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A rigorous formalism for estimating noncovalent binding free energies and thermodynamic expecta-
tions from calculations in which receptor configurations are sampled independently from the ligand
is derived. Due to this separation, receptor configurations only need to be sampled once, facilitat-
ing the use of binding free energy calculations in virtual screening. Demonstrative calculations on
a host-guest system yield good agreement with previous free energy calculations and isothermal
titration calorimetry measurements. Implicit ligand theory provides guidance on how to improve
existing molecular docking algorithms and insight into the concepts of induced fit and conforma-
tional selection in noncovalent macromolecular recognition. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4751284]

I. INTRODUCTION

The goal of molecular docking is to predict the most sta-
ble configuration of a noncovalent complex between a ligand
and receptor. Based on this configuration, the complex is as-
signed a score which may be used to approximately rank the
binding affinity of one ligand to the receptor versus another.
Molecular docking has many potential applications, and has
been most prominently applied to the virtual screening1, 2 of
chemical libraries to aid the development of pharmaceuticals.

Given the three-dimensional structure of a protein recep-
tor, docking algorithms have proven reasonably adept at sam-
pling stable conformations of small organic ligands in the
complex. Unfortunately, current scoring functions perform
poorly at predicting binding free energies.3–5 Hence, dock-
ing is typically used to filter a large library of potential lig-
ands to a smaller binder-enriched library that may be pursued
experimentally or by more accurate and expensive computa-
tional methods.6–10 Even in this capacity, however, scoring
functions are inconsistent, frequently presenting false posi-
tives (ligands predicted to bind but actually have weak or no
affinity) and false negatives (ligands predicted not to bind
but actually have significant affinity). For example, docking
programs often have difficulty distinguishing binding com-
pounds from decoys in which the chemical connectivity has
been randomized.3, 11 Improved scoring functions would in-
crease the capability to discern binders from non-binders.

The improvement of scoring functions, however, has
been hindered by the lack of a rigorous formalism for ob-
taining binding free energies from molecular docking. While
molecular docking calculations are usually performed with
a rigid receptor, existing formalisms for binding free ener-
gies require a flexible receptor. Here, I derive a formalism,
implicit ligand theory, for estimating binding free energies
and thermodynamic expectations based on docking ligands to
rigid-receptor structures. I also describe practical aspects of

a)Electronic mail: dm225@duke.edu.

statistical estimation, present example calculations, and dis-
cuss how physics-based (opposed to empirical or knowledge-
based) docking algorithms (see Ref. 12) may be modified to
exploit it. Beyond molecular docking, implicit ligand theory
provides insight into the concepts of induced fit and confor-
mational selection in noncovalent macromolecular recogni-
tion.

II. THEORY

The standard binding free energy, the free energy of a
noncovalent association between a receptor R and ligand L to
form a complex RL, R + L ⇀↽ RL, is

�G◦ = −β−1 ln

(
C◦CRL

CRCL

)
, (1)

where β = (kBT)−1 is the inverse of Boltzmann’s constant, kB,
times the temperature in Kelvin, T, C◦ is the standard concen-
tration (typically 1 M), and CX is the equilibrium concentra-
tion of species X ∈ {R, L, RL}.13

Statistical thermodynamics relates the standard binding
free energy to a ratio of configurational partition functions14

�G◦ = −β−1 ln

(
ZRL,NZN

ZR,NZL,N

C◦

8π2

)
, (2)

ZRL,N =
∫

Iξ e
−βU (rRL,rS )drRLdrS, (3)

ZY,N =
∫

e−βU (rY ,rS )drY drS, (4)

ZN =
∫

e−βU (rS )drS, (5)

in which symmetry numbers and a small pressure-volume
term have been omitted from Eq. (2). ZRL, N and ZY, N are
configurational partition functions of the complex and of the
species Y ∈ {R, L}, respectively, in N molecules of solvent.
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The potential energy U(rX, rS) depends on rX, the internal co-
ordinates of the receptor, ligand, or both in complex (the ex-
ternal degrees of freedom have been analytically integrated),
and rS, the coordinates of N molecules of solvent. The com-
plex coordinates rRL may be decomposed into the internal
coordinates of the receptor, rR, and of the ligand, rL, and
six degrees of freedom describing their relative translation
and rotation, ξL. For simplicity, Jacobians for the transforma-
tion from Cartesian coordinates to a system with separated
internal and external degrees of freedom are not shown in
Eqs. (3) and (4). In ZRL, N, the indicator function Iξ ≡ I(ξL)
takes values between 0 and 1 and determines whether the
receptor and ligand are complexed or not. For tight-binding
complexes, the binding free energy is insensitive to the pre-
cise definition of Iξ .14

A. Implicit solvent theory

The configurational integrals in Eq. (2) may be expressed
in a formally equivalent but simpler form using implicit-
solvent theory.14 In implicit solvent theory, the interaction
energy is defined as ψ(rX, rS) = U(rX, rS) − U(rX) − U(rS),
where U(rX) is the potential energy of species X by itself and
U(rS) the potential energy of the solvent by itself. By inte-
grating the configurational partition functions over rS, we may
define the ratios

ZRL ≡ ZRL,N

ZN

=
∫

Iξ e
−β[U (rRL)+W (rRL)]drRL, (6)

ZY ≡ ZY,N

ZN

=
∫

e−β[U (rY )+W (rY )]drY , (7)

where

W (rX) = −β−1 ln

(∫
e−βψ(rX,rS )e−βU (rS )drS∫

e−βU (rS )drS

)
(8)

is a potential of mean force (PMF) that can be interpreted
as the constant-pressure reversible work of transferring the
species X from the gas phase into the solvent. In biomolec-
ular modeling, W (rX) is frequently estimated as the sum
of an electrostatic term from the Poisson-Boltzmann (PB)
equation15 (or the generalized Born approximation16), and a
non-electrostatic term, which to a first approximation is pro-
portional to the molecular surface area.

In terms of implicit solvent configurational integrals, the
standard binding free energy is

�G◦ = −β−1 ln

(
ZRL

ZRZL

C◦

8π2

)
. (9)

As most implicit solvent models fail to account for specific
interactions, such as hydrogen bonding, that can have impor-
tant structural and energetic consequences, binding free en-
ergy calculations in implicit solvent are generally expected
to be less accurate than those in explicit solvent.17 Neverthe-
less, binding free energy calculations in implicit solvent have
yielded promising agreement with experimental results (e.g.,
Refs. 18–21).

