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Deep tissue imaging has become state of the art in biology, but now the problem is to quantify spatial information in a global,
organ-wide context. Although access to the raw data is no longer a limitation, the computational tools to extract biologically
useful information out of these large data sets is still catching up. In many cases, to understand the mechanism behind a biological
process, where molecules or cells interact with each other, it is mandatory to know their mutual positions. We illustrate this
principle here with the immune system. Although the general functions of lymph nodes as immune sentinels are well described,
many cellular and molecular details governing the interactions of lymphocytes and dendritic cells remain unclear to date and
prevent an in-depth mechanistic understanding of the immune system. We imaged ex vivo lymph nodes isolated from both wild-
type and transgenic mice lacking key factors for dendritic cell positioning and used software written in MATLAB to determine
the spatial distances between the dendritic cells and the internal high endothelial vascular network. This allowed us to quantify
the spatial localization of the dendritic cells in the lymph node, which is a critical parameter determining the effectiveness of an
adaptive immune response.

1. Introduction

In recent years, 3D optical imaging techniques have become
popular (confocal microscopy, two-photon microscopy,
SPIM, OPT, and multifocel microscopy) [1–4]. Most of them
have become standard imaging techniques. There has also
been a concurrent trend towards high-resolution imaging
(SIM, STED, PALM, and STORM) [5–8]. These are all
capable of producing huge amounts of data in form of
3D data sets. But as the questions asked and the data sets
generated to address them are often very diverse, there are
few general interpretation tools available. There are a number
of standard image processing programs, both commercial
(Imaris, Volocity, Huygens, etc.) [9–11], freeware (MevisLab,
Drishti, etc.) [12, 13], as well as open source (Fiji, ImageJ,
ICY, BioImageXD, etc.) [14–17]; however, they are mostly
designed for visualization and some common analysis. Often
the tools or algorithms required to analyze a given data set

are not available off-the-shelf and must be implemented in-
house by the user. Quantification and spatial localization
in 3D data sets can tell us about interactions of the
structures imaged, which can be essential for deducing the
mechanisms underlying features visible in the images. Pure
data visualization in itself is often extremely informative, but
quantification and statistical analysis of the data can indicate
features or trends that are not readily apparent by visual
inspection.

During adaptive immune responses, specialized cells
located in the dermis called dendritic cells (DCs), use
lymphatic vessels to transport pathogen-derived material to
draining peripheral lymph nodes (PLNs), where they activate
T lymphocytes located close to the center of lymphoid tissue
(the T-cell zone or paracortex). DC migration from skin
to PLN requires expression of the promigratory receptor
CCR7, which responds to secreted protein ligands CCL19
and CCL21 expressed both in lymphatic vessels as well as in
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the T-cell zone [18]. During their journey, dermal DCs need
to cross the endothelial layer forming the lymphatic vessel
lumen in the dermis. After a largely passive transport to the
most proximal draining PLN, DCs cross a second barrier
in the outer rim of PLN, the subcapsular sinus (SCS) [19].
CCR7 is thought to be involved in both the entry of dermal
DCs into lymphatic vessels as well as their transmigration
through the SCS into the deep T-cell zone. Experimentally,
this process can be recapitulated by subcutaneous injection
of in vitro activated DCs, which then migrate within the
following 12–36 hours towards the nearest draining PLNs.
Although such experiments uncovered an absolute require-
ment for CCR7 during this process, the precise contribution
of CCR7 and its ligands for either of the two processes—
lymphatic entry versus SCS egress—has thus far not been
thoroughly investigated.

We use selective plane illumination microscopy (SPIM)
to generate 3D voxel data sets of fluorescently labeled DCs
and high endothelial venules (HEV) in mouse lymph nodes.
To analyze this data, which has sufficient resolution to resolve
single DCs, we have implemented an algorithm in MATLAB
to quantify the spatial distributions of DCs and HEV within
the intact lymph node. We have used this algorithm to
compare the spatial distributions between wildtype mice and
the plt/plt mutant, which lacks the ligands for the CCR7
receptor. This allows us to quantify not only the number of
DCs in each PLN—a measure of their ability to migrate from
the dermis to the lymph node—but also their distribution
within the organ, which allows us to determine how effective
the DCs are at finding their way to the T-cell zone.

