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Abstract
Many women with breast cancer, especially those treated with chemotherapy, experience
cognitive decline due in part to neurotoxic brain injury. Recent neuroimaging studies suggest
widespread brain structural abnormalities pointing to disruption of large-scale brain networks. We
applied resting state functional magnetic resonance imaging and graph theoretical analysis to
examine the connectome in breast cancer survivors treated with chemotherapy relative to healthy
comparison women. Compared to healthy females, the breast cancer group displayed altered
global brain network organization characterized by significantly decreased global clustering as
well as disrupted regional network characteristics in frontal, striatal and temporal areas. Breast
cancer survivors also showed significantly increased self-report of executive function and memory
difficulties compared to healthy females. These results suggest that topological organization of
both global and regional brain network properties may be disrupted following breast cancer and
chemotherapy. This pattern of altered network organization is believed to result in reduced
efficiency of parallel information transfer. This is the first report of alterations in large-scale
functional brain networks in this population and contributes novel information regarding the
neurobiologic mechanisms underlying breast cancer-related cognitive impairment.
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Introduction
Cognitive deficit is a common complication following breast cancer chemotherapy with as
many as 75% of patients experiencing significant deficits (Janelsins, Kohli et al., 2011). The
most frequently observed impairments include executive functioning and memory deficits
although difficulties in other cognitive domains have also been reported (Wefel, Saleeba et
al., 2010; Janelsins et al., 2011). Chemotherapy-treated patients are up to 8 times more likely
to experience cognitive deficit compared to non-chemotherapy treated patients (Schagen,
Muller et al., 2006; Stewart, Collins et al., 2008). Although chemotherapeutic agents
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typically have restricted direct access to brain tissue due to the blood-brain barrier, animal
studies indicate that even chemotherapeutic agents that are not known to readily cross the
blood-brain barrier (e.g. doxorubicin) are associated with reduced neurogenesis (Janelsins,
Roscoe et al., 2010). Both dividing and non-dividing neural and glial cells are significantly
vulnerable to chemotherapies (Dietrich, Han et al., 2006; Winocur, Vardy et al., 2006;
Seigers, Schagen et al., 2008; Seigers, Schagen et al., 2009; Dietrich, 2010) and even small
amounts of chemotherapy in the brain may cause long-term damage (Dietrich, 2010).

Accordingly, emerging data suggest that breast cancer chemotherapy is associated with
diffuse structural injury including widespread decreases in gray matter volume (McDonald,
Conroy et al., 2010) and white matter integrity (Deprez, Amant et al., 2011). A pattern of
diffuse damage is likely to disrupt overall brain organization, reducing efficiency of
information transfer. Previous studies have suggested that breast cancer survivors show
decreased efficiency of neural networks, requiring more functional activation across a range
of brain regions to complete certain tasks compared to healthy women (Silverman, Dy et al.,
2007; Kesler, Bennett et al., 2009; Cimprich, Reuter-Lorenz et al., 2010). The specific
pattern of brain changes following breast cancer and chemotherapy, including global versus
local deficits, would have important implications for developing the most effective
interventions for breast cancer-related cognitive deficits. Elucidation of large-scale brain
network configuration in breast cancer may therefore contribute important new information
regarding the neurobiologic mechanisms of breast cancer-related cognitive impairment.

However, it is currently unknown whether breast cancer and/or its treatments disrupt the
organization of whole-brain networks. Previous studies of healthy individuals as well as
certain pathological conditions have consistently revealed that brain networks are organized
in a small-world manner characterized by high local specialization combined with high
capacity for global information transfer (Bullmore and Bassett, 2011; Sporns, 2011). This
organizational scheme allows for high efficiency of parallel processes with low wiring or
energy costs (Guye, Bettus et al., 2010). Evaluation of these network properties may provide
a more ecologically valid assessment of the neural mechanisms of cognitive function and
dysfunction compared to traditional approaches because network analysis is more sensitive
to subtle or diffuse neurobiological changes (McIntosh, 2000; Sporns, Chialvo et al., 2004;
Petrella, 2011). Furthermore, brain network abnormalities have been shown to precede other
neurobiologic and even metabolic changes in neuropathologic disease (Sheline, Morris et
al., 2010; Petrella, 2011). A multivariate mathematical framework known as graph theory
analysis is the prominent method for measuring these brain network metrics (Bassett and
Bullmore, 2006; Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; Sporns, 2011).

