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Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear

solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts

for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the

dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same

radius. The predicted resonance frequency provides a basis of comparison for limiting forms of

other models. The second model considered is a commonly used equation in Rayleigh-Plesset form

that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur.

The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different

values of the parameter are required for modeling inertial motion versus acoustical oscillations. The

third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York,

2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent.

While the correct resonance frequency and loss factor are not recovered from this model in the linear

approximation, it provides reasonable agreement with observations of inertial motion.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4730888]
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I. INTRODUCTION

A series of recent papers reports experiments on the

dynamics of bubbles that are generated in narrow planar chan-

nels and grow to sizes that are considerably greater than the

widths of the channels.1–6 The flow of liquid surrounding the

bubbles becomes approximately two-dimensional, and there-

fore the bubbles may be considered to be cylindrical in shape.

Ohl et al., motivated by applications to microfluidic devi-

ces, investigated the dynamics of both single1–3 and pairs4 of

cylindrical bubbles generated by lasers. Growth-decay cycles

were compared with theory for cylindrical bubbles in an

incompressible liquid.1,2 For single bubbles, an equation of

Rayleigh-Plesset form that had been obtained previously by

others7–10 was used. The equation possesses a logarithmic sin-

gularity for an infinite incompressible liquid that is associated

with infinite inertial load on the bubble wall, and the model

therefore requires the radial extent of the liquid to be finite.

The authors derived dynamical equations for pulsation and

translation of a pair of coupled bubbles, also for an incom-

pressible liquid and likewise requiring the liquid to be finite in

extent. In comparisons of theory and experiment,1,2,4 the finite

radial extent of the liquid required by the models was taken to

be a fitting parameter that was determined empirically.

In experiments performed by Zhong et al.5,6 on pairs of

coupled bubbles in a channel, which were motivated by appli-

cation to cell membrane poration, the lasers were phased to

generate the second bubble near the time the first bubble

reached its maximum radius. The anti-phase excitation caused

the bubbles to form jets that were directed away from one

other during collapse. This is in contrast to simultaneous

generation of a pair of bubbles, in which case the jets are

directed toward one other.

In each of these experiments1–6 the bubbles are initially

spherical (or hemispherical) in shape and, following subse-

quent inertial growth, become cylindrical only after their di-

ameter exceeds the width of the channel (see Fig. 1).

However, even small pulsations of a spherical bubble in a

planar channel exhibit dynamics associated with cylindrical

bubbles. The same logarithmic singularity appears in the dy-

namical equation for spherical bubble pulsation between in-

finite parallel rigid surfaces.11 This can be understood by

using the method of images to satisfy the boundary condi-

tions on the surfaces, which creates an infinite line array of

spherical bubbles that radiates as a cylindrical source in an

unbounded liquid.

Alternatively, cylindrical bubbles are driven ultrasoni-

cally near resonance to induce acoustic streaming in micro-

fluidic channels for performing mixing of fluids12 and sorting

of microparticles.13 The bubble is formed by trapping gas in a

slot, with the gas protruding into the channel forming the cy-

lindrical interface with the liquid. In applications such as these

there is interest in predicting the resonance frequency.12

A common approach to modeling the dynamics of cylin-

drical bubbles formed in rigid channels is to acknowledge

that the channels are finite in length and assume they open

into free space, because then the inertial load of an incom-

pressible liquid is finite and can be approximated analyti-

cally for simple geometries; see especially Leighton14 and

the references therein. For the effect of liquid compressibil-

ity to be negligible, channel length must be small compared

with the acoustic length scale, which for harmonic motion is

the wavelength in the liquid. Consider, for example, experi-

ments reported recently by Sankin et al.5 in which bubbles

were generated by laser in a channel of width 25 lm cover-

ing a rectangular area with dimensions 10 mm� 25 mm that
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determine the characteristic length of the channel. The bub-

bles grew to a diameter of approximately 50 lm, such that

they were cylindrical in shape, and the flow around them

was predominantly two dimensional, for much of their

growth-collapse cycles. The duration of the growth and col-

lapse was approximately 10 ls, during which time sound in

water propagates 15 mm. This acoustic length scale is com-

parable to the channel length scale, and therefore in this case

one should not assume a priori that the effect of liquid com-

pressibility on the bubble dynamics is insignificant.

The purpose of this paper is to discuss effects of liquid

compressibility in the context of cylindrical bubble dynam-

ics, and thus to shed light on the manner in which existing

models of cylindrical bubble dynamics are restricted in their

domain of validity because of liquid compressibility. To ini-

tiate this discussion we begin in Sec. II with a derivation of

the linear solution for cylindrical bubble pulsations in a com-

pressible liquid. This solution is complete insofar as all three

loss mechanisms are taken into account: acoustic radiation,

viscosity, and heat conduction. The solution is compared

with the corresponding result for a spherical bubble in a rigid

channel to show how, in a compressible liquid, spherical

bubble dynamics transition to cylindrical bubble dynamics

as channel width is decreased. In Secs. III and IV the solu-

tion is compared with existing models of cylindrical bubble

dynamics.

The most widely used model of cylindrical bubble dy-

namics is of Rayleigh-Plesset form, and this model is consid-

ered in Sec. III. Previous approaches to estimating the

aforementioned fitting parameter in this model—the radial

extent of incompressible liquid—have focused on modeling

inertial growth and collapse;1,2,4,10,15–17 see especially the

discussion by Kedrinskii.10 It is shown in Sec. III by compar-

ison with the solution in Sec. II that the radius found experi-

mentally to be most appropriate for modeling inertial motion

is smaller by at least an order of magnitude than the radius

required to obtain the correct dynamical response for small

pulsations of a cylindrical bubble. In particular, we find that

the inertial load on an oscillating bubble in a compressible

liquid is equivalent to that imposed by an incompressible liq-

uid extending outward from the bubble to a distance on the

order of one fifth of the acoustic wavelength. Section III con-

cludes with the development of a model for the maximum

volume achieved following inertial growth of a bubble in a

channel, and which shows that the maximum volume is prac-

tically independent of the geometry of the channel.

In Sec. IV, a model in the form of the Gilmore equation

that was developed by Kedrinskii10 for a cylindrical bubble

in a compressible liquid is compared in the limiting case of

small oscillations with the linear solution in Sec. II.