B. Implicit ligand theory

The development of implicit ligand theory is very similar
to that of implicit solvent theory. It involves defining the ef-
fective potential as U(rX) = U (rX) + W (rX), the effective in-
teraction energy as 	(rRL) = U(rRL) − U(rR) − U(rL), and

B(rR) = −β−1 ln

(∫
Iξ e

−β	(rRL)e−βU(rL)drLdξL∫
Iξ e−βU(rL)drLdξL

)

≡ −β−1 ln〈e−β	〉rL,ξL

L,I , (10)

which is a potential of mean force that will subsequently be
referred to as the binding PMF. Throughout this paper, angled
brackets 〈. . .〉rX,... will be used to denote an ensemble average
over the coordinates r listed in the superscript with respect
to the density proportional to qX, . . . , where X describes the
coordinates in the effective potential U(rX), and . . . are labels.
Here, qL,I (rL, ξL) = Iξ e

−βU(rL). Within angled brackets, I will
use a shorthand notation in which functions implicitly depend
on coordinates, e.g., 	 ≡ 	(rRL).

In terms of the binding PMF, Eq. (9) may be written as

�G◦ = −β−1 ln

( ∫
Iξ e

−βU(rRL)drRL∫
e−βU(rR )drR

∫
e−βU(rL)drL

C◦

8π2

)

= −β−1 ln

(∫
Iξ e

−β[U(rR )+	(rRL)+U(rL)]drRL∫
e−βU(rR )drR

∫
e−βU(rL)drL

C◦

8π2

)

= −β−1 ln

(∫
e−β[B(rR )+U(rR )]drR∫

e−βU(rR )drR


C◦

8π2

)

≡ −β−1 ln〈e−βB〉rR

R + �Gξ, (11)

where 
 = ∫
Iξ dξL (which may be analytically tractable) is

the binding site volume, �Gξ = −β−1 ln
(


C◦
8π2

)
is the free en-

ergy of confining the ligand external degrees of freedom to the
binding site, and qR(rR) = e−βU(rR ). Equations (10) and (11)
are the central theoretical results of this paper.

Implicit ligand theory provides a rigorous framework for
binding free energies that separates the sampling of receptor
and ligand configurations. In Eq. (11), the receptor probabil-
ity density is independent of any ligand configuration. Like-
wise, the probability density of ligand internal coordinates in
Eq. (10) is independent from the receptor configuration. In
practice, however, sampling from this ligand distribution may
lead to slow convergence (this point will later be discussed in
greater detail). The primary benefit of implicit ligand theory is
that the computationally expensive step of sampling receptor
configurations only needs to be performed once. Predicting
binding free energies for a chemical library is then limited by
the much faster process of sampling ligand conformations.

C. Thermodynamic expectations

In addition to estimating the binding free energy, implicit
ligand theory may also be used to estimate expected values of
observables in the bound ensemble. Observables may include,
for example, the mean potential energy, interaction energy, or
distance between a ligand and receptor atom. Towards this
end, it is useful to define a rigid-receptor expectation of an
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observable O(rRL), weighted by the interaction energy,

�(rR) =
∫

IξO(rRL)e−β	(rRL)e−βU(rL)drLdξL∫
Iξ e−βU(rL)drLdξL

≡ 〈Oe−β	〉rL,ξL

L,I . (12)

If the observable is solely a function of the receptor configu-
ration, then �(rR) reduces to O(rR)e−βB(rR ).

In terms of Eqs. (10) and (12), the expectation of O(rRL)
with respect to the density proportional to qRL,I (rRL)
= Iξ e

−βU(rRL) is

〈O〉rRL

RL,I ≡
∫

IξO(rRL)e−βU(rRL)drRL∫
Iξ e−βU(rRL)drRL

=
∫

IξO(rRL)e−β[U(rR )+	(rRL)+U(rL)]drRL∫
Iξ e−β[U(rR )+	(rRL)+U(rL)]drRL

=
∫

�(rR)e−βU(rR )drR∫
e−β[B(rR )+U(rR )]drR

≡ 〈�〉rR

R

〈e−βB〉rR

R

= 〈�〉rR

R eβ[�G◦−�Gξ ]. (13)

Equations (12) and (13) significantly generalize implicit lig-
and sampling,22 a method to estimate the potential of mean
force for the ligand center of mass. The results of Cohen
et al.22 may be obtained by choosing the observable as a Dirac
delta function for the ligand center of mass, taking a natu-
ral logarithm, and multiplying by β−1. Cohen et al.22 applied
implicit ligand sampling to study gas migration pathways in
myoglobin, but the possibility of estimating other observables
and binding free energies has not been previously recognized.

III. ESTIMATION

Applying implicit ligand theory to predicting binding
free energies involves three steps:

1. Sampling receptor configurations.
2. Estimating the binding PMF, B(rR), for each receptor

configuration.
3. Estimating �G◦ from B(rR) estimates.

In this section, I present several ways, roughly in order of
increasing complexity, that these steps may be accomplished.
A variant of one approach will be demonstrated later in the
paper.

A. Receptor configurations

Receptor configurations can be drawn from qR(rR), any
(possibly unnormalized) distribution qR,w(rR) on the same
support as qR(rR) and for which w(rR) = qR(rR)/qR,w(rR)
may be calculated, or from multiple distributions satisfying
these conditions. Regardless of the sampling method, how-
ever, convergence of free energy estimates requires repre-
sentative sampling of both the bound and unbound recep-
tor configuration space. A particularly straightforward proto-
col is to sample from the distribution proportional to qR(rR)
= e−βU(rR ); one conducts a molecular dynamics (MD) simu-
lation in the implicit solvent used for W (rR), collecting snap-

shots at evenly spaced intervals that are longer than the sta-
tistical correlation time. This protocol may be satisfactory if
receptor fluctuations are minimal and the ligand does not sig-
nificantly perturb the receptor configurational ensemble.

For a receptor that undergoes larger structural fluctu-
ations, sampling from multiple energetic minima may be
facilitated by applying an external biasing potential (e.g.,
a harmonic bias) on one or more order parameters. If it
is known that a ligand significantly perturbs the receptor
configurational ensemble, it can be useful to introduce mul-
tiple alchemical intermediates into a simulation. Alchemical
calculations may involve a coupling parameter λ, defined
such that the two groups (e.g., the receptor and ligand) are
non-interacting at λ = 0 and fully interacting with λ = 1.
Simulations are conducted with λ at these end points and
at multiple values in between. Sampling in each stage may
be enhanced by Hamiltonian replica exchange (e.g., Jiang
et al.,23 Gallicchio et al.,21 Gallicchio and Levy24), which
entails stochastically swapping the coordinates of different
simulations with a probability that preserves the Boltzmann
distribution. Receptor configurations obtained through a
flexible-receptor Hamiltonian replica exchange with a single
ligand may subsequently be used for implicit ligand free
energy calculations with other ligands in the chemical library.

As a caveat, implicit ligand theory does not provide a for-
mal justification for docking to multiple experimentally deter-
mined structures (e.g., Ref. 25) or any other set of structures in
which w(rR) is unknown (e.g., homology modeling or flexible
docking). One potential way to use information about multi-
ple structures is to conduct multiple MD simulations with ex-
ternal potentials biased towards one or more of the structures.
To facilitate later analysis, the external potentials should be
set up to promote overlap in the configuration space of differ-
ent simulations.

