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Abstract
Prostacyclin (PGI2) is a potent vasodilator that exerts multiple vasoprotective effects in the
cardiovascular system. The effects of PGI2 are mediated by activation of the cell membrane G-
protein coupled PGI2-receptor (IP receptor). More recently, however, it has been suggested that
PGI2 might also serve as an endogenous ligand and activator of nuclear peroxisome proliferator-
activated receptor-δ (PPARδ). Consistent with this concept, studies designed to define
pharmacological properties of stable PGI2 analogues revealed that beneficial effects of these
compounds appear to be mediated, in part, by activation of PPARδ. This review discusses
emerging evidence regarding contribution of PPARδ activation to vasoprotective and regenerative
functions of PGI2 and stable analogues of PGI2.

PGI2
Pharmacology of PGI2 has been extensively studied since 1976, when PGI2 was identified
as a major product of arachidonic acid metabolism within the vasculature (1). In the
cardiovascular system, PGI2 is a potent vasodilator, and in some vascular beds, it functions
as an endothelium-derived relaxing factor (2). In addition, PGI2 exerts an inhibitory effect
on aggregation of platelets (1,2). PGI2 also inhibits white blood cells adhesion and
proliferation of smooth muscle cells, thus preventing the development of atherosclerosis
(3,4). Beneficial vascular effects of PGI2 produced in the endothelium are in many respects
similar to the effects of endothelium-derived nitric oxide (NO). Indeed, PGI2 may
compensate for the loss of NO thereby preserving endothelial function in conditions
associated with impairment of NO signaling (5). It has also been recognized that
biosynthesis of PGI2 is an important determinant of regenerative functions in the
cardiovascular system including angiogenesis and repair of injured endothelium (6–9). In
this regard, accumulating evidence continues to substantiate an important contribution of
PGI2 to the regenerative capacity of endothelial progenitor cells (EPCs; 9–12).

PGI2 is generated by cytosolic phospholipase A2-α (cPLA2-α)-induced mobilization of
arachidonic acid which serves as a substrate for cyclooxygenase (COX) enzyme activity.
Two isoforms, COX-1 and COX-2, are coupled to prostacyclin synthase (PGIS), enzyme
responsible for synthesis of PGI2. Interestingly, in vascular endothelial cells, enzymes
required for production of PGI2 are localized at endoplasmic reticulum and around the
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nuclear membrane (13–15), thereby suggesting that locally generated PGI2 might be
involved in nuclear signaling. Notably, COX-1, COX-2, and PGIS have been detected on
both inner and outer surfaces of the nuclear membrane (14). An increase in intracellular
calcium is required for activation of cPLA2. Moreover, elevated intracellular calcium also
causes translocation of cPLA2-α to the nuclear envelope, thus enabling mobilization of
arachidonic acid and subsequent production of PGI2 in close proximity to nucleus (16;
Figure 1). Consistent with this concept, colocalization of translocated cPLA2-α with COX-2
has been demonstrated in perinuclear region of endothelial cells (17). Recognition of ability
of PGI2 (and stable analogues of PGI2) to activate nuclear PPARδ provided functional
explanation for the nuclear localization of enzymes responsible for production of PGI2
(18,19). However, in the cardiovascular system, ongoing efforts are only beginning to define
the stimuli (e.g. shear stress) that can activate the PGI2 nuclear signaling pathway under
physiological or pathological conditions (20). The exact nature of the agonists and the
physical stimuli that can activate and translocate cPLA2 to couple perinuclear generation of
PGI2 with activation of nuclear receptor(s) remains to be determined. Therefore, in this
review we will discuss existing evidence regarding pharmacological relevance of PPARδ
activation in mediation of vascular effects of PGI2 and stable analogues of PGI2. We will
also address implications of this signaling pathway for understanding of the vascular effects
of clinically relevant drugs that may affect production of PGI2.

Vascular protective effects of PGI2
In mice, genetic inactivation of PGIS causes significant alterations in vascular wall
architecture including thickening of arterial media attended by increased arterial blood
pressure (21). Moreover, phenotypic changes in the cardiovascular system substantially
progress as PGIS null mice become older. These findings suggest that, in the cardiovascular
system, loss of PGI2 exacerbates phenotypic characteristics of aging.