Only the radial pulsation (monopole) mode is forbidden

for a cylindrical bubble in an unbounded incompressible liq-

uid. Because all higher surface modes of the bubble wall

motion (dipole, quadrupole, etc.) conserve volume, they can

oscillate freely even when the incompressible liquid is pre-

sumed infinite in extent. The focus of the present paper is

exclusively on the monopole mode. Consideration of higher

modes will be reported elsewhere.

II. LINEAR THEORY

A solution is derived in the linear approximation for the

frequency response of a cylindrical bubble in a compressible

liquid. Viscosity of the liquid surrounding the bubble and

thermal conductivity of the gas inside the bubble are taken

into account. An external acoustic pressure pacðtÞ ¼ p0e�ixt

is applied uniformly to the bubble, where x is angular fre-

quency, resulting in the scattering of a cylindrical acoustic

wave in the liquid. The pressure balance at the wall of a cy-

lindrical bubble with equilibrium radius R0 is expressed as

P0 þ Pr þ p0e�ixt þ psc ¼ Pg at r ¼ R0; (1)

where P0 is atmospheric pressure, Pr is the Laplace pressure

due to surface tension, psc is the pressure exerted on the bub-

ble by the scattered acoustic wave, Pg is the gas pressure

inside the bubble, and r is the radial coordinate.

The pressures Pr and particularly psc are calculated in

Sec. II A, Pg in Sec. II B. The solution for the frequency

response is presented in Sec. III C, where the natural fre-

quency and loss factors are determined and compared with

those for a spherical bubble.

A. Pressure in the liquid

The pressure increase due to surface tension at the cylin-

drical interface forming the wall of a bubble with radius R is

Pr ¼
r
R
; (2)

where r is the surface tension. With the bubble radius

expressed as

RðtÞ ¼ R0 þ Rxe�ixt; (3)

where R0 is the equilibrium radius and Rx the complex ampli-

tude of the oscillation, linearization of Eq. (2) yields

FIG. 1. Expansion of an initially spherical bubble in a narrow channel,

becoming cylindrical at maximum volume.
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Pr ¼
r
R0

� r

R2
0

Rxe�ixt: (4)

The solution for an outgoing, axisymmetric cylindrical

wave is

w ¼ AH
ð1Þ
0 ð~krÞe�ixt; (5)

where H
ð1Þ
0 is the Hankel function of the first kind, of order

zero, and A is an arbitrary constant. The liquid is assumed to

be viscous, but not heat conducting, for which the complex

wave number ~k is determined by

~k
2 ¼ qx2

~K þ ð4=3Þ~l
; (6)

where ~K and ~l are complex bulk and shear moduli, respec-

tively, the imaginary parts of which account for losses

through the bulk (f) and shear (g) viscosity coefficients:

~K ¼ K � ixf; ~l¼� ixg: (7)

The real part of ~l, which is the shear modulus l, is zero for the

liquid and therefore does not appear. Equations (6) and (7) fol-

low from recognition that the compressional wave speed in an

inviscid elastic medium is ½ðK þ 4
3
lÞ=q�1=2

, and that the stress

tensor for a viscoelastic medium, for time dependence e�ixt, is18

rij ¼ ~Kekkdij þ 2~lðeij � 1
3
ekkdijÞ; (8)

where eij is the linearized strain tensor and dij the Kronecker

delta. Expansion of Eq. (6) yields, to leading order in the

loss coefficients, the classical complex wave number for a

viscous fluid;19

~k ¼ x
c0

þ i
x2

2q0c3
0

4

3
gþ f

� �
; (9)

where c0 ¼ ðK=q0Þ1=2
is the small-signal sound speed in the

liquid and q0 the equilibrium density.

The function w can be any scalar wave variable, such as

acoustic pressure. Here it is convenient to regard it as dis-

placement potential, and thus the radial particle displace-

ment in the liquid is

ur ¼
@w
@r
¼ �A~kH

ð1Þ
1 ð~krÞe�ixt: (10)

The radial displacement of the bubble wall is given by ur

evaluated at r ¼ R0:

Rx ¼ �A~kH
ð1Þ
1 ð~kR0Þ: (11)

The pressure psc exerted by the liquid on the bubble wall is

the negative of the radial stress at the bubble wall. From Eq.

(8), the radial component of the stress tensor in the liquid is

rrr ¼ ~K � 2

3
~l

� �
@ur

@r
þ ur

r

� �
þ 2~l

@ur

@r
: (12)

The terms in ur within the parentheses in Eq. (12) equal r2w

and can be replaced by �~k
2
w. Then with Eq. (10) substituted in

the last term of Eq. (12), and noting that ðd=dzÞHð1Þ1 ðzÞ ¼ H
ð1Þ
0

�z�1H
ð1Þ
1 , Eq. (12) can be evaluated at the bubble wall to

obtain

ðrrrÞr¼R0
¼� q0x

2H
ð1Þ
0 ð~kR0Þþ

2ixg~k

R0

H
ð1Þ
1 ð~kR0Þ

� �
Ae�ixt:

(13)

Division of Eq. (13) by Eq. (11) and setting psc ¼ �ðrrrÞr¼R0

yields the scattered pressure in the liquid at the bubble wall

in terms of the oscillation of the bubble wall:

psc ¼ �
q0x

2

~k

H
ð1Þ
0 ð~kR0Þ

H
ð1Þ
1 ð~kR0Þ

þ 2ixg
R0

" #
Rxe�ixt: (14)

B. Pressure in the gas

It remains to evaluate Pg in Eq. (1). An ideal gas is

assumed inside the bubble. The equation of state for an ideal

gas typically expresses the pressure as a function of either

density and temperature, Pg ¼ Pgðqg; TÞ, or density and spe-

cific entropy, Pg ¼ Pgðqg; sÞ:

Pg

Pg0

¼
qgT

qg0T0

;
Pg

Pg0

¼
qg

qg0

 !c

eðs�s0Þ=cv ; (15)

where subscript 0 designates ambient value, and c ¼ cp=cv is

the ratio of specific heats at constant pressure ðcpÞ and vol-

ume ðcvÞ. The equilibrium gas pressure is

Pg0 ¼ P0 þ
r
R0

; (16)

as required to satisfy Eq. (1) in the absence of sound. Com-

bining the state equations to eliminate density and then lin-

earizing yields

s0

cv
¼ c

T0

T0

� ðc� 1Þ P0g
Pg0

; (17)

where primes designate perturbations about the ambient val-

ues, e.g., s ¼ s0 þ s0.
The linear relation between entropy and temperature is

qg0T0

@s0

@t
¼ jthr2T0; (18)

where jth is the thermal conductivity. Substitution of Eq.