B. Estimating a binding PMF

The binding PMF B(rR) may be expressed in terms of a
ratio of partition functions,

B(rR) = −β−1 ln

( ∫
Iξ e

−βU(rRL)drLdξL∫
Iξ e−β[U(rL)+U(rR )]drLdξL

)
, (14)

which clarifies that B(rR) is a special type of free energy
difference in which the receptor configuration rR is rigid.
Thus, B(rR) may be calculated using any one of many avail-
able methods to estimate free energy differences,26 including
free energy perturbation (FEP),27 thermodynamic integration
(TI),28 and the Bennett acceptance ratio (BAR).29 While for-
mally equivalent, free energy methods can have dramatically
different convergence properties.

Based on the form of Eq. (10), the most straightfor-
ward estimation protocol is FEP. One can, for example, draw
ligand configurations from the distribution proportional to
qL(rL, ξL) = e−βU(rL) by conducting a MD simulation of the
ligand in the appropriate implicit solvent and collecting snap-
shots at sufficiently long intervals. Because qL is indepen-
dent of ξL, the external degrees of freedom sampled from the
simulation may be replaced by a new ξL sampled from the
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distribution proportional to qξ , I = Iξ . The expectation in
Eq. (11) may then be estimated by the sample mean

B̂(rR) = −β−1 ln
1

N

N∑
n=1

e−β	(rRL,n), (15)

where rRL, n is the nth of N samples of the complex. Through-
out this paper, Â will denote a statistical estimator—an equa-
tion used to calculate a quantity based on sampled data.

In exponential averages such as Eq. (15), a small subset
of samples may contribute a large portion of the sum. The
limiting case of an individual important sample inspires the
severe dominant state approximation, in which a single value
of 	(rRL) is used to estimate B(rR). Exponential averages may
also be estimated via a cumulant expansion,27 here shown for
Eq. (10) to the fourth order,

B(rR) ≈ 〈	〉rL,ξL

L,I − β

2!
〈ξ	2〉rL,ξL

L,I + β2

3!
〈ξ	3〉rL,ξL

L,I

−β3

4!

[〈ξ	4〉rL,ξL

L,I − 3
(〈ξ	2〉rL,ξL

L,I

)2]
, (16)

where ξ	 = 	(rRL) − 〈	〉rL,ξL

L,I . Each expectation in the cu-
mulant expansion may be estimated by the sample mean.

While formally correct, this approach to ligand sampling
can converge slowly if most ligand configurations placed in
the binding site have overlapping atoms and high values of
	(rRL). One potential solution to this problem is to sample
the external degrees of freedom from a distribution biased
towards energetically favorable orientations by a confining
potential Uc(ξL). Multiplying and dividing Eq. (10) by

c = ∫

Iξ e
−βUc(ξL)dξL and the integrand in the numerator by

e−βUc(ξL) leads to

B(rR) = −β−1 ln〈e−β[	−Uc]〉rL,ξL

L,Ic − β−1 ln

(

c




)
, (17)

where qL,Ic = Iξ e
−β[U(rL)+Uc(ξL)]. Good choices for Uc(ξL),

which may be ascertained from existing molecular docking
algorithms (as will be discussed later in the paper), will favor
the sampling of poses with low 	(rRL).

Alternatively, the binding PMF may be calculated using
the inverse form of Eq. (10),

B(rR) = β−1 ln

(∫
Iξ e

β	(rRL)e−βU(rRL)drLdξL∫
Iξ e−βU(rRL)drLdξL

)

= β−1 ln〈eβ	〉rL,ξL

RL,I . (18)

Ligand configurations from the distribution proportional to
qRL,I (rL, ξL) = Iξ e

−βU(rRL) may be sampled, for example,
from an implicit-solvent MD simulation in which the recep-
tor is held rigid and the ligand is allowed to move, and the
expectation estimated using the sample mean estimator.

This straightforward procedure is also problematic
because of the rarity of sampling configurations in which
the ligand is separated from the receptor or in which they
overlap. While these configurations are insignificant in
the conformational ensemble in which receptor and ligand
are fully interacting, they are relevant to the ensemble of
noninteracting ligand and receptor, and the convergence of
free energy differences requires phase space overlap between

adjacent thermodynamic states.26 The phase space overlap
problem may also be alleviated by calculating the free energy
difference with a reference state in which the external degrees
of freedom are confined,

B(rR) = β−1 ln〈eβ[	−Uc]〉rL,ξL

RL,I − β−1 ln

c



. (19)

The binding PMF may be estimated from the same samples
as with Eq. (18), and will be more accurate the more closely
e−βUc(ξL) resembles the distribution of ξL in the complex.

As discussed, phase space overlap problems are often re-
solved by introducing multiple alchemical stages into a calcu-
lation, and sampling may be enhanced by Hamiltonian replica
exchange. With multiple stages, the total free energy differ-
ence between states with λ = 0 and λ = 1 is the sum of free
energy differences between adjacent stages, each of which
may be estimated by FEP,27 TI,28 or BAR.29 Alternatively, the
total free energy difference may be estimated by the multistate
Bennett acceptance ratio (MBAR).30

C. Estimating the binding free energy

Once B̂(rR) is evaluated for each receptor configura-
tion, the binding free energy may be calculated by estimating
an ensemble average. The appropriate method for estimating
�G◦ depends on how the receptor configurations rR are sam-
pled. If they are drawn from the distribution qR(rR), then the
expectation in Eq. (11) may be estimated by the sample mean

�Ĝ◦ = −β−1 ln
1

N

N∑
n=1

e−βB̂(rR,n) + �Gξ, (20)

in which B̂(rR,n) is the estimated binding PMF for the nth of
N receptor configurations. Because the implicit-ligand expres-
sion for the binding free energy, Eq. (11), has the same form
as Eq. (10), the dominant state approximation and cumulant
expansion may also be applied.

If receptor configurations are drawn from a biased distri-
bution, the importance sampling identity,

〈O〉T =
∫

O(r)qT (r)dr∫
qT (r)dr

=
∫

O(r)w(r)qS(r)dr∫
w(r)qS(r)dr

= 〈wO〉S
〈w〉S , (21)

may be applied. In this generic expression, w(r)
= qT (r)/qS(r) is a ratio of unnormalized densities qT(r)
for the target distribution and qS(r) for the sampling distri-
bution. Using the sample mean estimator and importance
sampling identity for the expectation in Eq. (11) leads to

�Ĝ◦ = −β−1 ln

∑N
n=1 w(rR,n)e−βB̂(rR,n)∑N

n=1 w(rR,n)
+ �Gξ . (22)

If receptor configurations are drawn from multiple biased
distributions, then the expectation may be estimated using
MBAR.30



104106-5 David D. L. Minh J. Chem. Phys. 137, 104106 (2012)

D. Thermodynamic expectations

Thermodynamic expectations may be estimated from the
same data as the binding free energy. The appropriate estima-
tor for �(rR) will depend on how the ligand configurations
were sampled. Once �(rR) is estimated for every sampled
receptor configuration, the appropriate estimator for the ex-
pectation in Eq. (13) similarly depends on how the receptor
configurations were sampled. In the simplest case for �(rR),
if ligand configurations are sampled from qξ , I, then �(rR)
may be estimated by a sample mean. In other cases, �(rR)
and 〈O〉rRL

RL,I may be estimated using importance sampling,
MBAR,30 or a combination thereof.