The vasoprotective function of PGI2 was also corroborated by studies of IP-deficient mice.
Under basal conditions, IP-deficient mice had normal blood pressure and did not suffer from
spontaneous thrombosis (22,23). However, deletion of IP receptors predisposes mice to an
exaggerated response to thrombotic stimuli, accelerated atherosclerosis, and augmented
intimal hyperplasia after vascular injury (22,23). Moreover, hypertensive response to a high-
salt diet is exacerbated in IP-deficient mice (24). These findings indicate that production of
PGI2 and activation of IP receptors are essential mechanisms responsible for preservation of
normal vascular function. Additional support for vasoprotective function of PGI2 is provided
by the results of gene delivery studies demonstrating that elevation of PGI2 biosynthesis by
expression of recombinant COX-1 and PGIS attenuates aberrant remodeling of arterial wall
after injury, exerts beneficial effect on pulmonary hypertension, and prevents arterial
thrombosis in ischemic cerebrovascular disease (25–28). Traditionally, protective vascular
effects of PGI2 have been ascribed to the activation of IP receptors located on cell
membrane. However, more recently, it has been recognized that activation of PPARδ
represents a previously unappreciated nuclear signaling mechanism that might contribute to
vasoprotective and regenerative effects of PGI2.

Vascular protective effects of PPARδ
PPARδ is a nuclear receptor that functions as a ligand-activated transcription factor. Ligand-
induced activation of PPARδ causes formation of heterodimers with a retinoid X receptor
and subsequent binding to specific PPAR responsive elements in promoter regions of target
genes (29,30; Figure 1). PPARδ is ubiquitously expressed in various tissues, including
vascular endothelial and smooth muscle cells (7). Vascular effects of PPARδ activation
involve: a) direct effects induced by activation of PPARδ in blood vessel wall, and b)
indirect effects mediated by systemic alterations in glucose, lipid, and lipoprotein

Katusic et al. Page 2

Trends Pharmacol Sci. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



metabolism (31). PPARδ agonists exert anti-atherosclerotic effects in murine models of
hypercholesterolemia (32,33). In the vascular endothelium, major direct effects of PPARδ
activation are anti-inflammatory effects, prevention of apoptosis, and stimulation of
angiogenesis (32–38). In smooth muscle cells, PPARδ is responsible for inhibition of
migration, and neointimal formation however controversial results have been reported
regarding the effect on smooth muscle cells proliferation (39,40). Moreover, activation of
PPARδ in smooth muscle cells exerts anti-inflammatory effects (41) and attenuates
apoptotic cell death induced by oxidized low-density lipoprotein (42). PGI2 released by
shear stress from endothelium may activate PPARδ in smooth muscle cells thereby
promoting conversion of synthetic to contractile phenotype (20). Generally, the effects on
vascular wall mediated by activation of PPARδ are considered beneficial, with the exception
of angiogenesis, which under certain conditions might contribute to tumor growth (31–45).

Preclinical studies in insulin-resistant primates have demonstrated that a PPARδ agonist,
GW501516, decreases plasma triglyceride, LDL cholesterol, and increases levels of HDL
cholesterol (46). Based on these observations, clinical development of PPARδ agonists has
been mostly directed towards treatment of dyslipidemia (47–50). Prevention of dyslipidemia
and the beneficial effects of PPARδ activation on insulin resistance and glucose homeostasis
protect vascular endothelium from well-established risk factors responsible for initiation of
endothelial dysfunction and progression of vascular disease, including atherosclerosis. In
this regard, it is interesting to note that recent findings demonstrate that stable analogue of
PGI2, beraprost, exerts beneficial effects on metabolic syndrome and dyslipidemia (51,52).
Currently, the exact mechanisms underlying these effects are poorly understood, but could
be in part mediated by activation of nuclear receptor(s) including PPARδ. Thus, both direct
effects of PPARδ activation on blood vessel wall and indirect effects mediated by
normalization of metabolic functions are essential for protection of vascular wall (31).
Interventions designed to increase production of endogenous PPARδ ligands or treatment
with selective PPARδ agonists are currently being studied as novel therapeutic strategies.
However, efforts in drug development designed to harness therapeutic effects of PPARδ
agonists have yet to produce a drug approved for specific therapeutic application in general
population.