(17) in (18) yields

@T0

@t
¼ vr2T0 þ c� 1

c
T0

Pg0

dP0g
dt

; (19)

where v ¼ jth=qg0cp is the thermometric conductivity.

Whereas the temperature of the gas T0ðr; tÞ depends on r, it

has been assumed that the pressure P0gðtÞ does not because
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the acoustic wavelength in the gas is assumed large in com-

parison with the size of the bubble. In contrast, the thermal

diffusion length in air, for example at 1 MHz, is on the order

of microns. For time dependence e�ixt Eq. (19) becomes

T0ðrÞ ¼ � v
ix
r2T0 þ c� 1

c
T0

Pg0

P0g: (20)

Equation (20) is solved for T0 as a function of P0g, after which

the first of Eqs. (15) is used to calculate the change in vol-

ume resulting from the change in pressure.

The general solution of Eq. (20) that is finite at the ori-

gin is

T0 ¼ BJ0ðbrÞe�ixt þ c� 1

c
T0

Pg0

P0g; (21)

where

b ¼
ffiffiffiffiffi
ix
v

s
¼ 1þ i

lth

; lth ¼
ffiffiffiffiffi
2v
x

r
; (22)

and lth is identified as the acoustic thermal boundary layer

thickness. The constant B is determined by the boundary

condition at the bubble wall. With the thermal conductivity

of the liquid much higher than that of the gas the temperature

at the bubble wall may be taken to be the equilibrium value

T0, such that T0 ¼ 0 at r ¼ R0. The coefficient B thus defined

yields

T0ðr; tÞ
T0

¼ 1� J0ðbrÞ
J0ðbR0Þ

� �
c� 1

c
P0gðtÞ
Pg0

: (23)

Linearization of the first of Eqs. (15), after the density ra-

tio qg=qg0 is replaced by the bubble volume ratio V0=V, gives

V0

V0

¼ T0

T0

� P0g
Pg0

: (24)

Since Eq. (23) provides the temperature only within an infini-

tesimally thin cylindrical ring of radius r, Eq. (24) applies

only to that particular ring. Thus let the equilibrium volume

of that ring be dV0 ¼ 2prh dr, where h is a reference axial

length for the bubble, and therefore the equilibrium volume of

the entire bubble is V0 ¼ pR2
0h. With dV0 representing the

change in shell volume due to changes in pressure and tem-

perature Eq. (24) becomes, following substitution of Eq. (23),

and with dV0=dV0 replacing V0=V0,

dV0

2phr dr
¼ � 1þ ðc� 1Þ J0ðbrÞ

J0ðbR0Þ

� �
P0gðtÞ
cPg0

; (25)

integration of which yields

V0

V0

¼ � 1þ ðc� 1Þ
ðR0

0

J0ðbrÞ
J0ðbR0Þ

2phr dr

pR2
0h

� �
P0g

cPg0

(26)

¼ � P0g
jPg0

: (27)

The quantity

j ¼ c
1þ ðc� 1ÞKðbR0Þ

(28)

introduced in Eq. (27), where

KðbR0Þ ¼
2J1ðbR0Þ

bR0J0ðbR0Þ
(29)

! 1 as R0=lth ! 0

! 0 as R0=lth !1;

functions as a polytropic index for the gas inside the bubble

and depends only on R0=lth. As shown in Fig. 2 for c ¼ 1:4,

in the limit R0=lth ! 0 the index approaches the value j ¼ 1

for an isothermal process, and in the limit R0=lth !1 it

increases monotonically toward the value j ¼ c for an isen-

tropic process. Although the magnitude of j is plotted in

Fig. 2, the curve is virtually indistinguishable from a plot of

the real part, as the imaginary part is small.

Since VðtÞ / R2ðtÞ linearization yields V0=V0 ¼ 2Rxe�ixt=
R0, and from Eq. (27)

P0g
Pg0

¼ �2j
Rxe�ixt

R0

: (30)

The right-hand side of Eq. (1) thus becomes

Pg ¼ Pg0 þ P0gðtÞ

¼ P0 þ
r
R0

� 2j P0 þ
r
R0

� �
Rxe�ixt

R0

: (31)

C. Natural frequency and loss factors

Substitution of Eqs. (4), (14) and (31) in Eq. (1) provides

the frequency response of the bubble wall to the applied sound

pressure:

Rx¼
q0x

2

~k

H
ð1Þ
0 ð~kR0Þ

H
ð1Þ
1 ð~kR0Þ

�2jP0

R0

�ð2j�1Þr
R2

0

þ2ixg
R0

" #�1

p0:

(32)

FIG. 2. Magnitude of the effective polytropic index for a cylindrical bubble.

The real part of j is virtually indistinguishable from the magnitude.
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Since the bubble is assumed small in comparison with a

wavelength in the liquid we have j~kR0j � 1, and therefore

the Hankel functions can be expanded in powers of ~kR0 to

obtain, at leading order,

H
ð1Þ
0 ð~kR0Þ

H
ð1Þ
1 ð~kR0Þ

¼ ~kR0 ln
2

~kR0

� cE þ i
p
2

� �
; j~kR0j � 1;

(33)

where cE ¼ 0:577… is Euler’s constant. Equation (32) thus

becomes

Rx ¼ q0x
2 R0 ln

2

~kR0

� cE þ i
p
2

� �
� 2jP0

R0

�

�ð2j� 1Þr
R2

0

þ 2ixg
R0

��1

p0: (34)

In the limit c0 !1, for which ~k ! 0, the logarithm

becomes infinite, and thus Rx ! 0, which is consistent with

the transition to an unbounded incompressible liquid, in

which volume changes are prohibited.

The Minnaert frequency of a spherical bubble is the natural

frequency in the absence of viscosity, surface tension, and heat

conduction. Under these conditions (g ¼ r ¼ 0, j ¼ c), setting

the term in brackets on the right-hand side of Eq. (34) to zero

and letting k0R0 designate the root of this equation yields

ðk0R0Þ2 ln
2

k0R0

� cE þ i
p
2

� �
¼ 2

cP0

q0c2
0

; (35)

where cP0=q0c2
0 is the ratio of the bulk modulus of the gas to

that of the liquid. For an air bubble in water this ratio is

taken to be 6.4� 10�5, in which case the root is

k0R0 ¼ 0:00467� i0:000718; (36)

where the real part determines the natural frequency and the

imaginary part is due to radiation damping. Had the asymp-

totic approximation in Eq. (33) not been used, the root

obtained agrees with Eq. (36) to the accuracy shown.