IV. DEMONSTRATION

As a demonstration, implicit ligand theory calculations
were performed to estimate the standard binding free en-
ergy of various ligands to Cucurbit[7]uril (CB[7]) in water.
The binding of CB[7] to a number of ferrocenes, adaman-
tanes, and bicyclooctanes has been well characterized by both
isothermal calorimetry and second-generation mining min-
ima (M2)18, 19 free energy calculations.31, 32 Receptor con-
figurations were sampled by molecular dynamics, binding
PMFs estimated with a multi-stage alchemical calculation
and MBAR,30 and the binding free energy calculated using
Eq. (20) or the dominant state approximation.

A. Methods

Molecular dynamics simulations at 300 K were per-
formed with a slightly modified33 compilation of NAMD34

version 2.9. When appropriate, CB[7] was fixed using the
fixedAtoms parameter. The “commercial” force field param-
eters and topologies from Moghaddam et al.32 were used
for both CB[7] and its ligands. To match the force field
from Moghaddam et al.32 as closely as possible, 1–4 elec-
trostatics were scaled by 0.5 and the nonbonded cutoff was
set to 999 Å, which effectively turns off cutoffs. Water was
represented with the generalized Born surface area (GBSA)
implicit-solvent model without ions and a surface tension of
0.006 kcal/mol/Å2. The receptor dielectric was 1.0 and sol-
vent dielectric was 78.5. A time step of 1 fs (using a 2 fs time
step with fixed atoms led to unstable trajectories) was used
with Langevin dynamics.

CB[7] was minimized for 2500 steps and thermalized by
increasing the temperature by 10 K and reinitializing veloci-
ties every 100 steps from 0 to 300 K. Receptor snapshots were
saved every 0.1 ns from a trajectory of 10 ns.

Binding PMFs for every ligand in Moghaddam et al.32

with the minimized CB[7] structure (15 repetitions each) and
100 receptor simulation snapshots (1 repetition each) were es-
timated using Hamiltonian replica exchange, which can si-
multaneously dock a ligand and compute its binding free
energy.21, 24 The implementation is similar to that from Gal-
licchio and Levy,24 except that the receptor configuration is
fixed. A reservoir of ligand configurations24 was generated
by simulating the ligand for up to 10 ns and saving snap-
shots every 10 ps. Simulations of the complex in which λ

controls the extent of interaction between the ligand and re-

ceptor were run with λ ∈ {0, 10−5, 10−4, 10−3, 10−2,0.1, 0.2,
0.3, 0.4, 0.5,0.6, 0.7, 0.8, 0.9, 0.95, 1.0}. As implemented in
NAMD, intermediate values of λ used a soft-core potential
with a van der Waals shift coefficient of 5. Electrostatic in-
teractions were turned on when λ = 0.5. Using the colvars
module, a flat-bottom harmonic potential with a spring con-
stant of 10 kcal mol−1 Å−1 and starting at 0.75 Å was used to
restrain the center-of-mass distance between the ligand core
(heavy atoms except for the R groups in Moghaddam et al.32)
and the receptor heavy atoms. This potential keeps the lig-
and within the binding site when interactions are turned off.
The binding site volume, 
 = ∫

Iξ dξL, is approximated as
4/3π (0.753)(8π2). Because NAMD does not allow the simul-
taneous use of alchemical decoupling and implicit solvent,
simulations were conducted in vacuum.

The replica exchange simulation was initiated by taking
a random ligand configuration, applying a random rotation,
and randomly placing it within the binding site. This initial
configuration was minimized and thermalized with the same
protocol as with CB[7], except that it was done in vacuum.
The thermalized structure was used to start each replica. Oc-
casionally, the random placement of the ligand led to high
forces that caused the simulations to crash; in this case, the
simulation was restarted with a different random initial con-
figuration.

After every 5 ps of simulation for every value of λ,
1000 replica exchanges were attempted between each pair
of adjacent λ windows. After each set of replica exchange
attempts, the ligand configuration for λ = 0 was replaced
with a random ligand configuration from the reservoir,
randomly rotated, and placed in the binding site. (This type
of reservoir swap satisfies detailed balance.) The simulation
was conducted for 25 cycles, saving snapshots every 0.5 ps,
for a total of 2 ns of simulation for each binding PMF. The
docking and equilibration period, defined as the time before
the potential energy of the fully coupled state is within 20 kBT
of its energy for the final snapshot, was ignored in subsequent
analysis.

Because alchemical coupling calculations were per-
formed in vacuum, binding PMFs were estimated based on
a decomposition of B(rR),

B(rR) = Bcpl + BRL − BL − �U (rR),

Bcpl = −β−1 ln

( ∫
Iξ e

−βU (rRL)drLdξL∫
Iξ e−β[U (rL)+U (rR )]drLdξL

)
,

BRL = −β−1 ln

(∫
Iξ e

−β�U (rRL)e−βU (rRL)drLdξL∫
Iξ e−βU (rRL)drLdξL

)
,

BL = −β−1 ln

(∫
Iξ e

−β�U (rL)e−βU (rL)drLdξL∫
Iξ e−βU (rL)drLdξL

)
.

(23)

Bcpl is the free energy of turning on the interactions between
the ligand and the rigid receptor in vacuum. BRL, BL, and
�U(rR) are free energies of transferring the complex, ligand,
and receptor, respectively, from vacuum to the target state
(in implicit solvent). They are based on �U(rX) = UT(rX)
− U(rX), the potential energy difference between rX in the
target state versus the state from which configurations were
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sampled (in vacuum). Bcpl was estimated by applying
MBAR30 to snapshots from every 0.5 ps of simulation, and
BRL and BL by single-step FEP. (Evaluating transfer free en-
ergies by MBAR would require the computationally expen-
sive step of calculating target-state potential energies for ev-
ery snapshot.)