PGI2:aputative endogenous ligand for PPARδ
Vascular endothelium has the highest production of PGI2 under basal conditions as well as
during activation of arachidonic acid metabolism by vascular injury (22,53). Although
smooth muscle cells and adventitia may generate PGI2, the levels in these layers are lower
as compared to endothelium. Consistent with role of PGI2 in nuclear signaling, enzymes
required for synthesis of PGI2 in endothelium localize around the nucleus (Figure 1; 15).
Prior studies have provided evidence that under in vitro conditions PPARδ can be activated
by several different products of arachidonic acid metabolism and stable analogues of PGI2
(54,55). However, inability of exogenous PGI2 itself to activate PPARδ under some in vitro
conditions (55) is most likely result of PGI2 instability in neutral and acidic buffer. PGI2 is
quickly hydrolyzed (30–120 s) to a pharmacologically inactive product, 6-ketoPGF1α.
Nevertheless, relevant to the concept of PGI2 as an endogenous PPARδ ligand in
endothelium, several studies have demonstrated that stable analogues of PGI2 [including
carbaprostacyclin (cPGI2) and iloprost] behave as PPARδ ligands (18,55). The first
evidence supporting the role of PGI2 as an endogenous ligand for PPARδ in vivo was
reported in studies of mechanisms responsible for embryo implantation (18). These findings
provided impetus for re-assessment of signaling mechanisms that may help to explain
beneficial effects of PGI2 in different tissues including cells of blood vessel wall. As
mentioned above, studies with stable analogues of PGI2 consistently demonstrated that these
compounds activate PPARδ, thereby providing support for the importance of endogenous
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PGI2 in activation of PPARδ. In agreement with this concept, a more recent study presented
the crystal structure of the PPARδ ligand-binding domain bound to iloprost thus establishing
evidence for direct interaction between iloprost with PPARδ (56).

It appears that significantly higher concentrations of PGI2 analogues are required for
activation of nuclear PPARδ receptor as compared to concentrations that are able to
stimulate cell membrane IP receptors (57). Interestingly, cicaprost (stable PGI2 analogue) is
a highly selective IP agonist that does not activate PPARδ even in very high (μM)
concentrations (9,18,55). This pharmacological property of cicaprost has been successfully
employed in studies designed to dissect contribution of IP receptors and PPARs to the
vascular effects of stable PGI2 analogues (9,58). Although iloprost and cPGI2 stimulated
angiogenesis in vivo, cicaprost had no effect, suggesting that activation of PPARs might be
the mechanism underlying the angiogenic effects of PGI2 analogues (58).

We would also like to point out that although available evidence is consistent with the
concept that PGI2 signaling might depend in part on activation of PPARδ, direct in vivo
evidence supporting this hypothesis is currently missing. In this regard, future studies in IP-
receptor-deficient mice may help to define the effects of endogenous PGI2 dependent on
activation of PPARδ. Of note, reported lack of PPARδ ligands effects on embryonic
development in IP-receptor deficient mice (60), suggests that, in some cells, activation of
PPARδ might depend on intact function of IP receptors. Several prior studies demonstrated
that drugs causing an increase in cyclic AMP or activation of protein kinase A (PKA)
enhance basal and stimulated activity of PPARδ (61–64). Because activation of IP receptors
is coupled to increased production of cyclic AMP, it is possible that PGI2-induced elevation
of cyclic AMP might participate in regulation of activity of PPARδ. Because complex
mechanisms underlying PPARδ signaling involve dissociation of co-repressor proteins and
recruitment of co-activator proteins, the exact molecular targets affected by elevation of
cyclic AMP or activation of PKA are currently unknown. Thus, additional studies are
required to determine the mechanisms underlying interaction between IP and PPARδ
signaling in blood vessel walls.

Although the majority of studies suggest that PGI2 is a ligand for PPARδ, there are also
reports demonstrating an ability of PGI2 to activate PPARα. Previous in vitro studies
established that stable analogues of PGI2, including iloprost and cPGI2 (but not cicaprost),
may also behave as ligands for PPARα (55) Consistent with this concept, it has been
demonstrated that PGI2 released from endothelium by shear stress causes synthetic-to
contractile phenotypic modulation in smooth muscle cells by activation of both PPARα and
PPARδ (20). In addition, it has been suggested that the angiogenic effects of PGI2 in some
experimental conditions are dependent on activation of PPARα (59). Relevant to this
concept, crystal structures of PPARα ligand domains bound to iloprost have been reported,
thus providing structural basis for the recognition of PPARα by iloprost (56). Thus, it
appears that PGI2 might influence vascular function by activation of PPARα. The exact
conditions and mechanisms responsible for activation of this signaling mechanism remain to
be determined.

