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SUMMARY
Background—Uncertainty shapes our perception of the world and the decisions we make. Two
aspects of uncertainty are commonly distinguished: uncertainty in previously acquired knowledge
(prior) and uncertainty in current sensory information (likelihood). Previous studies have
established that humans can take both types of uncertainty into account, often in a way predicted
by Bayesian statistics. However, the neural representations underlying these parameters remain
poorly understood.

Results—By varying prior and likelihood uncertainty in a decision-making task while
performing neuroimaging in humans, we found that prior and likelihood uncertainty had quite
distinct representations. While likelihood uncertainty activated brain regions along the early stages
of the visuomotor pathway, representations of prior uncertainty were identified in specialized
brain areas outside this pathway, including putamen, amygdala, insula, and orbitofrontal cortex.
Furthermore, the magnitude of brain activity in the putamen predicted individuals’ personal
tendencies to rely more on either prior or current information.
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Conclusions—Our results suggest different pathways by which prior and likelihood uncertainty
map onto the human brain, and provide a potential neural correlate for higher reliance on current
or prior knowledge. Overall, these findings offer insights into the neural pathways that may allow
humans to make decisions close to the optimal defined by a Bayesian statistical framework.

INTRODUCTION
Uncertainty is intrinsic to our world. For any given event, there is uncertainty in what our
senses currently tell us – this is usually denoted likelihood uncertainty. There is also
uncertainty in our preexisting knowledge of that event – this is known as prior uncertainty.
For example, when judging the probability of rain, we combine current information obtained
through our senses (are there clouds visible in the sky?) with previous acquired knowledge
we possess about the chance of rain at our particular location (are we in Lisbon or London?).
In such cases, the uncertainty associated with each piece of information determines how we
should combine them. The combination of information gathered in the past (prior) with new
information (likelihood) is critical for effective decision making[1] and can thus be seen as a
central objective of the nervous system.

Bayesian statistics describe how prior and likelihood information can be optimally combined
as a function of their respective uncertainties to give a posterior probability estimate. The
uncertainty of this optimal estimate (posterior uncertainty, or general uncertainty) is
generally smaller than the uncertainty associated with either prior or likelihood alone[2].
Several recent studies comparing Bayesian predictions to human behavior show that humans
are close to optimal in a wide range of tasks, including estimation[3], learning[4] and
movement[5-7]. The fact that behavior was close to the Bayesian optimal in these tasks
indicates that human participants detect and use information about both prior and likelihood
uncertainty. Nevertheless, in spite of a large body of behavioral research, it is still unclear
how and where these types of uncertainty are represented in the brain.

Given that uncertainty is fundamental to behavior, there is an extensive modeling literature
that hypothesizes how it could be represented. However, these different theoretical models
do not tend to distinguish between the representation of priors and likelihoods. Also, they
differ in their predictions of where uncertainty should be represented[8-12]. One set of
theories assumes that uncertainty is a fundamental part of the way any pair of neurons
exchanges information, and thus the representation of the uncertainty of a variable is always
co-localized with the representation of the variable itself[8, 10]. A different set of theories
assumes that there are specialized brain regions that encode and process uncertainty[9,
11-13]. Although these theories are not necessarily mutually exclusive, they offer different
predictions, and none so far has received strong neurobiological support. It thus remains
unknown whether uncertainty is represented along the sensorimotor pathway or within
specialized brain areas outside this pathway, and whether different forms of uncertainty have
different representations.

To try to find the neural correlates of uncertainty, several studies in monkeys have analyzed
how uncertainty in a stimulus can change neural firing. For instance, in a classic visual
discrimination task, monkeys view a cloud of randomly moving dots and need to identify
their net direction[14, 15]. Varying the percentage of dots with a coherent motion
demonstrated that the activity of neurons in the lateral intraparietal area (LIP) represents not
only the direction of the stimulus but also the uncertainty associated with it[15]. Such
studies can be interpreted as changing the likelihood. Other studies have changed the
probability that even before seeing the stimulus a monkey would have to saccade to a given
target, and found that this modulated neuronal activity[16]. These studies can be interpreted
as changing the prior[14]. However, all of these studies are based on relatively simple
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oculomotor tasks, with a focus on very specific brain areas. It remains poorly understood
whether neural representations of uncertainty are also encoded elsewhere in the brain, and
whether the findings in monkeys translate to other experimental tasks and settings in
humans.