This decomposition makes it straightforward to evaluate
B(rR) for a variety of force fields using the same configura-
tional samples. In this work, four are compared:

1. NAMD: the total potential energy from using GBSA in
NAMD;34

2. M2: the total potential energy from using the GBSA
model in the M2 program;18, 19

3. PB: Poisson-Boltzmann electrostatic solvation free en-
ergies from the University of Houston Brownian Dy-
namics (UHBD) program35 and bond, angle, dihedral,
Coulomb, and van der Waals energies from the M2
program;18, 19

4. PBSA: Poisson-Boltzmann electrostatic solvation free
energies from UHBD35 and bond, angle, dihedral,
Coulomb, van der Waals, and nonpolar surface area en-
ergies from M2,18, 19 the combination used in Moghad-
dam et al.32

During this step, the NAMD, M2, and UHBD programs
are used strictly for single-point energy evaluations, not for
minimization or dynamics. Poisson-Boltzmann energies were
calculated with a grid spacing of 0.18 Å with dimensions such
that the maximum dimensions of the molecule are 0.7 (or less)
of the final grid.32 For comparison, binding PMFs were also
calculated from the dominant state approximation with PBSA
energies, using the lowest value of 	(rRL) observed in the
simulations with λ = 0 or λ = 1.

Because receptor configurations were sampled from a
simulation in GBSA implicit solvent, binding free energies
were estimated by using Eq. (22). Binding free energies
were also estimated with the dominant state approxima-
tion: using the lowest observed value of B̂(rR) to estimate
−β−1 ln〈e−βB〉rR

R .
To demonstrate the calculation of thermodynamic expec-

tations and for comparison with results from Moghaddam
et al.,32 the mean values of six PBSA energies – van der
Waals, Coulomb, electrostatic solvation, valence (bond + an-
gle + dihedral), nonpolar solvation, and total – were esti-
mated for the complex, the receptor, and the ligand. Mean
PBSA energies for the ligand and receptor were estimated by
applying the importance sampling identity to the ligand from
the non-interacting system in vacuum and to the receptor from
the GBSA simulation, respectively. Occasionally, energies in
the ligand trajectory briefly spiked to very high values. In es-
timating the mean PBSA energies, these spikes were filtered
out by removing data points in which the total PBSA energy is
at least 100 kBT larger than the PBSA energy of the final snap-
shot. As the spikes were likely caused by the finite molecular
dynamics time step, they would probably be avoided by using
a propagator that exactly preserves the Boltzmann distribu-
tion, e.g., hybrid Monte Carlo.36

Towards estimating the mean PBSA energies of the com-
plex, rigid-receptor expectations were estimated by applying

MBAR30 to snapshots from the non-interacting and fully in-
teracting states,

�̂(rR) =
∑N

n=1 w(rRL,n)O(rRL,n)∑N
n=1 w(rRL,n)

,

w(rRL) = e−β(UPBSA(RL)−U0(RL))

1 + N1
N0

e−β(U1(rRL)−B̂cpl−U0(rRL))
,

(24)

where U0(rRL) and U1(rRL) are the potential energies of the
non-interacting and fully interacting complexes, respectively,
UPBSA(rL) is the PBSA energy of only the ligand, and rRL, n

is the nth of N snapshots of either the non-interacting (N0

snapshots) or fully interacting complex (N1 snapshots). B̂cpl

was estimated by using MBAR30 with all replicas. While it
would be possible to estimate the mean PBSA energies us-
ing all snapshots from all replicas, this was avoided because
of the computational expense of Poisson-Boltzmann calcula-
tions, which can take over a minute per snapshot. After ob-
taining �̂(rR), the importance sampling identity, Eq. (21), was
used to estimate the expectations in Eq. (13). To ensure con-
sistency of the estimator—an estimate of a constant yields the
same constant–�̂(rR) was calculated for O = 1, in which case
〈�̂(rR)〉rR

R = 〈e−βB〉rR

R . This estimate of 〈e−βB〉rR

R was used in
the denominator of Eq. (13).

B. Results

Highlighting the importance of an accurate molecular
mechanics model, binding PMF estimates are strongly depen-
dent on the force field, as shown in Table I. For the large and
highly charged bicyclooctane B11, switching the force field
causes the binding PMF to change nearly 40 kcal/mol! With
increasing magnitude of charge, larger Coulomb energies lead
to larger values of Bcpl and larger electrostatic solvation free
energies increase the magnitude of BRL, BL, and �U(rR) (for
estimates of Bcpl, BRL, and BL, see Table I of the supple-
mentary material37). Thus, estimating the binding PMF with
Eq. (23) entails the difficult task of computing a relatively
small difference between large values. The importance of the
force field has also been noted for M2 calculations.18, 19 An
alternate implementation, e.g., conducting replica exchange
within implicit solvent rather than vacuum, may not require
the implicit-solvent model to be as accurate.

With 2 ns of total simulation for all replicas, the stan-
dard deviation of binding PMF estimates ranges from 0.12
to 1.63 kcal/mol (Table I), with most estimates on the
lower range of imprecision. For all of the components of
Eq. (23), the mean estimate does not appear to shift af-
ter about 0.75 ns, and additional sampling reduces the stan-
dard deviation of the estimate (see Fig. 1 and Fig. 1 in
the supplementary material37). There is no unique compo-
nent that limits the convergence of B̂(rR); the slowest con-
verging component varies from ligand to ligand. The bind-
ing PMF estimate B̂(rR) and the minimal interaction en-
ergy min {	(rRL)} converge at about the same rate, sug-
gesting that the limiting factor for convergence is finding
a configuration with the lowest interaction energy. This in-
terpretation is corroborated by the fact that largest ligands
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TABLE I. The mean and standard deviation of 15 independent estimates of the binding PMF, B(rR), (kcal/mol) for various ligands to the minimized structure of
CB[7], based on applying Eq. (23) with different force fields (NAMD, M2, PB, and PBSA columns) or on using the minimum observed value of the interaction
energy 	(rRL) from PBSA energies during the λ = 0 and λ = 1 simulations (min{	(rRL)} column). The bottom rows show the correlation coefficient (R2)
and root mean square error (RMSE, Eq. (25)) with respect to isothermal titration calorimetry experiments (ITC) and mining minima calculations (Gilson) from
Moghaddam et al.32 that result from the dominant state approximation—calculating �Ĝ◦ by using a single binding PMF estimate B̂(rR) as an estimate for
−β−1 ln〈e−βB 〉rRR in Eq. (11).