Unlike for a spherical bubble, a finite undamped natural

frequency does not exist for a cylindrical bubble in an

unbounded incompressible liquid because the oscillations

cannot exist without radiation. Thus define k0 ¼ ~x0=c0,

where ~x0 ¼ x0ð1� idrad=2Þ is a complex angular fre-

quency, f0 ¼ x0=2p the damped natural frequency, and drad

the radiation loss factor, defined such that its reciprocal is

the quality factor. Then from Eq. (36)

R0f0 ¼ 1:10 m=s; drad ¼ 0:308: (37)

The corresponding quantities for a spherical air bubble in water

are20 R0f0 ¼ ð3cP0=q0Þ1=2=2p ¼ 3:26 m=s and drad ¼ k0R0

¼ 0:014. For the same radius, a cylindrical bubble thus pulsates

at one third the natural frequency, and with 22 times the radia-

tion damping, of a spherical bubble.

An equation that is formally equivalent to Eq. (35) was

obtained by Ostrovskii21 for the natural frequency and radiation

damping of an empty cylindrical cavity in an elastic medium.

There the natural frequency was defined as the solution of only

the real part of Eq. (35). The solution of Eq. (35) in the absence

of the imaginary term is k0R0¼ 0.00485, quite close to the real

part of Eq. (36).

To obtain the loss factors for heat conduction ðdthÞ and

viscosity ðdvisÞ the effect of radiation loss must be removed

from Eq. (34), which is accomplished by removing the imag-

inary term ip=2. The total loss factor is then expressed as

dtot ¼ drad þ dth þ dvis: (38)

All four quantities are plotted in Fig. 3(a) with surface tension

taken into account. It is seen that acoustic radiation is the domi-

nant loss mechanism over the entire range of radii shown. In

contrast, radiation is the dominant loss mechanism for spherical

bubbles only for radii greater than approximately 3 mm, whereas

heat conduction dominates between 3lm and 3 mm, and below

3lm viscosity dominates (see Fig. 3.20 of Leighton20).

Shown in Fig. 3(b) is the quantity R0f0 as a function of

bubble radius when all effects in Eq. (34) are retained. The

value R0f0 ¼ 1:10 m=s in Eq. (37) is achieved only for bub-

ble radii sufficiently large that thermal effects are negligible.

The minimum value R0f0 ¼ 0:94 m=s at R0 ’ 10 lm coin-

cides approximately with the maximum value of dth in

Fig. 3(a), which marks the transition from an adiabatic to an

isothermal process as R0 is decreased. Because of surface

tension, R0f0 increases without bound as R0 ! 0.

Finally, for sufficiently narrow channels formed by rigid

parallel walls the dynamics of a spherical bubble may be

expected to resemble cylindrical bubble dynamics. The extent

to which this occurs may be assessed by comparing Eq. (35)

with the corresponding result obtained by Cui et al.11 for a

spherical bubble of radius Rsph centered in a compressible

FIG. 3. (a) Loss factors and (b) resonance frequency for a cylindrical bubble.
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liquid between rigid parallel walls separated by distance D
[obtained from their Eq. (11) for jk0Rsphj � 1]:

ðk0RsphÞ2 2
Rsph

D
ln

Rsph=D

k0Rsph

þ 1þ ip
Rsph

D

� �
¼ 3

cP0

q0c2
0

:

(39)

Note that Eqs. (35) and (39) exhibit the same functional depend-

ence on k0, and therefore on natural frequency and radiation

damping. For D& 100Rsph the solution of Eq. (39) for the natu-

ral frequency agrees with that for a spherical bubble in a free

field. While a restriction on Eq. (39) is that channel width is less

than one wavelength, D < k, the solution for the radiation damp-

ing obtained from a more general equation,11 valid for arbitrarily

wide channels, equals the free-field result for D& 10k.

Solutions of Eqs. (35) and (39) are most easily com-

pared when the spherical bubble has the same radius as the

cylindrical bubble, Rsph ¼ R0, because in this case both the

ratio of the natural frequencies f sph
0 =f cyl

0 and the radiation

loss factor drad depend only on D=R0. These quantities are

plotted in Fig. 4 as a function of D=2R0, where D=2R0 ¼ 1

marks the point where the channel width equals the bubble

diameter. Figure 4(a) shows that f sph
0 =f cyl

0 is within 10% of

its free field value of 2.96 for D=2R0& 10. As channel width

is reduced f sph
0 =f cyl

0 decreases toward unity, indicating the

transition to cylindrical bubble dynamics. This transition is

also revealed by the plot of the radiation loss factor for the

spherical bubble (solid line) in Fig. 4(b), which shows that

the value of drad is approximately the same as for a cylin-

drical bubble (dashed line) for D=2R0. 3. Even for D=2R0

¼10 the loss factor is an order of magnitude larger than its

value of 0.014 in a free field.

III. INCOMPRESSIBLE LIQUID THEORY

The equation of Rayleigh-Plesset form that applies to a

cylindrical bubble in an incompressible liquid is now consid-

ered. It can be derived using Lagrange’s equation:

d

dt

@L

@ _R

� �
� @L

@R
¼ 0; (40)

where L ¼ K � U, K, and U are taken to be the Lagrangian, ki-

netic energy, and potential energy of the system, respectively.

The bubble is assumed to be constrained by parallel

plates and thus have finite axial length D as depicted in Fig.

1(c). The kinetic energy of the gas inside the bubble may be

ignored, and the kinetic energy of the liquid is

K ¼ 1

2
q0D

ð1
R

v22pr dr ¼ pq0DR2 _R
2
ð1

R

dr

r
; (41)

where the relation v ¼ ðR=rÞ _R for the radial velocity in the

liquid was taken into account. The integral does not con-

verge, reflecting the infinite inertia of the radial flow due to

the incompressibility of the unbounded liquid. For the bub-

ble to pulsate, as predicted by linear theory for a compressi-

ble liquid, the inertial load of the liquid on the bubble wall

must be finite. This is accomplished by arbitrarily limiting

the radial extent of the incompressible liquid to a finite dis-

tance r0 that permits Eq. (41) to be evaluated:

K ¼ pq0DR2 _R
2
ln

r0

R
: (42)

It may be expected that for large bubble oscillations, this

approximation of the inertial load on the bubble may require

r0 to depend on R.