Angiogenesis
The importance of arachidonic acid metabolism via the COX pathway in angiogenesis was
recognized more than 20 years ago (65,66). Initially, it was observed that pro-angiogenic
proteins, including angiogenin and acidic and basic fibroblast growth factors (aFGF and
bFGF), stimulate production of PGI2 and that this effect is an important component of their
ability to promote angiogenesis. These studies were followed by reports demonstrating that
vascular endothelial growth factor (VEGF) is also a potent stimulator of PGI2 production
(6,67). By contrast, it was demonstrated that a stable PGI2 analogue, SM-10902, promotes
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wound healing by stimulation of angiogenesis (68). Further analysis supported the role of
PGI2 as possible ligand for nuclear receptors, leading to speculation that activation of
PPARδ in endothelial cells could be important for PGI2 signaling (69). Moreover, in an in
vivo study designed to examine contribution of nuclear receptors to the stimulatory effect of
stable PGI2 analogues on angiogenesis, the authors found that iloprost and cPGI2
upregulated expression of VEGF mRNA and protein (58). Inactivation of VEGF signaling
inhibited the pro-angiogenic effect of iloprost and cPGI2. Based on prior studies
demonstrating that iloprost and cPGI2 are ligands for PPARδ (and in some tissues for
PPARα), the authors proposed that activation of PPAR(s) is the most likely mechanism of
the observed angiogenic effects (58). This concept was further extended and refined by
studies in human EPCs (9). Since specific molecular markers for identification of EPCs have
not been established, studies were performed on so-called “late outgrowth” EPCs. Obtained
findings suggest that these cells possess intrinsically high production of PGI2 (9). One
possibility is that the angiogenic function of EPCs is dependent on PGI2-induced activation
of PPARδ. Indeed, in vitro and in vivo analysis of angiogenic function of EPCs in response
to endogenous PGI2 or treatment with iloprost pointed to PPARδ as a major molecular target
(9). Further research revealed that the angiogenic effect of PPARδ activation in human
EPCs is dependent on increased production of tetrahydrobiopterin, an enzymatic cofactor
(70). The regenerative effect of tetrahydrobiopterin was independent of endothelial nitric
oxide synthase (eNOS) activation thus suggesting that tetrahydrobiopterin has effects on
EPCs that could not be explained by its role as a cofactor for eNOS (70).

Existing evidence supports the concept that PPARδ (unlike PPARα and PPARγ) is pro-
angiogenic (38). Treatment of cultured human endothelial cells with GW501516, a selective
PPARδ agonist, stimulates proliferation and increases expression and production of VEGF
(36). Consistent with in vitro observations, activation of PPARδ in vivo also causes
angiogenesis (36). Other target genes that might be responsible for PPARδ-induced
stimulation of angiogenesis have been identified including angiopoietin-like protein 4,
calcineurin, cyclin-dependent kinase inhibitor 1c (Cdkn 1c), and Cl− intracellular channel
protein 4 (CLIC4; 38). However, PPARδ activation has an inhibitory effect on some anti-
angiogenic proteins including thrombospondin-1 and cellular retinol-binding protein-1
(CRBP1; 38). More recent studies indicate that PPARδ activation enhances regenerative and
angiogenic capacity of EPCs (9,70–72).

Efforts to harness potentially beneficial vascular (and metabolic) effects of PPARδ agonists
have been hampered by the tumorigenic effects of this signal transduction pathway.
Although the exact role of PGI2/ PPARδ signaling in pathogenesis in cancer remains to be
determined (73,74), existing literature suggests that tumor angiogenesis could be stimulated
by activation of PPARδ (31, 43–45). This issue has to be approached with high degree of
caution, and requires very careful monitoring of patients entering clinical trials designed to
test therapeutic safety and efficacy of compounds that may activate PPARδ.