Interesting recent human studies in neuroeconomics have started to examine how
uncertainty about reward is represented. These studies show that increased uncertainty about
whether a reward is going to be obtained (risk) correlates with increased activations in the
orbitofrontal cortex (OFC)[17, 18] , midbrain[11], cingulate cortex[18, 19] , and insula[9,
20, for a review, see 21]. However, in all these cases uncertainty was treated as one single
parameter, and thus general uncertainty was perfectly correlated with prior or likelihood
uncertainty, which were not distinguished as separate sources of uncertainty. Thus, although
in humans there is an increasing knowledge of where uncertainty in reward is represented, it
is still unclear where prior and likelihood uncertainty are, and if these areas coincide with
the areas involved in uncertainty in reward.

Here we devised a sensory-motor decision-making task in which human subjects could use
both prior and likelihood to estimate positions of hidden visual targets. Uncertainty was
systematically varied on each trial in a two-by-two factorial design, such that two of the
conditions were matched for performance accuracy but differed in the relative balance of
prior and likelihood uncertainty. By combining event-related functional magnetic resonance
imaging (fMRI) approaches with computational models of behavioral performance, we were
able to characterize the neural representations of the two kinds of uncertainty while
controlling for confounds related to expected reward. The behavioral results indicate that
subjects are adept at using both kinds of uncertainty to optimize performance, in keeping
with Bayesian predictions. The imaging results suggest that likelihood uncertainty is
primarily represented in the early stages of the sensorimotor network, while prior
uncertainty is represented in limbic and paralimbic decision-related areas outside of
traditional sensorimotor pathways. Together these findings suggest fundamentally different
representations by which prior and likelihood uncertainty in a decision-making task map
onto the human brain.

RESULTS
In this study we wanted to know where prior and likelihood uncertainty are represented in
the human brain. To this end, we developed a visual decision-making task in which subjects
had to guess the position of a hidden target (a “coin”) on a computer screen (see Fig. 1A and
[6, 22]). Subjects were given noisy visual information about the target position in the form
of a dot-cloud drawn from a Gaussian distribution centered at the true target position. To
successfully estimate the position of the target, subjects could use both the likelihood,
obtained from the displayed dots, and the prior, obtained from the distribution of previous
target positions. Uncertainty in the likelihood varies with the dispersion of the displayed
dots. This dispersion varied randomly from trial to trial, and thus could not be predicted
beforehand. The average position of the target (the mean of the prior) was the middle of the
screen, and subjects could estimate its uncertainty (prior uncertainty) from the distribution of
target positions in previous trials (see Experimental Procedures and SI for details). Given
that subjects had ample experience with the task from the behavioral experiment, they
quickly acquired the prior. Successful estimates of the position were rewarded with points,
which had motivational significance to the subjects (see Sup. Information -SI- and Fig. S1).
The conditions comprised a two-by-two factorial design (Fig. 1B), with two levels of prior
uncertainty (wide, more uncertain prior: P, and narrow, less uncertain prior: p) and two
levels of likelihood uncertainty (wide likelihood: L, and narrow likelihood: l). Varying the
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uncertainty in the prior and in the likelihood independently, together with fMRI imaging,
allowed us to find where they are represented in the brain.

Prior and likelihood uncertainty affect behavior
We first wanted to know if variations of prior and likelihood uncertainty in our task
influence the estimation behavior. If subjects ignore the prior information and rely only on
the current sensory feedback (i.e., likelihood information) then the weight of sensory
feedback (slopes of Fig. 2A) in the estimation should be one. On the other hand, if subjects
rely only on their prior knowledge and ignore likelihood information, then the weight of the
sensory feedback should be zero. Use of this metric demonstrated that scanned subjects
relied on both prior and likelihood information (0<slope<1; Fig. 2B). Data obtained from all
subjects (both those who were scanned and those who were not) showed the same effects
(Fig. S2A). Furthermore, subjects relied more on the likelihood information as the prior
uncertainty increased and as the likelihood uncertainty decreased (main effect of prior,
F1,43=207, p<10−6; main effect of likelihood, F1,43=35, p<10−6, ANOVA repeated measures
(r.m.)). Qualitatively, such behavior would be expected if they used a Bayesian strategy[23]
(see also SI). Thus, in our experiment, subjects utilized knowledge of both prior and
likelihood uncertainty for perceptual decision-making.