Ligand NAMD M2 PB PBSA min{	(rRL)}

AD1 − 14.1 (0.79) − 22.0 (0.51) − 23.0 (0.82) − 25.5 (0.83) − 31.3 (0.55)
AD2 − 32.5 (0.15) − 29.0 (0.13) − 26.8 (0.12) − 29.4 (0.12) − 36.9 (0.30)
AD3 − 31.0 (0.16) − 30.7 (0.18) − 28.9 (0.23) − 31.6 (0.23) − 40.3 (0.28)
AD4 − 44.0 (0.94) − 36.7 (1.11) − 24.0 (1.12) − 26.9 (1.12) − 36.1 (0.45)
AD5 − 32.2 (0.68) − 29.0 (0.25) − 26.0 (0.14) − 28.5 (0.14) − 36.2 (0.29)
B02 − 12.8 (0.41) − 18.8 (0.38) − 19.8 (0.53) − 22.6 (0.53) − 30.6 (0.54)
B05 − 40.4 (0.29) − 30.6 (0.40) − 19.5 (0.50) − 22.3 (0.50) − 34.3 (0.63)
B11 − 52.4 (1.50) − 38.5 (1.81) − 14.1 (1.72) − 17.5 (1.63) − 39.3 (1.90)
F01 − 1.8 (1.57) − 5.5 (0.81) − 10.9 (0.53) − 13.6 (0.53) − 24.7 (0.33)
F02 − 14.8 (0.96) − 14.1 (0.67) − 16.2 (0.42) − 19.2 (0.42) − 31.7 (0.38)
F03 − 16.3 (1.61) − 13.1 (1.03) − 16.4 (0.95) − 19.5 (0.94) − 31.1 (0.71)
F06 − 30.6 (0.18) − 20.0 (0.21) − 21.9 (0.18) − 25.4 (0.18) − 37.2 (0.24)

R2
IT C 0.884 0.750 0.454 0.490 0.883

RMSEITC 12.8 7.9 4.9 4.7 12.2

R2
Gilson 0.827 0.907 0.705 0.712 0.792

RMSEGilson 10.4 4.8 5.4 4.5 11.3

with the most rotatable bonds (see Moghaddam et al.32 for
structures) also have the most variance in B̂(rR), as the
flexibility increases the challenge of finding configurations
with low 	(rRL).

The accuracy of binding free energy estimates was as-
sessed with the correlation coefficient and root mean square
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FIG. 1. The mean and standard deviation of 15 independent estimates of
B(rR), Bcpl, BRL, BL, and min{	(rRL)} (kcal/mol) based on PBSA energies
as a function of total MD simulation time for the ligand B02. Analogous plots
for the other ligands in this study are available as Fig. 1 in the supplementary
material.37

error (RMSE)

RMSE(m1,m2) =
√√√√ 1

L

L∑
l=1

(�G◦
l,m1 − �G◦

l,m2)2 (25)

between methods m1 and m2, where �G◦
l,m is the binding

free energy estimate for ligand l of L ligands using method m
(Tables I and II).

Binding free energy estimates based on the binding PMF
for a minimized receptor structure suffices to provide high
correlation with experiment (R2 = 0.884 for NAMD) and
M2 free energy calculations (R2 = 0.827 for NAMD) (see
Table I). Surprisingly, binding free energies from NAMD
GBSA calculations are more highly correlated to these bench-
marks than �Ĝ◦ from PBSA calculations. Ironically, the high
correlation may be explained by inaccurately large binding
PMF values resulting from highly charged ligands, as the
molecules in this set with the strongest charges also tend
to have stronger binding affinities. Although the correlation
coefficient is high, the RMSE is also considerable, over 10
kcal/mol. Similar performance (R2 and RMSE) is observed
by using the dominant state approximation with PBSA calcu-
lations. In contrast, using Eq. (23) with PBSA leads to less
correlated (lower R2) but more accurate (lower RMSE) esti-
mates of the binding free energy.

Even for this simple system, binding free energy esti-
mates are substantially improved by using multiple receptor
structures (Table II). With binding PMFs from PBSA energies
for 100 receptor structures, there is both higher correlation
and lower RMSE with respect to experiment (R2

Exp = 0.704,
RMSEExp = 4.5) and especially with respect to M2 free en-
ergy calculations (R2

Gilson = 0.925, RMSEGilson = 2.4).
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TABLE II. Estimates of the binding free energy �G◦ (kcal/mol) of various ligands to CB[7]. First, binding PMFs B(rR) are estimated based on Eq. (23) for 100
receptor snapshots from a simulation in GBSA implicit solvent. Then �Ĝ◦ is calculated using Eq. (22). The value in the parentheses is the standard deviation
from bootstrapping: the binding free energy is estimated based on 1000 random selections of 100 binding PMFs. The experimental and Gilson columns are
isothermal calorimetry measurements (ITC) and M2 calculations, respectively, taken from Moghaddam et al.32 The bottom rows are the correlation coefficient
(R2) and root mean square error (RMSE, Eq. (25)) with respect to the ITC and Gilson columns.

Ligand ITC Gilson NAMD M2 PB PBSA

AD1 − 14.1 − 18.2 − 9.4 (0.23) − 16.3 (0.15) − 17.6 (0.25) − 20.1 (0.25)
AD2 − 19.4 − 25.9 − 27.9 (0.19) − 24.3 (0.22) − 22.9 (0.27) − 25.4 (0.26)
AD3 − 20.4 − 25.6 − 35.7 (5.03) − 28.6 (1.87) − 23.5 (0.23) − 26.2 (0.23)
AD4 − 21.5 − 29.7 − 40.5 (0.21) − 33.7 (0.32) − 24.3 (1.11) − 27.1 (1.06)
AD5 − 19.1 − 24.1 − 29.5 (1.24) − 24.0 (0.20) − 22.0 (0.35) − 24.4 (0.34)
B02 − 13.4 − 12.0 − 9.0 (0.38) − 13.7 (0.16) − 15.4 (0.26) − 18.1 (0.25)
B05 − 19.5 − 23.1 − 38.0 (0.40) − 27.7 (0.27) − 18.6 (0.27) − 21.4 (0.27)
B11 − 20.6 − 22.4 − 51.2 (0.34) − 37.3 (0.24) − 17.2 (0.53) − 20.5 (0.51)
F01 − 12.9 − 10.2 0.3 (0.82) − 0.6 (0.34) − 4.9 (0.26) − 7.6 (0.25)
F02 − 16.8 − 12.4 − 12.0 (0.70) − 9.6 (0.75) − 11.7 (0.70) − 14.6 (0.71)
F03 − 17.2 − 12.2 − 10.2 (0.16) − 7.3 (0.24) − 10.2 (0.22) − 13.2 (0.22)
F06 − 21.0 − 17.8 − 24.1 (0.34) − 14.1 (0.46) − 16.2 (0.51) − 19.7 (0.52)

R2
IT C 0.782 0.870 0.745 0.671 0.704

RMSEITC 4.6 14.0 9.0 4.4 4.5

R2
Gilson 0.841 0.892 0.923 0.925

RMSEGilson 11.3 5.9 3.4 2.4

While there are some variations on the order of a few
kcal/mol, mean potential energy changes upon complexation
are also consistent with results from Moghaddam et al.32

(Table III). Minor discrepancies between M2 and implicit
ligand free energy and mean potential energy calculations
may be explained by a combination of imperfect sampling
in the current calculations and the approximations in M2.
As the described calculations were performed in vacuum,
the samples may not be from the same configurational space
as those in implicit solvent. On the other hand, M2 as-
sumes that the energy landscape of the ligand, receptor, and
complex are a truncated harmonic wells with anharmonicity
corrections.