Resting state functional magnetic resonance imaging (fMRI) is a reliable, non-invasive
method for examining the intrinsic topology of large-scale brain networks (Wang, Zuo et al.,
2010). Resting state fMRI networks are task-independent and thus less vulnerable to
confounds due to performance variance. Resting state fMRI connectivity studies are
sensitive to abnormal global network organization, revealing changes in several clinical
populations with cognitive deficits including Alzheimer’s dementia (Sanz-Arigita,
Schoonheim et al., 2010) schizophrenia (Lynall, Bassett et al., 2010), traumatic brain injury
(Nakamura, Hillary et al., 2009) and attention-deficit hyperactivity disorder (Wang, Zhu et
al., 2009). Resting state fMRI provides assessment of intrinsic connections that are believed
to support cognitive functions and resting state networks have been shown to correlate with
various cognitive skills (Church, Fair et al., 2009).

The present study examined changes in resting state functional connectivity networks
utilizing graph analysis in women with breast cancer relative to healthy women matched for
age, education and general intelligence. Our primary hypothesis was that the breast cancer
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group would show altered global and regional network organization as indicated by
abnormal clustering, path length and/or nodal degree. We also explored potential
associations between network properties and cognitive performance.

Methods
Participants

The present study included a total of 61 women aged 40.94 to 74.02 years. The participants
were categorized into two groups; 34 women with a history of breast cancer, stages I-IV, all
treated with chemotherapy, and 27 healthy comparison women. The women in the breast
cancer group were, on average, 5.35 +/− 5.40 (median = 4.96; range = 28.75) years off-
therapy and were free from disease or relapse as well as any gross neuropathology (e.g.
brain metastases) at the time of evaluation. Individual chemotherapy treatment protocols
included adriamycin/cytoxan/taxol or taxotere = 27, cytoxan/methotrexate/5- fluorouracil =
5 and adriamycin/cytoxan + cytoxan/methotrexate/5- fluorouracil = 2. Twenty-three women
underwent radiation treatment and 19 received tamoxifen (5 were still taking tamoxifen at
the time of assessment). The Stanford University Institutional Review Board approved this
study. This study was conducted according to the principles expressed in the Declaration of
Helsinki. All participants provided written informed consent.

There were no significant differences between the groups in age, education or general
intelligence. However, significantly more women in the breast cancer group were post-
menopausal, which was expected given that chemotherapy can induce early menopause
(Mar Fan, Houédé-Tchen et al., 2010) and tamoxifen may also induce menopausal
symptoms (Bakkum-Gamez, Laughlin et al., 2011). Therefore, we controlled for
menopausal status in all analyses. Comparison women were excluded for any history of
medical, neurologic or psychiatric conditions. Participants with breast cancer were excluded
if they presented with history of psychiatric or neurologic conditions and/or significant
concurrent medical diagnoses. Participants in both groups were excluded for any MRI
contraindications. Breast cancer and comparison participants were recruited via the Army of
Women (http://www.armyofwomen.org/), community flyer postings and advertisements.
Breast cancer participants were also recruited via local support groups.

Cognitive Testing
General intelligence was measured using an abbreviated version of the Wechsler Adult
Intelligence Scales Fourth Edition (Wechsler, 2008). Executive function was assessed using
the Behavioral Rating Inventory of Executive Function (BRIEF) (Roth, Isquith et al., 2005),
the Delis-Kaplan Executive Function System Letter Fluency subtest (Delis, Kaplan et al.,
2001) the Neuropsychological Assessment Battery Categories test (Stern, 2003) and the
Wisconsin Card Sorting test (WCST) (Heaton, 2004). Memory was assessed using the
Hopkins Verbal Learning Test Revised (HVLT) which assesses immediate and delayed
recall memory (Wefel, Vardy et al., 2011) and the Multifactorial Memory Questionnaire
Ability Scale (MMQ), a self-rating of memory function (Troyer and Rich, 2002).
Categories, WCST, HVLT and/or MMQ scores were missing for some participants (see
Table 1). Although participants with psychiatric conditions were excluded, the CAD was
used to measure symptoms including depression, anxiety and fatigue (Bracken, 2007).
Women with breast cancer displayed elevated CAD score compared to the comparison
group (p<0.001 for initial comparison and p<0.003 when menopausal status was included as
a covariate) although, on average, scores were not clinically significant (mean T score <70).
However, given that these symptoms may influence cognitive and brain functioning, this
measure was used as a covariate (in additional to menopausal status) in all analyses.
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Data normality was assessed and confirmed graphically using scatterplots in SPSS software
(www.spss.com). A general linear model framework in SPSS was employed to evaluate
group differences in performance on neuropsychological assessments, with Bonferroni
correction for multiple comparisons.