Both kinds of uncertainty may be expected to change the precision of subjects’ estimates
and thus their expected task performance. Not surprisingly, performance was better when
each of the uncertainties was lower (Fig. 2C, main effect of prior, F1,43=161, p<10−6; main
effect of likelihood, F1,43=84, p<10−6, ANOVA r.m.). Importantly, despite the fact that the
slopes, and thus the relative weighting of the uncertain sources of information, differed
significantly between the pL and Pl conditions (Fig. 2B, p<1×10−4, W=0, Wilcoxon signed
rank test), estimation performance between these two conditions was matched (Fig. 2C and
Fig. S2C, p>0.05, W=31, Wilcoxon signed rank test). Even testing estimation performance
on each individual subject did not reveal any significant difference between these two
conditions (p>0.05 for each subject, corrected for multiple comparisons, comparing two
proportions test). Therefore, as noted below, a comparison of these two conditions should
provide a robust way to infer imaging-based differences between prior and likelihood
uncertainty, while minimizing potential confounds due to differences in general uncertainty,
performance, or reward expectation.

Prior and likelihood uncertainty have distinct neural representations
The uncertainty associated with the prior affects behavior (Fig. 2B). We thus wanted to ask
if and where it affects BOLD activities (see SI for details). We found that areas more active
with increased uncertainty in the prior include putamen, amygdala, insula, and OFC (p<0.05
whole-brain corrected; family-wise-error (FWE) level; Fig. 3A). Cross-validated condition-
specific activation profiles (Fig. 3B) demonstrate that the activation in each of these regions
is specifically related with prior uncertainty, and not likelihood uncertainty. Please note that,
because in our design there is no “zero prior uncertainty” condition no real baseline exists,
and thus what is relevant in the activation profiles is the relative difference between
conditions. There was a significant main effect of prior uncertainty (all regions depicted are
significant at p<0.01, F>9; except left amygdala, with a p=0.059, F1,43=3.76; ANOVA r.m.),
with no significant main effects of likelihood (F1,43<0.73, p>0.05; ANOVA r.m.). Even if
we use a two-fold cross-validation, the same results still hold (see SI for details). We did not
find any imaging evidence of an interaction between priors and likelihoods (for additional
tests and controls, see SI and Fig. S3A). Areas more active with low prior uncertainty (i.e.
more active with increased precision/confidence) encompassed the caudate nucleus,
prefrontal cortex and areas adjacent to the anterior cingulate cortex (see Fig. S3B). Together,
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these results suggest that wide regions of the brain, primarily outside of the traditional
sensory-motor pathway, encode prior uncertainty.

Given that activity related to prior uncertainty encompassed a wide set of regions, we
wanted to know if the uncertainty associated with the currently presented stimulus (the
likelihood uncertainty) leads to activity in the same areas. We should expect that a neural
representation exists, given that likelihood uncertainty also affected behavior (Fig. 2B).
Areas more active with high vs. low likelihood uncertainty were localized to bilateral
regions of superior occipital visual cortex (p<0.05 FWE corrected; see Fig. 4) and nowhere
else in the brain at this threshold (see SI and Fig. S4A for controls). Taking advantage of the
fact that the degree of likelihood uncertainty differed on every trial (where greater dot
dispersion corresponded to higher visual variance and higher likelihood uncertainty) and that
the between-trial variability in dot position produces some overlap between the low and high
likelihood uncertainty groups (see SI and Fig. S4B-C), we also implemented a parametric
fMRI model to test whether dot-dispersion variance modulated the same areas of occipital
cortex on a trial-by-trial basis. This model revealed the same bilateral activations in the
superior occipital visual cortex. These activations increased parametrically with the increase
in likelihood uncertainty, had a higher level of significance and extended all the way to the
calcarine sulcus and lingual gyrus (p<0.05 FWE corrected; Fig. 4C). Likelihood uncertainty
in our task thus seems to affect BOLD signal mainly in areas corresponding to the early
stages of the visuomotor pathway.

Correlations across subjects between prior-related behavior and activations
Thus far, we have analyzed how the two factors, prior and likelihood uncertainty, affect
activities in the brain, and identified a small number of key regions. For those analyses we
did not use observed behavior but rather the experimentally and mathematically defined
uncertainties. However, if any of these brain regions are involved in the decision making
process then we should expect them to be correlated with behavioral variance across
subjects (see also Experimental Procedures and SI).