Compared to the full procedure for estimating the bind-
ing PMF, applying the dominant state configuration leads to
a reduction in the correlation with M2 results and an increase

in the RMSE (Table IV). In contrast, applying the dominant
state approximation to calculate �Ĝ◦ from B̂(rR) leads to a
near-constant reduction of about 3 kcal/mol in the estimated
binding free energy. While the RMSE increases, the correla-
tion with M2 results remains nearly identical. Given a set of
B̂(rR) results, however, there is essentially no reason to apply
the dominant state approximation rather than Eq. (22).

There is considerable variation in the binding PMFs for
the 100 receptor structures (Fig. 2 and Fig. 2 in the supple-
mentary material37). For most of the ligands, the range of
binding PMFs spans 10–20 kcal/mol. While the binding PMF
of the minimized structure is often near the lower end of the
binding PMF distribution, this is not always the case. In larger
ligands, the binding PMF appears to be lower for other re-
ceptor structures. The fact that a single structure does not al-
ways lead to the lowest binding PMF shows a major limitation

TABLE III. Estimates of the mean potential energy changes (kcal/mol) upon the binding of various ligands to CB[7]. The columns refer to van der Waals
(VDW), Coulomb (Coul), electrostatic solvation (PB), valence (Val, bond + angle + dihedral), nonpolar solvation (NP), and total energies. The value in the
parentheses is the standard deviation from bootstrapping: the observable is estimated based on 1000 random selections of 100 values of �̂. In Table II of the
supplementary material,37 mean potential energies for the ligand, receptor, and complex are also shown.

Ligand VDW Coul PB Val NP Total

AD1 − 32.5 (0.471) 0.1 (1.509) 4.8 (1.547) − 5.0 (2.785) − 2.5 (0.011) − 35.2 (2.547)
AD2 − 33.6 (0.931) − 65.8 (1.032) 64.9 (0.783) − 5.9 (1.910) − 2.5 (0.017) − 42.9 (1.693)
AD3 − 32.8 (0.718) − 64.4 (0.693) 62.2 (0.855) − 5.7 (2.128) − 2.6 (0.009) − 43.4 (2.388)
AD4 − 38.1 (1.400) − 125.2 (3.283) 124.4 (1.003) 1.9 (4.475) − 2.7 (0.070) − 39.9 (2.817)
AD5 − 33.3 (1.374) − 65.1 (1.549) 64.8 (1.415) − 4.9 (1.782) − 2.5 (0.025) − 40.9 (1.834)
B02 − 33.3 (0.622) − 5.8 (1.067) 9.7 (0.770) 1.4 (3.379) − 2.7 (0.022) − 30.6 (2.187)
B05 − 32.9 (0.896) − 138.2 (1.231) 138.0 (1.151) − 2.3 (1.236) − 2.8 (0.013) − 38.1 (1.673)
B11 − 39.9 (1.192) − 199.3 (2.280) 212.0 (1.066) − 5.6 (5.431) − 3.4 (0.075) − 36.2 (4.475)
F01 − 26.2 (0.497) − 8.2 (1.824) 14.2 (1.119) 8.7 (4.842) − 2.7 (0.017) − 14.3 (4.079)
F02 − 26.9 (1.518) − 65.7 (2.078) 65.9 (0.923) − 0.9 (2.237) − 3.0 (0.012) − 30.6 (2.253)
F03 − 28.7 (0.832) − 58.0 (0.987) 64.2 (0.649) − 0.4 (3.552) − 3.0 (0.015) − 26.1 (3.428)
F06 − 35.1 (1.154) − 116.1 (0.810) 120.9 (0.651) − 8.8 (4.862) − 3.5 (0.013) − 42.6 (4.132)
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TABLE IV. Estimates of the binding free energy �G◦ (kcal/mol) using the
PBSA model. First, the binding PMF B(rR) is estimated with the dominant
state approximation (min {	(rR)}) or based on Eq. (23), using Hamiltonian
replica exchange for Bcpl (HREX). Then, �Ĝ◦ is from the dominant state
approximation (min{B̂(rR)}) or based on Eq. (22) (EXP). The bottom rows
show the correlation coefficient (R2) and root mean square error (RMSE,
Eq. (25)) with respect to isothermal titration calorimetry experiments (ITC)
and mining minima calculations (Gilson) from Moghaddam et al.,32 and the
fourth column.

Ligand
B̂(rR) min{	(rR)} min{	(rR)} HREX HREX
�Ĝ◦ min

{
B̂(rR)

}
EXP min

{
B̂(rR)

}
EXP

AD1 − 28.6 − 27.2 − 22.0 − 20.1
AD2 − 36.4 − 34.6 − 27.6 − 25.4
AD3 − 38.1 − 36.8 − 27.6 − 26.2
AD4 − 43.1 − 40.4 − 29.8 − 27.1
AD5 − 35.8 − 33.6 − 26.8 − 24.4
B02 − 29.8 − 27.9 − 21.0 − 18.1
B05 − 37.9 − 35.6 − 23.7 − 21.4
B11 − 48.5 − 45.7 − 23.1 − 20.5
F01 − 22.7 − 21.3 − 10.2 − 7.6
F02 − 30.9 − 28.8 − 17.0 − 14.6
F03 − 28.7 − 27.0 − 14.5 − 13.2
F06 − 35.6 − 33.8 − 21.3 − 19.7

R2
IT C 0.849 0.855 0.684 0.704

RMSEITC 17.3 15.3 5.8 4.5

R2
Gilson 0.787 0.795 0.926 0.925

RMSEGilson 15.8 13.9 3.5 2.4

R2
Exp 0.723 0.736 0.996

RMSEExp 15.5 13.6 2.3

of using a single receptor structure to estimate binding free
energies.

In spite of the variability of binding PMFs, for the lig-
ands in the test set, the average value of �G◦ appears to sta-
bilize after a relatively small number (about 15) of receptor
snapshots (Fig. 2 and Fig. 3 in the supplementary material37).
Using a greater number of snapshots slightly reduces the vari-
ance of binding free energy estimates. After the certain point,
however, further reduction in the variance of �Ĝ◦ is limited
by the variance in binding PMF estimates.

V. DISCUSSION

While the good agreement between implicit ligand and
M2 calculations provides a proof of principle, the conver-
gence and accuracy of implicit ligand calculations will differ
with other classes of receptor-ligand pairs. With protein-
ligand pairs, for example, representative sampling of recep-
tors and finding low-energy poses of the ligand will likely
require much more MD simulation time. On the other hand,
many protein-ligand systems are not as strongly charged and
may be less sensitive to the electrostatic solvation free energy.
Due to these variabilities, assessments for the feasibility of
implicit ligand calculations in different classes of systems
will prove valuable. Tests for convergence and accuracy may
be similar to those performed for the CB[7] system.