MRI Acquisitions
MRI scanning was performed on a GE Discovery MR750 3.0 Tesla whole body scanner (GE
Medical Systems, Milwaukee, WI). FMRI data were acquired while participants rested in
the scanner with their eyes closed using a T2* weighted gradient echo spiral pulse sequence:
relaxation time = 2000 msec, echo time = 30 msec, flip angle = 80° and 1 interleave, field of
view = 220, matrix = 64×64, in-plane resolution = 3.125. Number of data frames collected
was 216, thus total scan time was 7:12. An automated high-order shimming method based
on spiral acquisitions was employed to reduce field heterogeneity (Glover and Lai, 1998).
To coregister and normalize functional images with a standardized template, a high-
resolution, 3 dimension inversion-recovery prepared fast spoiled gradient echo anatomical
scan was acquired: relaxation time: minimum, echo time: minimum, flip: 11 degrees,
inversion time: 300 msec, bandwidth: +/−31.25 kHz, field of view: 24cm, phase field of
view: 0.75, slice thickness: 1.5mm, 125 slices, 256×256 at 1 excitation, scan time: 4:26.
Two task based fMRI scans and a diffusion weighted scan were also acquired during the
MRI session that are utilized in other analyses not reported here. However, the resting state
scan was acquired prior to any other scans to reduce the effects of specific cognitive
processes on the resting state networks.

Functional MRI preprocessing
Image preprocessing was performed using Statistical Parametric Mapping 8 (Wellcome
Trust Centre, London, UK; http://www.fil.ion.ucl.ac.uk/spm/) as described in detail in our
previous publications (Kesler et al., 2009; Kesler, Kent et al., 2011). We defined the regions
involved in the functional resting state network using the Automated Anatomical Labeling
atlas (Tzourio-Mazoyer, Landeau et al., 2002). We utilized the 90 regions representing
cortical and subcortical structures in both hemispheres that have been employed in several
previous studies of functional connectome (Lynall et al., 2010; Tian, Wang et al., 2011;
Zhang, Wang et al., 2011). While the choice of parcellation scheme might affect the results
of network analysis (Wang, Wang et al., 2009), recent evidence has shown that the between-
group comparison results remain intact regardless of the chosen parcellation scheme
(Zalesky, Fornito et al., 2010).

Further preprocessing of the functional volumes was performed using the Functional
Connectivity Toolbox (http://web.mit.edu/swg/software.html). First, data were band pass
filtered to 0.008 Hz – 0.09 Hz. Then, the CompCor method (Behzadi, Restom et al., 2007)
was used to reduce physiological and other non-neuronal artifacts. This method involves
extracting signal from white matter and cerebrospinal fluid regions using principal
component analysis and then regressing these signals out of the total fMRI signal. Finally,
temporal correlations between all possible pairs of regions were computed based on the
corrected fMRI signal resulting in a 90×90 correlation matrix for each participant.

Graph Analysis
Network Measures—We defined global and regional network measures including
clustering, path length, small-worldness and nodal degree as described in previous studies
(Bassett and Bullmore, 2006; Bullmore and Sporns, 2009; Rubinov and Sporns, 2010;
Sporns, 2011). Briefly, a network is defined as a set of regions called nodes and connections
between those nodes are called edges. The clustering coefficient of a node is equal to the
proportion of a node’s neighbors that are also neighbors with each other. The clustering
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coefficient of a network is equal to the average of clustering coefficients across nodes and is
a measure of network segregation. Path length describes the minimum number of edges that
separate pairs of nodes. The characteristic path length of a network is the average shortest
path length between pairs of nodes in the network and it is the most commonly used
measure of network integration. Small-worldness is a property of organization shared by
brain networks and other large-scale complex biological networks that differentiates them
from random networks. Random networks are networks that do not display any systematic
organization of nodes and edges. Small-world networks display greater clustering but
similar path length when compared to random networks and this organization is believed to
facilitate an energy-efficient balance between network segregation and network integration.
Nodal degree is defined as the number of connections that a node has with the rest of the
network and is considered a measure of how interactive the node is within the network. To
evaluate the topology of a brain network, we compared network measures from participant
groups with the corresponding mean values of a random graph having the same number of
nodes, total edges and degree distribution as described previously (Maslov and Sneppen,
2002; Milo, Shen-Orr et al., 2002).

Creation of Functional Correlation Networks—For each participant, the correlation
matrix R was thresholded to create a binary adjacency matrix A where aij was retained as a
connection, or edge (set equal to 1) if rij was greater than a threshold T, and aij was not
retained as an edge (set equal to 0) if rij was less than T. Diagonal elements of the
association matrix were set equal to 0. The adjacency matrix A represented a binary
undirected graph G in which regions i and j were connected if gij was equal to 1. The
correlation matrix provides an estimate of functional connectivity – a profile of the
synchronization between brain regions, or nodes, during resting state. Graph G had a
network degree of E equal to the number of edges, and a network density (cost) of D=E/
[Nx(N-1)]/2 representing the ratio of existing edges relative to all possible edges.

