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Neurobiology of Disease

MeCP2 Is Critical for Maintaining Mature Neuronal
Networks and Global Brain Anatomy during Late Stages of
Postnatal Brain Development and in the Mature Adult Brain
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Mutations in the X-linked gene, methyl-CpG binding protein 2 (Mecp2), underlie a wide range of neuropsychiatric disorders, most
commonly, Rett Syndrome (RTT), a severe autism spectrum disorder that affects approximately one in 10,000 female live births. Because
mutations in the Mecp2 gene occur in the germ cells with onset of neurological symptoms occurring in early childhood, the role of MeCP2
has been ascribed to brain maturation at a specific developmental window. Here, we show similar kinetics of onset and progression of
RTT-like symptoms in mice, including lethality, if MeCP2 is removed postnatally during the developmental stage that coincides with RTT
onset, or adult stage. For the first time, we show that brains that lose MeCP2 at these two different stages are actively shrinking, resulting
in higher than normal neuronal cell density. Furthermore, we show that mature dendritic arbors of pyramidal neurons are severely
retracted and dendritic spine density is dramatically reduced. In addition, hippocampal astrocytes have significantly less complex
ramified processes. These changes accompany a striking reduction in the levels of several synaptic proteins, including CaMKII «/f3,
AMPA, and NMDA receptors, and the synaptic vesicle proteins Vglut and Synapsin, which represent critical modifiers of synaptic
function and dendritic arbor structure. Importantly, the mRNA levels of these synaptic proteins remains unchanged, suggesting that
MeCP2 likely regulates these synaptic proteins post-transcriptionally, directly or indirectly. Our data suggest a crucial role for MeCP2 in
post-transcriptional regulation of critical synaptic proteins involved in maintaining mature neuronal networks during late stages of

postnatal brain development.

Introduction

Mutations in the X-linked gene methyl-CpG-binding protein 2
(Mecp2) underlie most cases of Rett Syndrome (RTT), a postnatal
progressive neurodevelopmental disorder that manifests in girls
during early childhood. Several mouse models with germline
mutations in Mecp2 have been generated that recapitulate RTT
(Chenetal., 2001, Guyetal., 2001, Shahbazian et al., 2002). Other
studies have indicated that symptomatic MeCP2-null male mice
can be rescued by reactivation of global MeCP2 expression (Gia-
comettietal., 2007, Guy et al., 2007), suggesting that the neuronal
damage can be reversed. Recently, we and others have shown
that, in addition to neurons, MeCP2-dysfunction in glia also
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contributes to RTT (Ballas et al., 2009, Maezawa et al., 2009,
Maezawa and Jin, 2010), specifically to disease progression (Lioy
etal., 2011, Derecki et al., 2012).

In addition to the genetic studies, the impact of MeCP2 dys-
function on brain anatomy as well as neuronal structure and
function has been further supported by several studies indicating
that RTT patients and mice show increased neuronal cell density
(Kishi and Macklis, 2004), reduced brain size (Chen et al., 2001),
reduced dendritic arborization (Armstrong et al., 1995, Kishi and
Macklis, 2004, Ballas et al., 2009), and spine density (Belichenko
etal., 1994).

Although mutations in Mecp?2 arise in the germline, the onset
of overt neurological symptoms occurs at early postnatal stages
(typically 4—6 weeks of age in male mice) (Chen etal., 2001, Guy
etal,, 2001). This has led to the idea, supported most recently by
studies of the critical period in the visual system (Noutel et al.,
2011), that MeCP2 function is required for brain maturation
during a specific developmental window. Yet, why MeCP2 would
be critical at this specific postnatal stage and whether there is a
similar or different functional requirement for MeCP2 past this
stage is poorly understood. A recent study has shown that deple-
tion of MeCP2 in adult male mice results in manifestation of
RTT-like symptoms followed by lethality (McGraw et al., 2011).
However, the underlying mechanisms of symptom appearance at
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the adult stage were not examined. The present study addresses
these questions.

Specifically, we show that inducible postnatal loss of MeCP2
in mice at two different stages—late juvenile stage, which repre-
sents the time of onset of RTT, or adult stage—results in equal
manifestation of RTT-like symptoms, with immediate onset and
parallel kinetics of symptom progression and lethality. Our anal-
ysis of the brain of symptomatic male mice revealed that postna-
tal loss of MeCP2 in otherwise healthy mice, whether at late
juvenile or adult stage, results in severe abnormalities, which in-
clude global shrinkage of the brain, increased neuronal cell den-
sity, severe retraction of dendritic arbors, reduction in dendritic
spine density, as well as significant reduction in complexity of
astrocytic processes. Importantly, we show that the levels of sev-
eral synaptic proteins, but not the levels of the corresponding
mRNAs, are reduced dramatically, suggesting that MeCP2 likely
regulates these proteins post-transcriptionally, either directly or
indirectly.

Materials and Methods

Animals. All animal studies were approved by the Institutional Animal
Care and Use Committees at Stony Brook University and were in line
with the guidelines established by the National Institutes of Health.