2. Materials and Methods

To achieve high-resolution imaging deep within intact
organs (millimeter-sized objects) or tissues [20], SPIM is the
most convenient imaging technique [2]. This technique is
based on illuminating fluorescent markers in the following
way: a laser light sheet penetrates the whole sample, illumi-
nating one plane in the imaged tissue. The emission signal
of the fluorophores is detected orthogonal to the incoming
light sheet. As only fluorophores located in the plane of the
light sheet are excited, we attain optical sectioning. Scanning
the sample through the light sheet results in a 3D voxel data
stack. An important prerequisite for this kind of imaging is
to have a transparent sample; as is the case for the lymph
nodes investigated in this study, if the tissue is opaque in
its native state, it has to be cleared chemically, enforcing ex
vivo imaging. For more detailed information about SPIM,
see [2]. Labeling distinct features in the sample with different
fluorescent markers generates 3D datasets with multiple
channels. We applied the SPIM technology to locate and
quantify leukocyte subpopulations and vascular networks
in intact murine lymphoid tissue in order to examine the
usefulness of our imaging approach to a biologically relevant
issue. In particular, we tested the relevance of CCR7 ligands
in lymphatic vessels and in the deep T-cell area for efficient
DC accumulation.

To quantify DC accumulation and their relation to
the HEV, the distances to the center of the PLN and the
distance to the closest neighboring HEV are calculated. The
nearest neighbor calculation necessary for finding the closest
HEV is done by creating and comparing voxel lists, lists
of the coordinates of the centers of mass (CoMs) of the
segmented DCs, and of all the segmented voxels within the
HEV. After segmenting and filtering for intensity and size,
for every object p of CH1 (DCs) the coordinates of its
CoM is compared to the coordinates of all signal-containing
voxels i of CH2 (HEV), and their respective distances are

calculated as (dp,i =
√

(xp − xi)
2 + (yp − yi)

2 + (zp − zi)
2 is

the Euclidian distance between the CoM of object p (CoMp)
and voxel i of CH2). The minimum distance of every object
p to a CH2 voxel, mini(dp,i), is then used to construct the
histogram. Note, that the method presented is fast only for
sparse datasets (which applies here) but is not the most
efficient regarding nearest neighbor search (NNS) in general
(e.g., an Octree approach would be faster in denser cases).
For details, see Section 3 . The calculation of the distance to
the center of the lymph node works similarly: we assume the
center of the PLN to be the CoM of the HEV (CoMHEV) and
then calculate dist (CoMp, CoMHEV) for every object p. CH2
effectively becomes a one-element voxel list, that one element
being CoMHEV.

Generation of dendritic cells from bone marrow
(BMDCs) and PLN sample preparation was done as follows:
DCs were generated by culturing bone marrow cells from
tibias and femurs of C57BL/6 mice for 7-8 days in RPMI
1640/10% fetal calf serum (FCS) supplemented with FLT3
ligand as DC maturation agent. During the final 24 hours
of culture BMDCs were stimulated with lipopolysaccharides
(LPS) (1 µg/mL; Sigma). Activated BMDCs were harvested
from the plates by vigorous pipetting and washing with
phosphate-buffered saline (PBS) w/o Ca2+ and Mg2+. Acti-
vation and phenotype of BMDCs were confirmed by flow
cytometry staining with the DC markers CD11c (HL3),
CD11b (M1/70), and CD86 (GL1) mAbs. Harvested BMDCs
in RPMI1640/10% FCS were labeled with CellTracker
Orange (CMTMR; 5 µM for 30 min), washed and injected
subcutaneously (1 × 106 in 20 µL RPMI 1640/10% FCS)
into the hind footpads of sex-matched recipient C57BL/6
mice or C57BL/6plt/plt mice. One day after BMDCs transfer,
10–15 µg of Alexa594-coupled MECA-79 mAb was injected
intravenously into recipient mice in order to visualize the
HEV network in lymph nodes. Twenty minutes later, mice
were sacrificed, the footpad-draining popliteal PLNs were
excised and fixed in 0.4% PFA/PBS over night. Fixed PLNs
were transferred to ice-cold PBS and cleaned carefully from
the surrounding fat tissue under a stereomicroscope. Cleaned
and fixed PLNs were stored in 0.1% sodium azide/PBS at
4◦C before dehydration in methanol and clearing in BABB
as described [21].

3. Results and Discussion

We imaged entire draining PLNs isolated from mice that
had received preactivated and fluorescently labeled DCs 18 h
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Figure 1: Images of PLNs from wildtype (a), (c), and (e) and plt/plt mutant mice (b) and (d), (f). HEV, red; DCs, green. (a), (b) Maximum-
value projections through the voxel data sets. The inset in (a) shows a higher magnification of the region indicated. White arrowheads show
the approximate positions of the afferent lymphatic vessels through which the DCs enter the PLNs. (c) and (d) Representative optical slices
through the central regions of the lymph nodes shown in (a) and (b). (e) and (f); surface renderings of the data in (a) and (b).

before the mice were sacrificed (our first channel: CH1). In
addition, we imaged the PLN-specific extensive postcapillary
network of HEVs as an anatomical landmark (our second
channel: CH2). As seen in Figure 1, SPIM reconstructions
clearly identified single DCs, which were mostly located
towards the center of wildtype mouse PLNs. We were also
able to detect a streak of DCs from the central accumulation
to a location near the edge of the PLN, where the SCS is
located. This streak most likely reflects the path that central
DCs have taken after their arrival from the SCS towards the
central T-cell zone.