Network measures were computed over a range of thresholds T for each graph because
thresholding at an absolute value would have resulted in different numbers of nodes and
degrees across participants introducing a confound when measures were compared between
groups (van Wijk, Stam et al., 2010). We therefore examined graphs over a range of
connection densities for which graphs 1) were fully connected (each node had at least one
connection with another node on the graph) and 2) displayed small-world properties (non-
random graphs). For our data, connection densities ranging from 41% to 50% fit these
criteria and we examined densities in steps equal to 1% (10 densities total). Below a
connection density of 41% individual graphs began to fragment (i.e. some nodes were not
connected to even one other node) and above a connection density of 50% graphs become
increasingly random and do not display small-world properties (Humphries, Gurney et al.,
2006). Furthermore, animal research indicates that connections at densities above 50% are
likely non-biological (Kaiser and Hilgetag, 2006).

In addition to comparing networks at various densities, and to facilitate group comparisons
of network measures, we employed a summary measure to integrate the values of network
measures of interest over a range of densities. The summary measure employed utilizes and
compares the areas under a curve (AUC) for each network measure (Bernhardt, Chen et al.,
2011). For this purpose, the curves extracted from thresholding across a range of densities
were used. Each of these curves depicts the changes in a specific network measure (for each
group) as a function of network density. By performing AUC analysis, the comparison
between network measures is less sensitive to the thresholding process. The AUC analysis
was also performed within the 41% to 50% density range.
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Network Analyses—To account for the effects of menopausal status and psychiatric
symptoms, we performed a linear regression analysis across groups at every brain region.
Menopausal status and CAD scores were used as covariates in the model and the residuals of
the linear regression analysis, representing corrected resting state time series values, were
used for comparison of group networks.

At minimum connection density of 41%, some individual graphs were fragmented and
therefore were not included in those particular graph analyses. Specifically, there were 3
individuals (two breast cancer survivors and one comparison individual) with fragmented
graphs at 41%. These subjects were excluded specifically because their networks were
fragmented at 41% and the comparisons might be affected by group differences in the
number of nodes and connections (van Wijk et al., 2010).

To facilitate group comparisons, the area under the curve of network measures (across the
density range 41% to 50%) were used (Bernhardt et al., 2011). These AUC measures were
used for all subsequent group comparisons and for within group correlations between
network measures and cognitive measures. The Brain Connectivity Toolbox (Rubinov and
Sporns, 2009) was utilized for quantification of network measures and our in-house
software, Graph Analysis Toolbox (http://nnl.stanford.edu/tools.html) was used to compare
functional networks and network measures between groups.

Network Hubs—The most important and most highly connected nodes in a brain network
are called network hubs. Hub identification is a descriptive, qualitative assessment of
network organization. Hubs are regions whose degree is higher than the average network
degree (Bassett, Bullmore et al., 2008) and they facilitate efficient communication across the
network. Hubs may also play an important role in resilience to injury (Rubinov and Sporns,
2009). A network node was considered to be a hub if its degree was at least 1 standard
deviation above the mean network degree (Tian et al., 2011).

Comparison of Network Measures Between Groups—In order to test the statistical
significance of the between-group differences in global and regional network measures, a
non-parametric permutation test with 2000 repetitions was used (Lynall et al., 2010). In each
repetition, the adjusted network measures of each participant were randomly reassigned to
one of the two groups so that each randomized group had the same number of subjects as the
original groups. The differences in network measures between randomized groups were then
calculated resulting in a permutation distribution of difference under the null hypothesis.
The actual between-group difference in network measures was then placed in the
corresponding permutation distribution and a two-tailed p-value was calculated based on its
percentile position (Bernhardt et al., 2011). The same permutation procedure was used to
compare the AUC of network measures between groups.

Relationships Between Network Measures, Cognitive, Demographic and
Disease Variables—The relationships between AUC values for network measures,
cognitive, demographic (age, education level in years), disease (stage) and treatment (time
since treatment in months, radiation, tamoxifen) were examined within each group using
two-tailed Pearson or point biserial correlations as appropriate. Only those network and
cognitive measures that differed between groups were examined.
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Results
Cognitive Testing

Cognitive testing results are presented in Table 1. The breast cancer group showed
significantly lower self-reported executive functioning as measured by the BRIEF (p=0.001)
as well as reduced self-reported memory ability indicated by the MMQ (p<0.0001) after
Bonferroni correction for multiple comparisons.