We hypothesized that subjects who were able to better detect the changes in prior
uncertainty (i.e. those who changed more their behavior when the prior uncertainty changed)
could also show higher differences in brain activity between the two prior conditions. This is
indeed what was observed for both the right and left putamen (Fig. 5A-B, r=0.65 and r=0.61,
p<0.02, Spearman correlation) and the OFC (Fig. 5C, r=0.66, p<0.01, Spearman
correlation). The other reported areas (namely, amygdala and insula) did not show a
significant correlation. These results suggest that, besides tracking prior uncertainty,
putamen and OFC might be directly related with behavioral change.

We also wanted to look for a behavioral measure that could represent a specific “personality
trait”. The average slope of a subject (averaged over the four conditions) can provide such a
measure, as a higher value indicates that subjects on average tend to rely more on current
sensory information and less on prior knowledge, and vice versa. Indeed, as we have seen
above, subjects varied behaviorally in how much, on average, they relied on prior
information (see Fig. 2), and also varied in their mean fMRI activation response to
uncertainty in prior-related brain areas (see Fig. 3). We found that this average slope was
positively correlated with the degree of differential brain activation in the right putamen
(Fig. 5D, r=0.66, p<0.01, Spearman correlation). Note that the effect in the putamen (in
terms of difference between conditions) is actually the highest compared to the other brain
areas (see Sup. Table S1). This finding raises the possibility that a general higher
involvement of the putamen in the task, potentially by signaling greater prior uncertainty,
may enhance learning from new sensory information, and therefore subjects in whom the
putamen is more engaged tend to rely more on new than in prior information.
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Online representation of Bayesian slopes
We wanted to ask how the brain computes prior versus likelihood information online in
order to arrive at a sensorimotor decision. For that decision, at each trial the subject needs to
decide how much to weigh the likelihood relative to the prior. If subjects behave as
predicted by Bayesian statistics, then this slope can be estimated for each trial (see
Experimental Procedures and SI for details). Testing for a correlation between this
“instantaneous Bayesian slope” and BOLD activation, we found significant decision related
activations in the prefrontal cortex (PFC), roughly in Brodmann area 9 (p<0.0001 unc., see
Fig. 6). This finding suggests a possible role of prefrontal cortex in combining prior and
likelihood information to estimate the target’s position.

DISCUSSION
In this study we tested where prior and likelihood uncertainty are represented in the brain.
We were particularly interested in knowing: 1) Are prior and likelihood uncertainty
represented in the same set of areas? 2) Is uncertainty for visuomotor tasks represented in
the traditional visuomotor pathway or in specialized areas? By combining a psychophysical
paradigm with fMRI analysis in which two of the conditions were matched for performance
and posterior uncertainty, we could disentangle the specific effects of prior and likelihood
uncertainty. We found that greater prior uncertainty evoked increased brain activity in
specialized brain areas that include the putamen, amygdala, OFC and parts of the insula. In
contrast, greater likelihood uncertainty primarily affected neural activities in the occipital
cortex, in areas that belong to the traditional visuomotor pathway. Prior and likelihood
uncertainty were thus represented in largely non-overlapping areas, highlighting the
importance of distinguishing between these kinds of uncertainty.

There are numerous reasons why the brain could use a strategy where prior uncertainty is
processed in these specialized brain areas. Computationally, the forming of a prior results
from integration over time, requiring long-term memory, and may be more difficult to
implement in domain-specific sensory/motor brain areas. Anatomically, OFC, amygdala,
putamen and insula receive inputs from sensory areas, which are needed to build a prior, and
project to motor effector systems in the brainstem and cortex[12, 24-26] which are needed to
use the prior. These connections may allow the optimization of behavior in the context of
varying prior uncertainty and, if the prior is too uncertain, facilitate behavior change to
gather relevant new information[26]. Additionally, these areas are connected or even
directly involved with reward processing[11, 21, 24], and could thus more easily combine
the need for more information with its potential value. Moreover, previous research has
highlighted their involvement in uncertainty in reward[12, 17, 18, 20, 27] and, more
specifically, in signaling ambiguity and the need to learn more about the world[13]. Thus,
computational demands, anatomical connections, and previous research support the
involvement of these areas in signaling prior uncertainty.