Manual inspection of the single slices gives an idea of the
relative distribution of the channels in this particular slice,
but it is difficult to capture the 3D context (Figures 1(c) and
1(d)). A maximum value projection creates an image that

shows more of the sample, but it is impossible to tell anything
about the third dimension (Figures 1(a) and 1(b)). We
developed an algorithm to quantify the distance of adoptively
transferred DCs to the nearest point in the HEV network, as
well as to the center of the PLN as a surrogate marker for
accumulation in the deep T-cell area. To process the data, the
algorithm pipeline (Figure 2) uses standard image processing
methods, like 26-connectivity for segmentation of objects
and CoM or Volume (V) calculations for the segmented
objects. Intrinsic knowledge about the object size is used
to discard signal which survived the intensity thresholding
process. The choice of the threshold level influences the
accuracy and precision of CoM estimation [22], but will be
discussed later. In the left path of the processing pipeline
(CH1, where the data of the DCs is processed), small objects
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Figure 2: Flow diagram of the quantification algorithm. In the left path (green) dendritic cells are processed, in the right path (red), the
vasculature data. The actual nearest neighbor search is done in the unified path (yellow). Abbreviations: center of mass (CoM), volume (V),
peripheral lymph node (PLN).
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either originate from pixel errors, tissue autofluorescence,
or other artefacts, whereas large objects can be fluorescent
impurities (e.g., dust) that have been embedded during the
sample mounting procedure [23]. Both cases have to be
excluded, leaving a window for objects in the size regime of
DCs. We have been conservative by specifying a window of
3.2 µm to 18.5 µm for the DC diameter counting as a valid
signal, as the average DC diameter is about 12 ± 2µm [24].
In the right path in Figure 2 (CH2, HEV), there should be
ideally only one object, because it is a network of connected
tubes penetrating the whole PLN. As a result, small objects
can be excluded in the downstream calculations for CH2.

To explore the impact of the receptors for CCR7 on
immune function within the lymph node, we took advantage
of the C57BL6plt/plt (plt/plt) mice, a naturally occurring
mutant mouse strain, which lacks CCL19 and CCL21 protein
in the T-cell zone in PLN, while maintaining expression of
a second CCL21 isoform in lymphatic vessels. Although it
has been previously reported that subcutaneously injected
DCs accumulated with lower efficiency in the T-cell zone of
plt/plt PLNs as compared to wild type PLNs [25], it remains
unclear to what extent the decreased accumulation of DCs in
plt/plt PLN was due to impaired entry into dermal lymphatic
vessels versus decreased migration through the SCS barrier.
Therefore, we performed experiments where equal numbers
of DCs as used in wild type mice were injected into the
footpads of plt/plt mice, followed animal sacrifice 18 h later
and subsequent SPIM analysis.

Our whole-organ data revealed a significantly overall
reduced number of DCs in plt/plt PLN, suggesting that
migration of DCs into dermal lymphatic vessels was reduced
in the plt/plt mice (in our case we have 5700 and 7934
identified cells for the wt/wt mice compared to 2318 and
427 cells in the plt/plt mice). More importantly, the 3D
spatial distribution of DCs within plt/plt PLNs differed
dramatically from wild types, with most DCs retained in
the outer area in close proximity to or within the SCS. The
distinct distributions for the wild type and plt/plt PLNs in the
histograms in Figure 3 clearly show this effect. For the wild
type (Figures 3(a) and 3(c)), the mean distance of the DCs
from the center of the PLN is 330 ± 130µm, whereas for the
plt/plt (Figures 3(b) and 3(d)) it is 500± 150µm. This result
is clear despite the fact that plt/plt PLNs are generally smaller
than those in wild type mice. Note that the specification of
the center of the PLN is a rough estimate. It does not have to
be precise in terms of specifying a real spatial center, so that
first our assumption to take the HEV for calculations holds
and secondly aiming for higher accuracy becomes obsolete.

To further quantify the difference between the behaviors
of DCs in wild type and mutant PLNs, we assessed the
distribution the DCs have concerning their minimal distance
to the next HEV, so that we have a NNS-problem in a 3D
dataset. The chosen method (comparing voxel coordinates)
is a tradeoff between computational cost and implementa-
tion time. It is a type of linear searching and is the simplest
approach to the NNS, as it has no spatial dependencies
to consider (we operate in a one-dimensional space where
only distances are considered). For the PLNs used in this
study, generation of the samples and their preparation and

scanning were a process requiring several days, whereas the
computational analysis performed with our algorithm typi-
cally required tens of minutes per sample. Thus, calculation
time is not the limiting factor in throughput in our system,
so a linear search algorithm is completely satisfactory. If
applications arise requiring reduced computational time, a
more efficient algorithm regarding computation time could
easily be implemented such as the use of octrees [26], or, as
we look for Euclidian distances, a method similar to the vp-
tree algorithm [27, 28].

