadCM3 11.65 8.9 2.76 0.55 −36.47 (27.53)
NIES99 11.65 10 1.65 0.45 −32.35 (25.84)
RF CCCMA-CGCM2 8.53 8.49 0.04 0.38 −0.03 (0.23)
CSIRO-MK2 8.53 8.42 0.11 0.37 −10.63 (31.19)
HCCPR-HadCM3 8.53 7.49 1.04 0.54 −34.87 (41.99)
NIES99 8.53 8.63 −0.1 0.42 −12.87 (38.57)
ANN CCCMA-CGCM2 14.42 12.60 1.82 0.39 −3.34 (23.3)
CSIRO-MK2 14.42 12.12 2.30 0.37 −10.63 (31.19)
HCCPR-HadCM3 14.42 10.62 3.80 0.52 −34.87 (41.99)
NIES99 14.42 11.99 2.43 0.45 −12.77 (38.57)

Generalized Additive Models, GAM; Generalized Boosting Regression Models, GBM; Generalized Linear Models, GLM; Multivariate Adaptive Regression Splines, MARS; Artificial Neural Networks, ANN; and Random Forest, RF.