Network Topology
Topological metrics are illustrated in Figure 1. Measures are presented across a wide range
of densities for illustrative purposes; and the densities which were used in subsequent
analyses are highlighted. Functional correlation networks for both groups displayed
normalized characteristic path length close to one (close to random networks’ path length)
and normalized clustering coefficient greater than 1 (greater than random networks’
clustering), consistent with small-world organization. Below a network density of 41%, the
individual networks in both groups began to fragment which results in different numbers of
nodes for individual networks. This difference directly affects the values of network
measures, as noted above. Thus, the observed between-group differences in network
measures below a network density of 41% depend on the number of individual networks that
fragment in each group and group comparisons below that density are not meaningful (van
Wijk et al., 2010).

Group Differences In Global Network Measures
Group differences in global network measures are displayed in Figure 2. The normalized
clustering coefficient (p=0.029) was significantly lower in the breast cancer network
compared to healthy females. Although the small-worldness (p = 0.061) and characteristic
path length (p=0.054) were higher in the comparison network than in the breast cancer
network, the differences were only marginally significant.

Group Differences In Regional Network Measures (Nodal Degree)
The results of regional node characteristic comparisons are presented in Figures 3 and 4.
Nodal degree was significantly lower (p<0.05) in the breast cancer group relative to the
comparison group for the left amygdala, left caudate, right inferior frontal gyrus, bilateral
medial orbital frontal gyri, and bilateral superior temporal gyri. There were no regions for
which degree was significantly higher in the breast cancer group relative to the comparison
group.

Network Hubs
Network hubs for each group are presented in Table 2 and Figure 5. There was some
similarity between breast cancer and comparison groups in terms of network hub locations.
Hubs were identified for both groups in frontal and temporal regions, although the
comparison group had additional hubs in right inferior frontal gyrus, bilateral superior
temporal gyri, left hippocampus and left amygdala. Additional hubs were identified for the
breast cancer group in bilateral lingual and occipital gyri, right parahippocampus and left
inferior temporal gyrus.

Relationships Between Network Measures, Cognitive, Demographic and Disease Variables
Within the breast cancer group there were no significant correlations between global
network measures and cognitive tests, demographic or disease variables (p>0.10). There
were significant correlations between regional degree in left hippocampus and time since
treatment (r = −0.45, p = 0.009) and breast cancer stage (rs = −0.38, p = 0.033). There was

Bruno et al. Page 7

Neurobiol Dis. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



also a significant correlation between regional degree in right parahippocampal gyrus and
time since treatment (r = −0.45, p = 0.009) and age (r = −0.41, p = 0.020). There were no
significant correlations between regional degree and cognitive test scores, tamoxifen or
radiation treatment (p>0.10).

There were no significant correlations in the comparison group (p>0.10).

Discussion
The present study examined functional brain network topology in breast cancer survivors
treated with chemotherapy relative to healthy comparison women using resting state fMRI
and graph analysis. Both groups of women displayed connectomes with the small-world
properties characteristic of complex networks when compared to random networks.
However, the breast cancer group displayed altered network organization including
significantly decreased global clustering values when compared to healthy comparison
females as well as marginally decreased path length and small-worldness. The breast cancer
group also displayed reduced nodal degree and number of hubs in areas that are implicated
in executive control, memory and emotion regulation networks. This is the first report to
date showing alterations in large-scale functional brain networks of women with breast
cancer.

Our results indicate that breast cancer and/or chemotherapy may impact cognitive function
via disrupted coordination among various brain regions in the global functional brain
network. We noted impaired interaction within discrete brain regions as evidenced by
reduced clustering coefficient. Clustering indicates the quantity of connections between a
region and its neighboring regions and therefore reflects local connectivity or the brain
network’s capacity for functional specialization (Rubinov and Sporns, 2009). We also report
marginally significantly reduced path length and small-world index in the breast cancer
group. Path length is considered a measure of the functional integration of segregated
resources (Rubinov and Sporns, 2009). It has been suggested that shorter path lengths in
clinical populations may result from increased long-range functional connections between
spatially distant regions that increase the cost of the network (Zhang et al., 2011). Complex
networks like the brain must be economical by minimizing wiring cost (i.e. many short-
range but fewer long-range connections) while optimizing global efficiency (Achard and
Bullmore, 2007).

Our findings indicate that the brain network’s ability to coordinate parallel processes that
support various cognitive capacities is disrupted following breast cancer and chemotherapy.
This reduction of network efficiency is consistent with previous reports suggesting more
effortful processing for chemotherapy-treated breast cancer survivors demonstrated by
diffuse neural over-activation (Ferguson, McDonald et al., 2007; Silverman et al., 2007;
Kesler et al., 2009; Cimprich et al., 2010). Normal aging has also been associated with
reduced path length (Wu, Taki et al., 2011), reduced connectivity in executive control
regions, reduced functional segregation (Chen, He et al., 2011) and increased network cost
(Gong, Rosa-Neto et al., 2009) suggesting that breast cancer and/or chemotherapy may
accelerate the aging process.