Since U depends on R but not _R, the potential energy

appears only in the second term in Eq. (40), as dU=dR. We

thus consider the change in potential energy as the bubble

expands incrementally by amount dV, where the bubble vol-

ume is V ¼ pR2D and thus dV ¼ 2pDR dR. As the bubble

expands, the work done on the liquid by the gas ðPgÞ and

vapor ðPvÞ pressures inside the bubble, and by the pressure at

infinity ðP1Þ, is dW ¼ ðPg þ Pv � P1ÞdV. Because the liq-

uid is incompressible the potential energy Up associated with

pressure is reduced by an amount equal to this work, and so

dUp ¼ �2pDðPg þ Pv � P1ÞR dR.

At the same time, expansion of the bubble increases the

potential energy associated with surface tension. To determine

this quantity we consider the situation shown in Fig. 1(c)

where the upper and lower planar surfaces of the cylindrical

bubble are separated from the channel walls by a thin liquid

layer. The energy Ur associated with surface tension equals

r times the area of the cylinder, Ur ¼ rð2pRDþ 2pR2Þ,
the differential of which is dUr ¼ 2prðDþ 2RÞdR. Setting

dU ¼ dUp þ dUr one obtains

dU

dR
¼ �2pRDðPg þ Pv � P1Þ þ 2prðDþ 2RÞ: (43)

At equilibrium, for which dU=dR ¼ 0, Pg ¼ Pg0, and

P1 ¼ P0, Eq. (43) can be solved for the equilibrium gas

pressure:

FIG. 4. (a) Natural frequency and (b) radiation loss factor (solid line) for a

spherical bubble in a rigid channel, compared as a function of channel width

with the corresponding quantities for a cylindrical bubble with the same ra-

dius [dashed line in (b)].
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Pg0 ¼ P0 þ
r
R0

þ 2r
D
� Pv: (44)

Substituting Eqs. (42) and (43) in Eq. (40), with

Pg ¼ Pg0ðR0=RÞ2c, yields

ðR €R þ _R
2Þln r0

R
� 1

2
_R

2 ¼ PL � P1
q0

; (45)

where

PL ¼ P0 þ
r
R0

þ 2r
D
� Pv

� �
R0

R

� �2c

� r
R
� 2r

D
þ Pv:

(46)

An imposed acoustic pressure pac is taken into account

through P1:

P1 ¼ P0 þ pacðtÞ: (47)

From the form of Eq. (45), PL is recognized as the pressure

in the liquid next to the bubble wall.20 Thus, viscosity can be

taken into account by adding to PL the pressure Pg that vis-

cous stress exerts on the bubble wall [recall Eq. (12)]:

Pg ¼ �2g
@v

@r

����
r¼R

¼ 2g
_R

R
: (48)

Without the terms that account for surface tension and vis-

cosity, Eq. (45) is the most commonly used model of cylin-

drical bubble dynamics.

A. Harmonic oscillations

In addition to the infinite inertial load for an unbounded

incompressible liquid, as shown in Sec. II C a deficiency of

Eq. (45) is that, except for bubbles with radii less than 1 lm,

radiation and thermal losses dominate viscous losses, with

radiation being the most important loss mechanism, at least

for small bubble pulsations. Comparison of Eq. (34) with the

linear approximation of Eq. (45) provides insight into how

incompressible-flow theory might be adjusted to approxi-

mate the effects of finite inertial load and radiation loss.

Linearization of Eq. (45) after ignoring viscosity and

surface tension yields, for pac ¼ p0e�ixt,

x2ln
r0

R0

� 2cP0

q0R2
0

� �
RI

x ¼
p0

q0R0

; (49)

where the superscript I denotes incompressible liquid. The

natural frequency according to this result, obtained by setting

the left-hand side to zero, may be expressed as

R0f0 ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cP0

q0lnðr0=R0Þ

s
: (50)

The natural frequency predicted by linear theory for a com-

pressible liquid is obtained with this equation by setting R0f0
equal to its value in Eq. (37) and solving for r0, which yields

r0=R0 � 350: (51)

As discussed in Sec. III B, this value of r0=R0 obtained for

harmonic oscillations is an order of magnitude larger than

the corresponding values determined empirically by match-

ing Eq. (45) to observations of bubble collapse.

A more general assessment of the inertial load is provided

by comparing Eq. (49) with the corresponding form of Eq. (34):

x2 ln
2

kR0

� cE þ i
p
2

� �
� 2cP0

q0R2
0

� �
RC

x ¼
p0

q0R0

; (52)

where k ¼ x=c0, and the superscript C denotes compressible

liquid. Equating the real parts of Eqs. (49) and (52) yields

r0 ¼ 2=ðecE kÞ, or

r0=k � 0:18: (53)

The radial extent of incompressible liquid required to simu-

late the inertial load of a compressible liquid on a pulsating

cylindrical bubble is thus on the order of one fifth of a

wavelength.

The imaginary term in Eq. (52), which is associated

with radiation loss, may be interpreted as a pressure

prad ¼ �i
p
2

q0x
2R0RI

xe�ixt (54)

acting on the bubble. Alternatively, comparison of Eqs. (34)

and (52) reveals that radiation loss at frequency x equals the

increase in viscous loss that would be achieved by augment-

ing the viscosity coefficient by an amount g0 ¼ p
4
q0xR2

0.

B. Collapse time

During most of the collapse phase following rapid iner-

tial growth of a bubble, the interior of the bubble may be

modeled as a vacuum. If surface tension and viscosity are

also ignored then PL ¼ 0, and the bubble is referred to as a

Rayleigh cavity.22 The work done (per unit length) by pres-

sure P0 moving the bubble wall away from an initial (maxi-

mum) radius RM is pðR2
M � R2ÞP0. The bubble wall velocity

is zero at the start of the collapse phase, and therefore the

work equals the kinetic energy in the liquid. If the kinetic

energy is assumed to be given by Eq. (42), then the follow-

ing expression is obtained for the bubble wall velocity:

_R
2 ¼ P0

q0

R2
M=R2 � 1

lnðr0=RÞ : (55)

The collapse time Tc is
Ð 0

RM
dR= _R and can be expressed as

Tc ¼ CRM

ffiffiffiffiffiffiffiffiffiffiffiffi
q0=P0

p
; (56)

where

C ¼
ð1

0

ln
r0=RM

x

� �1=2 x dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p : (57)

The Rayleigh collapse time for a spherical bubble is given

by Eq. (56) with C ¼ 0:915.23

The dependence of C on r0=RM is shown in Fig. 5.