Likelihood uncertainty, in contrast, was associated with activations in areas that are part of
the traditional visuomotor pathway. Our task is visual, and thus information about the task is
also transmitted through the same route. Hence, these results concur with the hypothesis
presented by theoretical models, such as probabilistic population codes and sampling
theories[8, 10], that likelihood uncertainty is part of the inherent code by which neurons
transmit information. According to these models, the activity of the same neurons transmits
information (e.g. the position) along with uncertainty about this information. From a
computational perspective, sensory information needs to be continuously used to calculate
estimates of likelihood uncertainty[4] and hence sensory areas seem best suited for this
ongoing update. Indeed, previous studies in human visual perception have also found that
uncertainty affects brain activity in the corresponding sensory areas[28, 29], and, moreover,
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they found that activity in visual areas was higher when the visual stimulus was more
uncertain[28, 30, 31]. This occurred for random/ nonrandom dot motion[31], incoherent/
coherent shapes[30] and blurry/non-blurry images[29], indicating that the effects observed
are not exclusive to the particular stimulus we used. Together, our results suggest that
likelihood uncertainty about a visual stimulus may be processed along with the stimulus
itself in the visual cortex.

For Bayesian decision-making, the brain needs not only to compute prior and likelihood
uncertainty, but also to use them for appropriate weighting of both pieces of information.
Activity in the brain areas where this occurs should then relate to these weights, which
depend nonlinearly on both uncertainties. We found that an area in the PFC tracks the trial-
by-trial weight on current vs. prior information. This area would then be a candidate area to
receive information from both prior and likelihood uncertainty and calculate accordingly
how much weight should be placed on new information. Indeed, the PFC is known for its
role in planning and cognitive control[32] and, interestingly, has even been specifically
associated with Bayesian decision-making[33]. Our results thus suggest how a network of
brain areas may give rise to Bayesian instantiations of perception and behavior.

Although our study focused on the integration of priors with visual information, uncertainty
may be represented differently for other sensory modalities or tasks. Our task dealt with a
new, rapidly acquired prior over a series of trials, in which subjects, during each trial, had
unlimited time to make a decision. Hence, it can be considered a cognitive task. Studies
using different kinds of tasks, but that were also cognitive, have previously associated the
prior-uncertainty areas identified here with decision-making and reward uncertainty[11, 18,
20, 34], making it more likely that our results would hold for other types of cognitive tasks
as well. However, it is possible that other types of priors, such as the ones involved in early
sensory perception (e.g. “light from above”), which might have been learned over many
years (or even generations), have distinct representations[35]. As for likelihood uncertainty,
if indeed it is transmitted concurrently with the sensory information itself, then a non-visual
task should activate non-visual brain areas. Interesting future studies could help to answer
these questions, for example by applying a computationally equivalent task in which the
sensory feedback information given is not visual but, say, olfactory or auditory; or by
implementing a faster/more unconscious sensory perception task.

The association of specific brain areas with prior uncertainty and potentially with subjects’
individual tendency to rely on new sensory information (as is the case for putamen) may
have implications for the understanding of learning disabilities and abnormal decision-
making behavior. Learning, in a Bayesian sense, can be interpreted as the weight given to
new evidence over prior beliefs[36]. If the prior is more certain then less learning from new
information should occur, and vice versa[36]. Changes in the brain areas that represent prior
uncertainty might then lead for example to an underestimation of prior uncertainty,
potentially affecting learning from new information. Interestingly, it has been found that
patients with damage to the amygdala[34], OFC[13], insula[37] and putamen[38] show
considerable deficits in making decisions that involve uncertainty and learning from
feedback, and that the existence of intact connections between these structures is essential
for learning from new sensory information[39, 40]. If indeed one of the reasons why these
deficits occur is based on an underestimation of prior uncertainty, then these could
potentially be reversed by providing more certain current sensory information or by giving
explicit information about prior uncertainty.

The finding of the areas involved in prior and likelihood uncertainty representation provides
insight for an ongoing debate in the computational literature: is uncertainty part of the
general code by which neurons exchange information and thus encoded in every neuron’s
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output[8, 10], or are there specialized areas that deal with the encoding of uncertainty[9,
11-13]? Our findings suggest that both of these hypotheses might be correct, but for
different kinds of uncertainty: likelihood uncertainty seems intrinsically embodied in the
stimulus encoding itself, as it is represented in sensorimotor areas, while prior uncertainty is
encoded in specialized areas. Future models of brain function should take into account
uncertainty in the prior and in the likelihood separately, since both their neural
representations and their behavioral effects are distinct.