Alterations in large scale functional brain networks have been revealed in several clinical
populations with cognitive dysfunction including Alzheimer’s dementia (Sanz-Arigita et al.,
2010) schizophrenia (Lynall et al., 2010), traumatic brain injury (Nakamura et al., 2009) and
attention-deficit hyperactivity disorder (Wang et al., 2009). Damage to large-scale brain
networks is thought to be indicative of a “disconnection syndrome” where there is diffuse
injury to white matter pathways (Petrella, 2011). Accordingly, recent studies demonstrate
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widespread reductions in white matter microstructure following breast cancer chemotherapy
(Deprez et al., 2011; Deprez, Amant et al., 2012). Animal models indicate that systemically
delivered chemotherapies can destroy white matter progenitor cells, causing loss of self-
renewal ability even after initial doses (Dietrich et al., 2006; Dietrich, 2010). From a
network perspective, functional integration is dynamic; functional networks are temporarily
reconfigured to meet various task demands (McIntosh, 2000; Bassett and Bullmore, 2006).
This coordinated, dynamic response depends on stable structural networks (Sporns, 2011).
Thus, the disruption of functional network organization noted here may reflect a loss of
dynamic response plasticity. Altered network properties were not associated with other
breast cancer treatments including radiation or tamoxifen. However, longitudinal studies are
required to determine the disease- and treatment-specific effects on network connectivity
and function in breast cancer.

Group differences in nodal degree and network hubs help identify specific regions that show
altered integration within the network and therefore which specific neural circuits may be at
highest risk for loss of response plasticity. Breast cancer survivors displayed reduced nodal
degree and number of hubs within dorsolateral prefrontal, orbitofrontal and mesial temporal
regions which may correspond to the deficits in executive function, memory and learning
and emotion regulation that are often noted among these patients. Accordingly, the breast
cancer group showed significantly reduced executive and memory function as well as
elevated psychiatric distress. This included only subjective measures after correction for
multiple comparisons. Post hoc analysis indicated no significant correlations between
objective and subjective measures (p < 0.15) which is consistent with previous studies of
cognition in breast cancer (Castellon and Ganz, 2009; Vardy, 2009). Self-report measures
may have greater sensitivity to the subtle nature of chemotherapy-related brain injury due to
their higher ecological, or real-world validity (Castellon and Ganz, 2009; Vardy, 2009;
Kesler et al., 2011). However, there were no significant associations between network
properties and subjective cognitive measures in the present sample indicating that further
research is required to determine how altered connectome relates to cognitive outcome in
breast cancer survivors.

The breast cancer group showed increased hubs in posterior regions including occipital and
inferior temporal unimodal association cortex and paralimbic areas compared to healthy
females. Highly similar findings have been noted among individuals with Alzheimer’s
dementia (He, Chen et al., 2008). These regions may represent areas of compensatory
coordination for supporting cognitive processes in the context of abnormalities in other hub
groups (He et al., 2008). Our findings suggest that these particular regions may show
increased robustness to neurologic injury across conditions. Given the debated link between
breast cancer and dementia (Du, Xia et al., 2010) and the promising use of network analysis
to classify neurodegenerative disorders (Supekar, Menon et al., 2008; Chen, Ward et al.,
2011), it will be important to identify further similarities and differences in the specific type
of damage to large-scale brain networks associated with breast cancer, particularly in terms
of default mode network.

There was a significant negative correlation between time since treatment and degree in left
hippocampus and right parahippocampal gyrus suggesting that the effects of breast cancer
treatments on the connectivity of these regions are persistent and may potentially worsen
over time. This is consistent with a previous study demonstrating that subgroups of patients
showed persistent memory deficits or new onset of previously non-existent memory deficits
(Wefel et al., 2010). Additionally, breast cancer disease stage was negatively related to
regional degree in left hippocampus indicating that increased disease severity is associated
with lessening of this region’s interactivity within the network. Also noted was a negative
correlation between age and degree in right parahippocampal gyrus, potentially indicating
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that breast cancer and/or treatment effects are more severe in older women. This is
consistent with previous findings of increased vulnerability to cognitive decline in women
diagnosed with breast cancer at an older age and suggests that there may be an interaction
between age and breast cancer related cognitive decline (Ahles, Saykin et al., 2010; Kesler
et al., 2011).