Kedrinskii10 showed that measurements of pulsation periods
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(time for both growth and collapse) for cylindrical bubbles

in open water with maximum radii on the order of 10 cm

were in good agreement with estimates based on Eq. (45)

with r0=RM � 10, for which C � 1:6. The collapse time is

thus longer than for a spherical bubble with the same initial

radius, which is consistent with the prediction in Sec. II C

that cylindrical bubbles have lower natural frequencies. In

experiments performed in narrow planar channels, Ohl

et al.1,2 found that the collapse phase of laser-generated bub-

bles achieving maximum radii of approximately 50 lm was

also well described by Eq. (45) with r0=RM of order 10. This

experimental agreement with Eq. (45) thus spans three

orders of magnitude in bubble size.

The implication of r0 being a constant is that the mass

of liquid surrounding the bubble increases as the bubble col-

lapses. If instead the mass of liquid is held constant, and if r0

now designates the initial radial extent of the liquid, then the

instantaneous radial extent r1 must decrease according to the

relation r2
0 � R2

M ¼ r2
1 � R2. In this case r0=RM in Eq. (57) is

replaced by ½ðr0=RMÞ2 � ð1� x2Þ�1=2
. The difference this

makes in Fig. 5 is negligible for r0=RM > 2.

Delale et al.24 take a different approach to handling the

singularity in Eq. (45) for an infinite liquid ðr0 ¼ 1Þ. They

obtain a solution by requiring that the term multiplying the

logarithm vanish, subject to a compatibility condition on the

pressure. Thus setting R €R þ _R
2 ¼ ðd=dtÞðR _RÞ ¼ 0 they inte-

grate to obtain R ¼ R0½1þ 2ð _R0=R0Þt�1=2
, where the sub-

script zero here signifies initial value. The solution predicts

that a bubble initially at rest will remain at rest, which is

consistent with the infinite inertia of an unbounded incom-

pressible liquid. Similarly, the solution cannot be used to

describe an inertial growth-collapse cycle since _R0 ¼ 0

when the bubble achieves its maximum radius. In fact, the

solution predicts that inertial growth is unbounded, again

consistent with infinite inertia.

C. Maximum volume

For a rigid channel of finite length, a dynamical equa-

tion of Rayleigh-Plesset form can be constructed by calculat-

ing the inertia of an incompressible liquid for the given

geometry.14 Dynamical equations of this sort, valid for chan-

nels sufficiently short that liquid compressibility may be

ignored, depend on both the length and width of the channel.

However, conservation of energy reveals that the maximum

volume achieved following growth of a bubble in such chan-

nels is practically independent of channel geometry.

If the bubble is initially at rest with volume V0 and also at

rest at maximum volume VM, if the channel walls are rigid, and

if losses during expansion due to viscosity, heat conduction,

and radiation are negligible, then the two volumes are related

by conservation of potential energy. The change in potential

energy, including the change P0DV in the surrounding liquid,

is DUp ¼ �
Ð VM

V0
ðPg þ Pv � P0Þ dV, which is evaluated using

PgVc ¼ const, and with Pv and P0 assumed constant. With the

change associated with surface tension written simply as

DUr ¼ UrM � Ur0 for now, setting DUp þ DUr ¼ 0 yields

1

c� 1
ðPgMVM � Pg0V0Þ þ ðP0 � PvÞðVM � V0Þ

þ ðUrM � Ur0Þ ¼ 0: (58)

This equation can be solved for the maximum bubble vol-

ume VM given the initial conditions of the bubble, and

expressions for the surface tension in the initial and final

states.

If the bubble starts out spherical, and if VM is suffi-

ciently large that the Laplace pressure due to surface tension

is negligible at maximum volume, then VM is independent of

channel geometry because there is no energy storage in the

rigid walls. However, channel geometry does affect the iner-

tia of the liquid, and it therefore affects the time required for

the bubble to reach its maximum volume. These observa-

tions are consistent with measurements reported recently by

Gonzalez-Avila et al.3 of bubble growth in microfluidic

channels of variable width D. The results in their Fig. 4 were

obtained using a laser to generate a hemispherical bubble on

one wall of a channel. The laser energy was kept the same

for each bubble in order to maintain the same initial condi-

tions (effectively the same Pg0 and V0). Channel widths

were characterized by the ratio g ¼ D=R?M, where R?M is the

projection of the maximum bubble radius into the plane of

the channel wall where the bubble was generated. Measure-

ments were made for four values of g : 7.3, 3.1, 1.6, and 0.4.

At maximum volume in the narrowest channel ðg ¼ 0:4Þ the

bubble spanned the breadth of the channel and was distinctly

cylindrical in shape, whereas for dimensionless channel

widths of 1.6 and greater the bubble remained approximately

hemispherical at maximum volume (see the photographs in

their Fig. 3).

Plotted in their Fig. 4 is the measured equivalent bubble

radius ReqðtÞ, where Req is the radius of a hemisphere having

the same volume as the bubble. The maximum values of Req

reported for the four channel widths lie between 133 lm and

143 lm, corresponding to a spread of 63.6% about the me-

dian. This spread may be compared with the authors’ obser-

vation that fluctuations in the laser energy resulted in

variations of approximately 64% in the maximum radius.

These data are consistent with the conclusion that maximum

bubble volume is independent of channel geometry. Their

FIG. 5. Coefficient appearing in Eq. (56) for collapse time.
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measurements also show significant variations in the time

for bubble growth and collapse as a function of channel

width, as expected due to the different inertial loads on the

bubble.