EXPERIMENTAL PROCEDURES
Subjects

Twenty-seven healthy subjects (12 women; age range 19-35 years; mean age=27 years)
participated in the experiment. Of these, 17 participated in the fMRI experiment, from which
data from 15 were used (9 women). All participants were right-handed, had normal or
corrected-to-normal vision, were naive to the goals of the experiment, signed consent forms
and were paid to participate. Subjects that only performed the behavioral part of the
experiment were paid $20. Subjects that performed both the behavioral and the fMRI parts
of the experiment were paid $70. All protocols were approved by the Northwestern
University IRB.

Behavioral task
Subjects performed a decision-making task, which consisted of guessing the position of a
hidden coin on a screen, in a task similar to one described in prior studies[6, 22]. Subjects
were told the cover story of a coin being tossed into a pond and informed that their task was
to guess where the coin had fallen. They could not see the coin, but they could see 5 blue
dots that were the “splashes” produced by the coin falling in. They were told that the person
who threw the coin aimed, albeit imperfectly, at the center of the screen (mean of prior).
They were also told that, between blocks, the thrower changed, and the new one might be
better or worse at throwing (i.e. they were indirectly informed that the variance of the prior
changed). To estimate the coin position, subjects could use (although they were never
explicitly told so) both the coin position’s likelihood, obtained from the “splashes”, and its
prior (the distribution of previous coin locations). There was no temporal deadline.

Stimuli
The position of the coin was drawn from a Gaussian distribution, centered on the center of
the screen with a standard deviation (std) that was either low (σp=2.5% of screen width) or
high (σP=8.5% of screen width). This distribution was the prior of the experiment. Subjects
were given the mean of the prior (“the coin throw is aimed at the screen center”) but not its
variance, which they could only estimate from the distribution of previous coin throws. The
standard deviation of the prior was kept constant within blocks, but changed across blocks.
On every trial, a cluster of five dots was shown on the screen. The x-position of each of
these dots was drawn independently from a second Gaussian distribution in which the mean
was the coin’s horizontal location on that trial and the standard deviation was either low
(σl=6%) or high (σL=15%). The distribution of these five dots defined the likelihood. The
std of the likelihood was varied pseudo-randomly from trial to trial but counterbalanced
across trials. We made the std of the likelihood vary pseudorandom from trial to trial so that
subjects could not predict a priori the overall uncertainty that the trial would have. In total
there were thus four conditions: low prior uncertainty and low likelihood uncertainty (pl);
low prior uncertainty and high likelihood uncertainty (pL); high prior uncertainty and low
likelihood uncertainty (Pl) and high prior uncertainty and high likelihood uncertainty (PL).
See SI for more details.
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Procedure Behavioral session
See SI for details.

Procedure fMRI session
From the 27 subjects recruited for the behavioral task, 17 were asked to return and perform
the same task while undergoing fMRI (See SI for details).

Data Analysis
We used a Bayesian model to understand the behavior of the subjects in our task (see SI for
details).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Determines the neural correlates of two important Bayesian statistics parameters

• Likelihood uncertainty is represented in the associated sensory pathway (visual)

• In contrast, prior uncertainty is represented in putamen, amygdala, insula and
OFC