We noted increased psychiatric symptoms in the breast cancer group. Depression has been
associated with alterations in functional whole-brain network topology, including reduced
path length, increased nodal centralities in default mode network regions and decreased
nodal centralities in occipital, frontal and temporal regions (Leistedt, Coumans et al., 2009;
Zhang et al., 2011). Our results showed a primary abnormality in clustering and a very
different profile of disrupted regional node characteristics. Our analyses were controlled for
self-reported psychiatric distress and it was noted that this was not a significant covariate in
the statistical models. Although psychiatric distress likely contributes to cognitive
dysfunction following breast cancer, our results provide further evidence that psychiatric
distress is not a sufficient explanation for breast cancer-related cognitive deficits.
Additionally, disease and/or treatment related disruptions in regional network characteristics
among areas involved in emotion regulation as noted above could make breast cancer
survivors more vulnerable to psychiatric distress. Longitudinal studies are required to
determine when in the disease and treatment course network disruption is most likely to
occur.

The most common finding across previous neuroimaging studies of breast cancer,
irrespective of imaging modality, is prefrontal cortex abnormality (Inagaki, Yoshikawa et
al., 2007; Silverman et al., 2007; Kesler et al., 2009; de Ruiter, Reneman et al., 2011;
Deprez et al., 2011; Kesler et al., 2011). While many disorders are associated with similar
prefrontal deficits, the characterization of multivariate neurobiologic patterns as noted here
may help distinguish the particular neural effects of breast cancer chemotherapy. For
example, depression, dementia and breast cancer chemotherapy share a common
mechanistic pathway for brain injury, namely, inflammation (Janelsins et al., 2011; Maes,
Mihaylova et al., 2011; Sardi, Fassina et al., 2011) yet have distinct profiles of brain
network abnormalities, as noted above. Thus, targeting common pathways may have limited
effectiveness for reducing neural effects of breast cancer and its treatments. Further
specifying the unique profile of the brain network disruption in breast cancer could help
elucidate other possible mechanisms of brain changes in this population to provide breast
cancer-specific targets for intervention. Additionally, network disruption may be present
prior to other neurobiologic or even molecular changes associated with disease onset or
progression in several conditions (Petrella, 2011). Network dysfunction could thus
potentially be used as an indicator of disease progression in breast cancer, such as brain
metastases, for example.

The present study has several limitations. As with most studies of breast cancer survivors,
the sample was very heterogeneous in terms of treatment regimens, time off-therapy and
disease characteristics. For example, we were unable to examine the relationship between
individual chemotherapy regimens and functional networks. The cross-sectional design
presents several obstacles for examining the specific effects of disease versus treatment
variables on network topology. Longitudinal research will be critical to our understanding of
the effects of specific chemotherapy regimens on neurobiologic status, although randomized
groups are not feasible due to the ethical ramifications of denying patients potentially life-
saving treatments.

It was also not possible to determine if our findings were specific to breast cancer. The
aforementioned animal literature (see Dietrich, 2010 for a review) suggests that the effects
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of chemotherapy on the brain are likely common among cancers. However, other factors
such as hormonal involvement, age and cognitive reserve may contribute to an individual’s
vulnerability to the effects of chemotherapy (Ahles et al., 2010; Kesler et al., 2011). Other
cancers that involve chemotherapy treatment, including leukemia and lymphoma have been
associated with white matter abnormalities and cognitive effects (Syrjala, Artherholt et al.,
2011; Correa, Shi et al., 2012) indicating the potential for altered large scale functional brain
networks. However, neuroimaging studies have been very limited in other adult cancers to
date. Participants were excluded for Axis I diagnoses such as depression or anxiety, and
analyses were controlled for self-reported psychiatric symptoms, which were not clinically
significant on average. However, a more comprehensive assessment of psychiatric
conditions may be required to determine the impact of these symptoms on network topology
in breast cancer. FMRI methods are limited in general by their indirect measure of neural
functioning.and signal to noise ratio. Other neuroimaging techniques that measure neural
signals more directly (e.g. EEG, PET) and/or alternative data analysis methods that are not
dependent on parcellation scheme (e.g. independent components analysis) may be useful in
further elucidating aberrant network topology in breast cancer.