Numerous opportunities remain for further methodologi-
cal improvement and optimization of implicit ligand free en-
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FIG. 2. (a) Histogram of binding PMF estimates B̂(rR) (kcal/mol) of B02
to 100 snapshots of CB[7] using PBSA energies. The vertical line shows the
mean binding PMF for the minimized receptor structure. (b) and (c) Estimates
of the binding free energy �G◦ of B02 to CB[7] (kcal/mol), using PBSA
energies, as a function of the number of receptor snapshots. The line and
error bars denote the mean and standard deviation from bootstrapping: the
binding free energy is estimated 100 times using random selections of N out
of 100 binding PMFs. Analogous plots for the other ligands in this study are
available as Figs. 2 and 3 in the supplementary material.37

ergy calculations. The accuracy of implicit ligand calculations
(and M2 calculations) may be limited by the quality of the
force field. The decomposition of the binding PMF in Eq. (23)
provides a facile means to integrate alternate and potentially
more expensive potential energies, e.g., quantum mechanical
calculations or more sophisticated nonpolar solvation free en-
ergies. Modeling may also be improved by the inclusion of a
few explicit water molecules (see supplementary material.37)
Another potential avenue for improvement is the fine-tuning
of the replica exchange protocol (e.g., using implicit solvent
or optimizing the number of stages and values of λ for a par-
ticular system) or implementing alternative methods to esti-
mate the binding PMF and binding free energy.

Even without modifying the replica exchange protocol,
computations may be accelerated by optimizing existing MD
simulation packages for implicit ligand theory. Few modern
MD simulation programs take full advantage of rigid degrees
of freedom by skipping the calculation of pairwise interac-
tions between rigid atoms. Even fewer implicit-solvent mod-
els are designed with rigid receptors in mind;38 implicit ligand
theory may inspire the development of such models.

Implicit ligand theory also provides guidance on how
to understand and improve existing molecular docking algo-
rithms. The definition of 	(rRL) provides a straightforward
functional form that can be used to account for solvation free
energies and ligand internal energies (strain), which have been
noted to be important factors in binding free energies,39 but
are frequently ignored in the interaction energy functions used
by docking packages. Implicit ligand theory also delineates
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how to improve the ranking of different ligands. Molecular
docking packages currently rank receptor-ligand binding free
energies based on a single low-energy configuration. As such,
they apply the crudest form of implicit ligand theory, the dom-
inant state approximation, to estimate both the binding PMF
and the binding free energy. With important modifications to
existing algorithms and the application of more complex esti-
mators, the accuracy of scoring functions should be enhanced.

One important potential change to molecular docking
is the inclusion of multiple receptor configurations. While
most modern docking packages account for the orientation
and flexibility of the ligand, the large number of coordi-
nates makes the treatment of receptor flexibility challeng-
ing. A number of groups have improved docking perfor-
mance by treating receptor flexibility by using multiple struc-
tures from crystallography25, 40, 41 or MD simulations42 (the
relaxed complex method7, 43, 44). Molecular dynamics simu-
lations have also revealed binding sites not discovered by
crystallography.45, 46 In the case of Human Immunodeficiency
Virus integrase, insight into a new binding site even inspired
the development of a new drug.47

Despite of this success, it has hitherto remained unclear
how to combine information from docking to different recep-
tor snapshots. While averaging strategies have been empiri-
cally compared,48 the default strategy has been to rank the
ligand using the minimal energy from docking to all the snap-
shots. With implicit ligand theory, it is clear that the binding
free energy may also be estimated by using an exponential av-
erage or cumulant expansion of the binding PMF (which may
still come from the dominant state approximation) for differ-
ent snapshots.

The computational expense of the relaxed complex ap-
proach may be reduced by clustering snapshots and selecting
a representative snapshot from each cluster.44 Assuming that
the binding PMF is constant within the cluster, estimated av-
erages may be weighed by the cluster size. Using a clustering
algorithm based on QR factorization to select 33 representa-
tive structures Amaro et al.44 were able to accurately repro-
duce a histogram of docking scores to over 400 structures.
Further research will be necessary to develop and validate al-
gorithms that reliably cluster receptor configurations in which
the binding PMF is nearly constant.

Compared to the inclusion of multiple receptor struc-
tures, a more difficult task is the estimation of B(rR) using
molecular docking, as this involves a paradigm shift from
searching for a minimum to sampling from a distribution.
Docking algorithms may be broadly classified into two cat-
egories: matching and docking simulation.49 Matching al-
gorithms such as DOCK50 attempt to match a ligand into
a model of the binding site. DOCK models both the lig-
and and the binding site as a set of spheres and uses algo-
rithms from graph theory to align the ligand spheres into the
binding site spheres. In docking simulation methods such as
AutoDOCK49, 51–53 and MCDOCK,54 the ligand starts outside
the binding site and its configuration and orientation are pro-
gressively modified to search for the lowest energy configura-
tion of the complex.

Matching algorithms can estimate B(rR) by a postpro-
cessing algorithm. That is, after low-energy complexes are

found, they may be used to bias receptor-independent ran-
dom sampling of the ligand orientation by a confining poten-
tial Uc(ξL), for use in Eq. (17). With a harmonic potential for
Uc(ξL), the ligand orientation will come from a Gaussian dis-
tribution. An alternative postprocessing algorithm is to use the
lowest energy structure from a matching algorithm as a start-
ing point for a rigid-receptor MD simulation. This is not pro-
hibitively expensive; Graves et al.8 even used MD simulations
with flexibility near the binding site as a postprocessing step
for molecular docking. Samples from this simulation would
be used to estimate B(rR) based on Eq. (18) or (19).

Docking simulation methods, on the other hand, will
need to be modified to sample from a known distribution
rather than to search for the minimum energy. This change
may not require a complete revamp. Docking simulation al-
gorithms are often based on Monte Carlo approaches, which
preserve a desired distribution or may be readily modified
to do so. For example, MCDOCK54 and early generations
of AutoDOCK51, 52 use simulated annealing, a procedure for
which it is possible to calculate the importance sampling
weight.55

In addition to providing a path to rigorous binding
free energies from molecular docking, implicit ligand the-
ory also quantifies existing notions56 about whether molec-
ular recognition proceeds by induced fit or conformational
selection.57, 58 As all receptor configurations have finite Boltz-
mann probability, the issue is a matter of degree. Suppose that
a receptor binds to two different ligands with the same bind-
ing free energy, one by conformational selection and the other
by induced fit. If, to a good approximation, the complex is
dominated by a single structure with receptor configuration r∗

R

such that B(rR) = ∞ for all other receptor configurations, then
Eq. (11) simplifies to �G◦ = U(r∗

R) + B(r∗
R) + β−1 ln ZR

+ �Gξ . For the ligand that binds by conformational selection,
p(r∗

R) = e−βU(r∗
R )/ZR has a reasonably high probability. In the

induced fit complex, U(r∗
R) is much less favorable and B(r∗

R)
must compensate accordingly to achieve the same �G◦.

Source code and data used in this paper are available at
https://simtk.org/home/implicit_ligand .
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