Pulmonary hypertension
Stable analogues of PGI2 are essential drugs used in therapy of pulmonary hypertension. It is
generally accepted that the beneficial effects of these compounds are, for the most part,
mediated by activation of IP receptors on vascular smooth muscle cells and the resulting
decrease in pulmonary vascular resistance (75). In addition, these salutary effects are
dependent on the ability of PGI2 analogues to arrest and reverse pathological remodeling of
pulmonary vascular wall. Emerging experimental evidence suggests that some of the long-
term benefits could be mediated by activation of PPARδ receptors. For instance, activation
of PPARδ in the lungs inhibits proliferation of fibroblasts and the subsequent aberrant
vascular remodeling responsible for narrowing of pulmonary blood vessel diameter (57). In
addition, more recent findings indicate that, in children with pulmonary hypertension, the
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PGI2 analogue treprostinil increases the number and angiogenic potential of EPCs (12),
thereby stimulating endothelial repair and formation of new blood vessels. These
observations may help to explain clinically observed long-term therapeutic effects of PGI2
analogues that could not be attributed to pulmonary vasodilatation in patients resistant to the
acute vasodilator effect of PGI2 (75,76).

Adverse cardiovascular effects of COX inhibitors
Non-steroidal anti-inflammatory drugs (NSAIDs) exert their therapeutic effects by inhibiting
COX isoforms. However, long-term use of NSAIDs as anti-inflammatory agents and
analgesics is associated with adverse cardiovascular effects (77). Existing evidence suggests
that older patients with cardiovascular risk factors are particularly prone to develop adverse
effects including high blood pressure, edema, and congestive heart failure. Moreover, the
detrimental effects of these drugs on cardiovascular function predispose treated patients to
development of stroke and myocardial infarction (77). Although the mechanisms underlying
adverse effects are quite complex and incompletely understood, inactivation of PGI2
synthesis is considered a major mechanism contributing to development of adverse
cardiovascular effects of COX inhibitors (78). In this regard, recognition of nuclear PPARδ
receptors as potentially important target for PGI2 signaling may provide new insights. For
example, emerging evidence suggests that loss of PGI2/PPARδ signaling causes apoptosis of
endothelial cells (79) and impairment of regenerative capacity of EPCs (9,72). In addition,
aging is associated reduced expression of PPARδ (80). This may increase the vulnerability
of an aging population to drugs that interfere with activation of PPARδ. However, the exact
contribution of diminishing PGI2/PPARδ signaling to adverse cardiovascular effects of
COX inhibitors in humans is unknown and remains to be determined.

Concluding remarks
Existing evidence is consistent with the concept that stable analogues of PGI2 might exert
vascular effects in part by activation of PPARδ. More recent findings suggest that this
signaling pathway may also contribute to vascular regenerative functions of these
compounds. However, direct in vivo evidence demonstrating ability of endogenous PGI2 to
behave as PPARδ ligand in vascular tissue remains to be established. Further improvements
in understanding of PGI2/PPARδ signaling in the human cardiovascular system will
certainly help to optimize a number of therapeutic interventions dependent on modulation of
arachidonic acid metabolism and subsequent activation of nuclear receptor(s). Future efforts
in this area might also provide important new insights into molecular mechanisms
underlying cardiovascular effects of widely used COX inhibitors.
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Figure 1.
Hypothetical model of the cellular localization of enzymes responsible for PGI2 synthesis
and subsequent activation of PPARδ. Increases in intracellular Ca2+ levels cause activation
and translocation of cPLA2α from the cytoplasm to the nuclear envelope. (Complexity of
cPLA2α activation has been simplified to include only activation by increased Ca2+ levels).
Mobilization of arachidonic acid from phospholipids by cPLA2α provides substrate for
enzyme activity of COX-1 or COX-2 and PGIS resulting in production of PGI2 and
subsequent activation of nuclear receptor PPARδ. PPARδ-RXR heterodimers undergo a
conformational shift and this causes dismissal of the co-repressor complex in exchange for
co-activator proteins thereby resulting in enhanced PPARδ target gene expression. Exact
nature of agonists and physical stimuli responsible for PGI2-induced activation of PPARδ
remains to be determined (denoted by ? in the figure). cPLA2=cytosolic phospholipase A2;
ER = endoplasmic reticulum; NE = nuclear envelope; AA = arachidonic acid; PGI2 =
prostacyclin; PGH2 = prostaglandin H2; PGIS = prostacyclin synthase; RXR = retinoid X
receptor; CP = co-activator proteins; PPRE = PPARδ responsive element.
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