Despite these limitations, these findings extend our understanding regarding breast cancer-
related neurologic injury. We show evidence of an altered connectome following breast
cancer and chemotherapy pointing to reduced efficiency of parallel information processing.
Data from continued studies of network dysfunction in breast cancer could potentially be
utilized to develop indicators of disease progression and develop interventions for cognitive
decline by emphasizing treatments that target integrated neural processes.
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Highlights

Global brain network organization is disrupted following breast cancer chemotherapy

Regional network characteristics are altered in frontal, striatal and temporal areas

Breast cancer survivors demonstrate increased report of executive and memory deficits
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Figure 1. Global network topology
A) normalized clustering, B) normalized path length, and C) small world index of breast
cancer and comparison networks. The figures show that both networks display a small-world
organization across a range of densities.
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Figure 2. Between-group differences in network measures
The breast cancer group showed lower A) normalized clustering, B) normalized path length,
and C) small world index compared to healthy controls although only clustering was
significant. The green bar indicates range of densities for which we compared network
values and the green arrows indicate individual densities, within the compared range, for
which the group difference was significant.
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Figure 3. Group differences nodal degree
Group differences are displayed relative to random networks (null mean). Names of brain
regions are given for the left hemisphere and the following region is the corresponding right
hemisphere homologue denoted with a –. Abbreviations are used as follows:
AMYG=Amygdala, ANG=Angular gyrus, CALC=Calcarine sulcus, CN=Caudate,
ACC=Anterior cingulate cortex, MCC=Middle cingulate cortex, PCC=Posterior cingulate
cortex, CUN=Cuneus, IFOp=Inferior frontal gyrus, opercular, IFOr=Inferior frontal gyrus,
orbital, IFTr=Inferior frontal gyrus, triangular, MedFOr=Medial frontal gyrus, orbital,
MFG=Middle frontal gyrus, MFOr=Middle frontal gyrus, orbital, SFG=Superior frontal
gyrus, MedSFG=Superior frontal gyrus medial, SFOr=Superior frontal gyrus, orbital,
FG=Fusiform gyrus, HSHL=Heschel's gyrus, HIPP=Hippocampus, INS=Insula,
LNG=Lingual gyrus, IOG=Inferior occipital gyrus, MOG=Middle occipital gyrus,
SOG=Superior occipital gyrus, OFB=Olfactory bulb, PLD=Pallidum, PCL=Paracentral
lobule, PHIP=Parahippocampal gyrus, IPL=Inferior parietal lobule, SPL=Superior parietal
lobule, PoCG=Postcentral gyrus, PrCG=Precentral gyrus, PCUN=Precuneus,
PUT=Putamen, REC=Gyrus recuts, RLN=Rolandic opercular, SMA=Supplementary motor
area, SMG=Supramarginal gyrus, ITG=Inferior temporal gyrus, MTG=Middle temporal
gyrus, MTP=Middle temporal pole, STP=Superior temporal pole, STG=Superior temporal
gyrus, THL=Thalamus.
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Figure 4. Brain map of regional group differences in nodal degree
Significant group differences are displayed on an inflated brain (left hemisphere, right
hemisphere and ventral surface as indicated). Colored regions indicate lower degree for
breast cancer networks relative to the healthy comparison group’s networks. There were no
areas of greater regional differences in the breast cancer group compared to healthy females.
This Figure was created using the Brain Net Viewer (http://www.nitrc.org/projects/bnv/).
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Figure 5. Network layout and hubs
Functional correlation network and hubs for each hemisphere superimposed on inflated
standard brains for breast cancer and healthy comparison groups (left hemisphere and right
hemisphere as indicated). Grey lines indicate edges or functional connections. Blue spheres
represent nodes with the size of the sphere being proportional to the degree of the node. Red
spheres indicate nodes classified as hubs common between both groups. Green spheres
indicate hubs unique to the healthy comparison group and yellow spheres are hubs unique to
the breast cancer group. Hubs for each group are labeled with the following abbreviations
AMYG=Amygdala, IFOr=Inferior frontal gyrus, FG=Fusiform gyrus, LNG=Lingual gyrus,
ITG=Inferior temporal gyrus, IOC = Inferior occipital cortex, MOG=Middle occipital gyrus,
MTG=Middle temporal gyrus, MTP=Middle temporal pole, STP=Superior temporal pole,
STG=Superior temporal gyrus, HIPP = Hippocampus, PHIP = Parahippocampal gyrus. This
Figure was created using the Brain Net Viewer (http://www.nitrc.org/projects/bnv/).
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Table 2

Network Hubs

Hubs present in networks for
both groups of women

Hubs present in breast
cancer group only

Hubs present in healthy
comparison group only

Left inferior frontal gyrus,
orbital Left lingual gyrus Left amygdala

Left fusiform gyrus Right lingual gyrus
Right inferior frontal
gyrus, orbital

Right fusiform gyrus
Right inferior occipital
gyrus Left hippocampus

Left precentral gyrus
Left middle occipital
gyrus Left middle temporal pole

Right inferior temporal gyrus
Right parahippocampal
gyrus

Left superior temporal
gyrus

Left middle temporal gyrus
Left inferior temporal
gyrus

Right superior temporal
gyrus

Right middle temporal gyrus

Right superior temporal pole
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