In the wild type, DCs are expected to migrate from
their point of entry to paracortex (or T-cell zone), where
they will interact with T-cells to enable an adaptive immune
response. However, this migration is dependent on DC
response to the chemoattractant CCL21, which is generated
in the paracortex of wildtype PLN but absent in the plt/plt
mutant. We observe that the DCs in plt/plt mice, which
remain located close to their entry point—the peripheral
SCS—have both a smaller mean distance to the HEV (Figures
4(b) and 4(d)) and a larger distance from the center of the
lymph node (Figures 3(b) and 3(d)). They do not migrate
away from the peripheral region with its high HEV density (it
can be observed in Figure 1(d) that the HEV is very dense in
the periphery of the plt/plt PLN). With 39±31µm, the plt/plt
mean distance is much smaller compared to the wt/wt mean
distance of 66±31µm. The broader distribution in the wt/wt
(compare Figures 4(a) and 4(c) to Figures 4(b) and 4(d)) is
caused by DCs located both in the deep T-cell zone in the
core of the PLN (where the HEV network is not as dense as
in the periphery) and near the SCS (where the network is
very dense).

To validate our algorithm, we digitally dissected regions
of interest from the PLOs that were small enough for manual
counting of the DCs by visual inspection. Comparison of
the manual counts with the results of our algorithm yielded
agreement to within 2-3% (data not shown). We attribute the
discrepancies to statistical variations in the DC signal levels
and to the difficulty in distinguishing DCs that are very close
together. In any event, these small errors in DC identification
are not expected to have a significant effect on the results
of our analysis. The error induced by the CoM calculation
to determine positions of the DCs is small as we have an
almost spherical shape and a highly specific staining with
a pronounced signal. The thresholding process influences
the discretization bias and the averaging bias [22], but the
induced error is small compared to the measured distances
and does not affect our conclusions. For the same reason, we
did not aim for higher precision in localization using more
sophisticated localization methods.

4. Conclusions

In order to draw conclusions about the mechanisms behind
biological behaviors of interest, it is important to quantify
cell distributions comprehensively in an organ-wide context.
Quantification of spatial localization can be crucial for
proper understanding of the mechanisms of interactions
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Figure 3: Histograms of the distances from the DCs to the center of the PLN. (a) and (c) two representative wt-PLNs, (b) and (d) plt-PLNs.
The mean distance for the DCs in the wild type is smaller, indicating their location around the center of the PLN. In the plt/plt mutant,
DCs remain close to their entry point in the periphery of the PLN. The red vertical line marks the mean distance, the dashed lines mark the
standard deviation. (e) Schematic 2D depiction of the extent of the PLN (red) and DCs (cyan). The distances between the CoMs of the DCs
and that of the PLN are indicated by white arrows.

between distinct components of an organ. We have demon-
strated the application of quantitative computational analysis
to an immunological question, which could be used to study
3D cell-based mechanisms in general. Fast and reliable statis-
tics on 3D properties like the mutual distances of interacting
members of distinct sets of cell types and/or morphological
features in large data sets acquired in spatially extend organs

or tissues can help to reveal underlying mechanisms and their
functional significance. Our data quantifies the differences
in the behavior of DCs in wild type and plt/plt mouse
PLNs. It indicates that both the transport of DCs to PLNs
(as shown by the approximately 80% reduction of DCs
found in plt/plt PLNs), and their subsequent migration
within these organs (as indicated by the quantification of
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Figure 4: Histograms of the distances from the DCs to closest HEV, for the same PLNs as Figures 3(a) and 3(c) wt-PLN, (b) and (d) plt-PLN.
Mean distance for DCs in wt-PLN is much larger than for the plt/plt mutant, reflecting the high density of the HEV in the periphery. The
red vertical line marks the mean distance, the dashed lines mark the standard deviation. (e) Schematic 2D depiction of the HEV (red) and
DCs (cyan). The minimum distances between the CoMs of the DCs and the HEV are indicated by white arrows and dashed circles.

the distribution of the DCs, in particular the approximately
50% increased distance from the center of the PLN) is
compromised in the mutant mice. The approach can be
applied to a wide range of biological and medical questions
in context of disease mechanisms, especially considering
that data from novel deep tissue imaging techniques such
as SPIM are now becoming accessible. In particular, our
results now make previously challenging venues of research

feasible, such as the assessment of T-lymphocyte—DC
interaction frequencies with physiologically low numbers of
cells.
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