Equation (58) is now applied to two specific cases of

bubble generation between parallel plates. In the first, the

shape of the bubble is spherical in both the compressed ini-

tial state and at maximum volume. With the energy stored in

surface tension given by Ur ¼ 4pR2r, Eq. (58) can be writ-

ten in the form

ðP0�PvÞðx3�1Þþ3r
R0

ðx2�1Þ� Pg0

c�1
ð1�x�3ðc�1ÞÞ¼0;

(59)

where x ¼ RM=R0. Equation (59) can be solved numerically

for the maximum bubble radius RM given the initial condi-

tions for the bubble, particularly the initial gas pressure Pg0

and radius R0. The equation is applicable when the predicted

maximum bubble diameter does not exceed the channel

width. Shown in Fig. 6(a) are plots of the normalized maxi-

mum bubble radius as a function of initial gas pressure for

several initial radii under otherwise standard conditions for

air and water (P0¼ 101.3 kPa, Pv¼ 2.3 kPa, r¼ 0.073 N/m).

From Eq. (59) it can be seen that for sufficiently large initial

radii the solution for RM=R0 becomes independent of surface

tension, and therefore independent of R0. This limit is given

by the dashed line in Fig. 6(a).

In the second case, as depicted in Fig. 1, a bubble between

parallel plates starts out spherical with radius R0 in its com-

pressed initial state and becomes cylindrical at maximum

volume VM ¼ pR2
MD, where RM here is the radius of the cylin-

der. The energy stored in surface tension in the initial state is

again Ur0 ¼ 4pR2
0r. In the final state, as in the derivation of

Eq. (45), we assume that the planar surface at each end of the

cylindrical bubble is separated from the channel wall by a thin

layer of liquid as in Fig. 1(c), such that the total energy stored

in surface tension is UrM ¼ rð2pRMDþ 2pR2
MÞ. Under these

circumstances Eq. (58) may be expressed as

ðP0 � PvÞðy� 1Þ þ 3r
R0

1

3

y

a
þ 2

3
ay

� �1=2

� 1

" #

� Pg0

c� 1
ð1� y�ðc�1ÞÞ ¼ 0; (60)

where y ¼ VM=V0 and a ¼ D=2R0. For a bubble to be spheri-

cal initially requires a > 1. The minimum value of VM in rela-

tion to channel width that is required for an initially spherical

bubble to become cylindrical at maximum volume is not eas-

ily determined. For present purposes it is sufficient to let this

requirement be approximately 2RM > D, which corresponds

to y1=3 > a. Therefore solutions of Eq. (60) that are relevant

to the envisioned evolution of the bubble shape must lie in a

parameter space defined nominally by y1=3 > a > 1.

Figure 6(b) shows the quantity ðVM=V0Þ1=3
, which is a

normalized maximum equivalent radius, plotted as a func-

tion of the dimensionless channel width D=2R0 for a bubble

with initial radius R0 ¼ 2 lm and for several initial gas pres-

sures. Plot lines are ended where D=2R0 ¼ ðVM=V0Þ1=3

because beyond that point the condition y1=3 > a is not satis-

fied. As noted previously, in the absence of surface tension

the maximum bubble volume is independent of channel

width. Figure 6(b) shows that VM is affected by surface ten-

sion only for very narrow channels, and even then the sur-

face tension has relatively little effect on VM. Therefore

when losses are negligible, maximum bubble volume is very

nearly independent of channel width.

IV. COMPRESSIBLE LIQUID THEORY

Kedrinskii10 developed the following general Gilmore-

type equation for a bubble with a planar (�¼ 0), cylindrical

(�¼ 1), or spherical (�¼ 2) surface in a compressible liquid:

1�
_R

cL

� �
R €R þ 1�

_R

3cL

� �
3�

4
_R

2

¼ 1þ
_R

cL

� �
�

2
H þ 1�

_R

cL

� �
R

cL

_H ; (61)

where cL is the sound speed evaluated at the bubble wall,

and H is the difference between the specific enthalpy at the

bubble wall and at infinity. Derivation of this equation rests

on the assumption that the quantity r�=2 hþ 1
2
v2

� 	
is an

invariant that propagates outward from the bubble wall with

velocity cþ v, where h, v, and c are the local values of spe-

cific enthalpy, particle velocity, and sound speed,

respectively.

For � ¼ 0 the relation €R ¼ c�1
L

_H is obtained. For � ¼ 2

the aforementioned assumption is called the Kirkwood-Bethe

FIG. 6. (a) Maximum radius of a spherical bubble in a channel as a function

of initial gas pressure, for several initial bubble radii. (b) Maximum effec-

tive radius of a bubble that is initially spherical and becomes cylindrical at

maximum volume, as a function of channel width for several initial gas

pressures.
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approximation,25 and Eq. (61) becomes the Gilmore equa-

tion26 for a spherical bubble. The Kirkwood-Bethe approxi-

mation follows from recognition that in the linear

approximation the quantity r hþ 1
2
v2

� 	
for the radiated spheri-

cal wave is a function of the form f ðr � c0tÞ. However, in the

linear approximation for a cylindrical wave the quantity

r1=2 hþ 1
2
v2

� 	
can be approximated by a function of the form

f ðr � c0tÞ only at frequencies and distances for which

kr � 1. Accordingly, Eq. (61) can be expected to be less

accurate for a cylindrical bubble than for a spherical bubble.

The flow of liquid is assumed to be isentropic despite

the possibility of shock formation,25 such that the enthalpy

differential is taken to be dh ¼ dP=q, where here q (r, t) is

the total liquid density. With terms of order 1/c2 neglected

integration yields H ¼ ðPL � P1Þ=q0, where PL and P1 are

given by Eqs. (46) and (47) for a cylindrical bubble (see,

e.g., Prosperetti and Lezzi27 for the calculation for a spheri-

cal bubble). Equation (61) may then be rearranged, again

neglecting terms of order 1/c2, to obtain

1�
_R

c0

� �
R €R þ 1�

_R

3c0

� �
3

4
_R

2

¼ 1þ
_R

c0

þ 2
R

c0

d

dt

� �
PL � P1

2q0

; (62)

the form of which corresponds to the Keller-Miksis equa-

tion27,28 for a spherical bubble.

In the linear approximation, without surface tension or

viscosity, and for pac ¼ p0e�ixt, Eq. (62) becomes

x2 þ ix
2cP0

q0c0R0

� cP0

q0R2
0

� �
Rx ¼ 1� ix

2R0

c0

� �
p0

2q0R0

;

(63)

which may be compared with Eq. (52). The product of

natural frequency and equilibrium radius is thus R0f0

¼ ðcP0=q0Þ1=2=2p, which for an air bubble in water is 1.7

times greater than the value in Eq. (37). The imaginary term

on the left-hand side, which accounts for radiation loss, van-

ishes as required for an incompressible liquid. However, the

resulting loss factor at resonance is an order of magnitude

less than that predicted by Eq. (52). Instead, it is comparable

to the radiation loss factor obtained from the linear approxi-

mation of Eq. (61) for a spherical bubble, drad ¼ k0R0

¼ 0:014.