• Activity in putamen correlates with subjects’ tendency to rely on prior
information
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Figure 1. Experimental setup
(A) Illustration of the task. Subjects guess the position of a hidden target (the “coin”,
represented by the yellow dot) using a net (vertical blue bar) which they can displace
horizontally. At the onset of each trial, subjects receive noisy information about the position
of the hidden target in the form of a set of 5 blue dots (the likelihood). Subjects then move
the net to the guessed position and press the mouse button to confirm their choice, after
which the true target position is displayed. If the target is inside the net, the score increases
by one point (see also SI and Fig. S1). A new trial then begins 1500 ms later. Left:
illustration of the computer display that was presented to the subjects. Right: typical time
course of a trial. (B) The 4 conditions of the experiment. The experiment consisted of a two-
by-two factorial design, with two types of prior (p=narrow prior; P=wide prior) and two
types of likelihood (l=narrow likelihood; L=wide likelihood). The wider conditions are the
ones with more associated uncertainty.
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Figure 2. Behavioral results
(A) Estimates of the target position for one representative subject are shown as a function of
the centroid of the displayed dots (likelihood). Displayed next to the graphs is the slope
value of the linear regressions (solid line). The dashed line represents what the linear
regression would look like if the subject only used likelihood information (slope=1). The
horizontal dotted line represents a potential situation in which only prior information is
taken into account (slope=0, localized at 0.5 which is the middle of the screen and the mean
of the prior). (B) Average slope of the linear regression for the behavior of the 15 subjects
during the scanning session, separated by condition. The slope quantifies the degree to
which subjects rely on the current visual stimulus (likelihood) vs. the prior. The small blue
rectangles represent the optimal Bayesian values (see Supplemental Experimental
Procedures for details). (C) Average proportion of trials in which the subject accurately
guessed the position of the target, separated by condition. Error bars in (B) and (C) represent
95% confidence intervals for the mean (s.e.m.). Inset shows that there is a significant effect
of both prior and likelihood uncertainty. n.s.= non-significant, p>0.05; *** significant,
p<0.001. See also Fig. S2.
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Figure 3. Brain regions more active during wide (more uncertain) prior conditions
(A) Stronger activations associated with high (vs. low) prior uncertainty were seen
bilaterally in the putamen, amygdala, insula (top; y=0), and OFC (bottom; y=26). Functional
activations are overlaid on coronal sections of the average of each subject’s T1-weighted
structural brain scan (display threshold at p<0.0001 unc., minimum 10 voxels; n=15).
Activity in the right insula and left OFC appears at a less stringent p-value (p<0.001; not
shown). In this and all subsequent figures, the right side of the brain corresponds to the right
side of the image. (B) Percent signal change (PSC) by condition in the areas represented in
(A). Data were extracted from the peak (most significant) voxel in each cluster using a
leave-one-subject-out cross-validation procedure (see Supplemental Experimental
Procedures for details). Plots represent the subject-averaged parameter estimates converted
to PSC for the four conditions (n=15). Error bars represent standard error of the mean
(s.e.m.). See also Fig. S3.
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Figure 4. Brain regions more active during higher likelihood uncertainty conditions
(A) Stronger activations associated with high (vs. low) likelihood uncertainty were seen
bilaterally in the superior occipital cortex (z=22). Functional activations are overlaid on the
axial section of the subject-averaged scan (n=15). (B) Condition-specific percent signal
change in the left occipital area shows a main effect of likelihood uncertainty significant at
p<0.0001, with no significant main effect of prior (p>0.05). Data were extracted using a
leave-one-subject-out cross-validation procedure. The same results hold if using a two-fold
cross-validation procedure. The data plot represents the average parameter estimates
(±s.e.m., cross-validated) converted to percentage signal change for the four conditions. (C)
Brain regions parametrically correlated with higher likelihood uncertainty. Stronger
activations associated with a parametric increase in likelihood uncertainty (standard
deviation of the displayed dots at each trial) were seen bilaterally in the superior occipital
cortex, extending down all the way to the calcarine sulcus and lingual gyrus (y=−88; z=22).
Functional activations are overlaid on the axial (up) and coronal (down) sections of the
subject-averaged scan (for all functional activations shown, display threshold is at p<0.0001
unc., minimum 10 voxels; n=15). See also Fig. S4.
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Figure 5. Relationship between prior uncertainty-related brain activity and behavioral measures
(A-C) Prior uncertainty differences in activation for individual participants at the right
putamen (A; peak at 30, −2, −2), left putamen (B; peak at −22,0,4) and OFC (C; peak at
22,26,−12) are regressed against individuals’ sensitivity to prior change. Presented on the
graphics are the respective Spearman correlations. (D) Prior uncertainty differences in
activation for individual participants at the right putamen (peak at 30, −2, −2) are regressed
against the average weight given to likelihood vs prior information (the slope). Presented on
the graphic is the respective Spearman correlation.
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Figure 6. Brain regions parametrically correlated with the instantaneous Bayesian slope
Stronger activations associated with a parametric increase in the instantaneous Bayesian
slope (a measure that indicates how much the subject weights prior and likelihood
information, at each trial) were seen in the right superior medial prefrontal cortex (y=48;
z=32). Functional activations are overlaid on the coronal section (left) and axial (right)
sections of the subject-averaged scan (display threshold at p<0.0001 uncorrected, minimum
10 voxels).
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