In the limiting case of an incompressible liquid Eq. (62)

reduces to

R €R þ 3

4
_R

2 ¼ PL � P1
2q0

; (64)

which does not posses the logrithmic singularity, nor there-

fore the fitting parameter r0, for an infinite medium that

appears in Eq. (45). While Eq. (64) is unphysical because a

cylindrical bubble cannot pulsate in an infinite incompressi-

ble liquid, it warrants comparison with Eq. (45). The latter

can be made identical to Eq. (64) by setting lnðr0=RÞ ¼ 2,

such that

r0=R ¼ e2 ¼ 7:4: (65)

This value of r0=R coincides with the values of r0=RM found

empirically to be of order 10 by Kedrinskii10 and by Ohl

et al.1,2 from matching numerical solutions of Eq. (45) to

observations of bubble growth and collapse. The bubble wall

velocity predicted by Eq. (64) for the collapse of an empty

cavity, without viscosity and surface tension (such that PL

¼ 0 and P1 ¼ P0), is given by

_R
2 ¼ 2

3

P0

q0

R
3=2
M

R3=2
� 1

 !
: (66)

Integration yields the collapse time

Tc ¼ 1:49RM

ffiffiffiffiffiffiffiffiffiffiffiffi
q0=P0

p
; (67)

as obtained by Kedrinskii.10 The same collapse time is

obtained from Eqs. (56) and (57) for r0=RM ¼ 7:0, which is

again consistent with Eq. (65).

Kedrinskii10 has suggested that uncertainty in the

assumption that r1=2 hþ 1
2
v2

� 	
is an invariant leads to arbitra-

riness in the coefficient 3
4

multiplying _R
2

in Eq. (61) for

� ¼ 1. By comparing calculations based on Eq. (61) with the

expansion of cylindrical bubbles from approximately 1 to

100 mm following detonation of a hexogen charge, he con-

cluded that better agreement was obtained with the coeffi-

cient 3
4

replaced by 1. Insofar as Eq. (64) is concerned,

replacement of 3
4

by 1 results in a collapse time 5% shorter

than predicted by Eq. (67). The distinction between the two

coefficients is therefore relatively unimportant when model-

ing inertial growth and collapse. Additionally, the coefficient

does not appear in the linear approximation.

FIG. 7. Predictions of Rayleigh collapse for cylindrical bubbles (solid lines)

and spherical bubbles (dashed lines). Curve 1: Eq. (62). Curve 2: Eq. (64).

Curve 3: Eq. (45) with r0¼ 7.0RM. Curve 4: Keller-Miksis equation

(Ref. 28). Curve 5: Rayleigh’s equation (Ref. 23).
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Shown as solid lines in Fig. 7 is a comparison of Eq.

(62) (curve 1), Eq. (64) [or equivalently Eq. (66)] (curve 2),

and Eq. (45) [or equivalently Eq. (55)] (curve 3), for the col-

lapse of a cylindrical Rayleigh cavity with j _Rj=c0 plotted

as a function of R=RM. The value r0=RM ¼ 7:0 was used in

Eq. (45) to equate the collapse times predicted by Eqs. (45)

and (64). The dashed lines are the corresponding curves for a

spherical cavity, with curve 4 obtained using the Keller-

Miksis equation (compressible liquid theory) and curve 5

obtained using Rayleigh’s equation (incompressible liquid

theory). Curves 4 and 5 duplicate those in Fig. 1 of Gil-

more,26 which is reproduced as Fig. 2 of Flynn.22

Comparing curves 1 and 2, it is observed that the pre-

dicted effect of compressibility in Kedrinskii’s model is

somewhat less than its effect in the Keller-Miksis equation.

However, for both cylindrical and spherical cavity collapse

there is little difference between the theories for compressi-

ble and incompressible liquids up until R=RM ¼ 0:1, so

unless rebound is of interest there is typically little reason to

account for compressibility when modeling inertial growth

and collapse.

V. CONCLUSION

Three models of cylindrical bubble pulsation have been

analyzed: a new model for a compressible liquid in the linear

approximation, the standard model in Rayleigh-Plesset form

for an incompressible liquid, and a model in the form of the

Gilmore equation developed by Kedrinskii for a compressi-

ble liquid. Each of these models is limited in its domain of

validity.

The linear approximation is of course limited to weak

pulsations. Its merit is that it applies to liquids of infinite

extent and accounts for viscosity, heat conduction, and radia-

tion loss. It reveals that in contrast with spherical bubbles,

acoustic radiation is the dominant loss mechanism. It also

provides the natural frequency, which can serve as a bench-

mark against which other models may be compared in the

limit of weak oscillations.

The model in Rayleigh-Plesset form is the one encoun-

tered most commonly in the literature. Its application is lim-

ited to incompressible liquids of finite radial extent r0, which

typically makes this quantity an arbitrary fitting parameter.

The merit of this model is that it provides good agreement

with measurements of inertial growth and collapse when r0

is chosen to be of order 10RM, where RM is the maximum

bubble radius. In the case of weak oscillations r0 must be of

order 350R0 to obtain the correct resonance frequency,

where R0 is the equilibrium bubble radius.

Kedrinskii’s model for a compressible liquid follows

from an application of the Kirkwood-Bethe approximation

that appears to be valid only for bubbles with radii at least

on the order of the characteristic wavelength that is radi-

ated. Perhaps for this reason it predicts a resonance fre-

quency for weak oscillations that is too high by a factor of

1.7, and a radiation loss factor that is too small by an order

of magnitude. However, its merit is that it is not restricted

to liquids of finite extent, and without curve fitting it

provides reasonable agreement with measurements of iner-

tial growth and collapse.

We conclude by noting again that the main difficulties

arising from the assumption of incompressible flow are asso-

ciated exclusively with the monopole mode. All higher

modes (dipole, quadrupole, etc.) conserve volume and thus

are not subject to infinite inertial load in an unbounded

incompressible liquid. One may therefore anticipate that

shape deformation can be of greater importance in cylindri-

cal bubble dynamics than in spherical bubble dynamics.
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