CreER (B6.Cg-Tg(CAG-cre/Esr1)5Amc/J) and Mecp21‘”‘B/7 (Guyetal.,
2001) (B6;129P2-Mecp2tm1Bird/]) transgenic mice were obtained from
the Jackson Laboratory. CreER (B6.Cg-Tg(CAG-cre/Esrl)5Amc/J) mice
were maintained in a pure C57BL/6 background. The Mecp2'*®” mice
were backcrossed to C57BL/6 for eight generations. The Mecp2™”
(Ballas et al., 2001) (B6;129S4-Mecp2™*¢/Mmcd) transgenic mice were
obtained from MMRRC and were crossed as mix background. To gen-
erate the double transgenic Mecp2'™” /CreER males, heterozygous
MecpZI""” */CreER females, and all their control littermates (WT, CreER,
and Mecp2?” or Mecp2™” "), we crossed female mice heterozygous for
the Mecp2-lox allele (Mecp2'**) with male mice heterozygous for the
CreER transgene. A similar strategy was used to generate the Mecp2'*"”/
CreER males and all the necessary control male mice. The flox and Cre
sequences were identified by PCR on tail biopsies with the following sets
of primers: For Mecp2'®” allele; forward 5'-CAC CAC AGA AGT ACT
ATG ATC-3', reverse 5'-CTA GGT AAG AGC TCT TGT TGA-3'. For
MecpZI”"B allele; forward 5'-TGG TAA AGA CCC ATG TGA CCC AAG-
3’ reverse 5'-GGC TTG CCA CAT GAC AAG AC-3'. For the CreER
allele; forward 5'-CCG TAC ACC AAA ATT TGC C-3', reverse 5'-ATC
GCG AACATC TTC AGG-3'.

Tamoxifen treatment. Tamoxifen (Tam; Sigma) was prepared in the
vehicle solution consisting of 10% ethanol/ 90% sunflower oil (Sigma) by
sonication, and aliquots were stored at —20°C. Male or female mice (5 or
10 week old) were injected intraperitoneally with 100 mg/kg body weight
of tamoxifen or vehicle (Veh), daily for seven consecutive days. Excision
of the Mecp2lox cassette was verified by genotyping of tail biopsies using
the following primers: forward 5'-ATG CTG ACA AGC TTT CTT CTA-
3', reverse 5'-CAC CAC AGA AGT ACT ATG ATC-3'.

Phenotypic scoring and behavioral assays. Male and female mice were
scored weekly or biweekly, respectively. Mice were removed from their
home cage and placed onto a bench, at the same time during the day
when possible. The scoring was performed essentially as previously de-
scribed (Guy et al., 2007), with several modifications. Each of five symp-
toms was scored as 0 (symptom absent), 1 (symptom present), or 2
(symptom severe): Mobility: 0 = active without extended freezing pe-
riod. 1 = reduced movement and extended freezing period when first
placed on the bench. 2 = no spontaneous movement when placed on the
bench. Gait: 0 = as wild-type. 1 = hind legs are spread wider than
wild-type or display a “waddling” gait when walking or running. 2 =
more severe abnormalities: tremor when feet are lifted, walks backward
or “bunny hops” by lifting both rear feet at once. Hindlimb clasping:
When holding by the tail, mouse was scored 0 = legs splayed outwards.
1 = onelegis pulled into the body. 2 = both legs are pulled touching each
other or touching the body. Tremor: Mouse observed while standing on
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the flat palm of the hand. 0 = no tremor. 1 = intermittent mild tremor.
2 = continuous tremor or intermittent violent tremor. General condi-
tion: 0 = clean shiny coat, clear eyes, normal stance. 1 = eyes dull, coat
dull/ungroomed. 2 = eyes crusted or narrowed, piloerection, hunched
posture or fur loss and self-injury. Mice were also weighed at each scoring
session.

Behavioral assays. For all behavioral studies, the observer was blinded
to genotype.

Digiscan activity monitor. The mouse was placed in the center of an
empty rat cage (44 X 21 cm) situated inside an Opto-Varimex-Minor
animal activity meter (Columbus Instruments). Fifteen X 15 infrared
beams running in the x/y coordinates and 2 cm above the base of the
machine recorded beam breaks associated with ambulatory activity (con-
secutive beam breaks) and total activity (all beam interruptions) during
the 20 min observation period.

Rotarod. Mice were tested on a Medical Associates (model ENV-
575M) Rotarod and ran by the “rotarod” program on a Dell Optiplex
with a Windows 98 operating platform. The apparatus was a mechanized
30-cm-long rod divided into five 6 cm sections by four plastic white discs.
The speed of rotation increased from 4 rpm to 40 rpm through the course
of 5 min session. The latency in seconds to drop off the rotarod was the
main dependent measure of motor competence. Each mouse was tested
for three consecutive trials with a 10 min rest between each session.

Wire hang test. The mice were placed on a 44 cm long stainless steel
wire suspended 54 cm off the ground by two wooden posts so that only
their front paws contact the wire. The latency to fall onto a foam pad
below the apparatus was recorded. The maximum hang time was 60 s
before removal. Each mouse was tested on three consecutive trials with-
out resting.

Dowel assay. The tested mouse was placed in the middle of a wooden
dowel (diameter, 1 cm; length, 16 cm, 30 cm above the ground) and was
allowed to move freely. The latency to fall was measured for a maximum
time of 2 min.

RNA isolation and quantitative real-time PCR analysis. Total RNA was
prepared from tissue using TRIZOL Reagent (Invitrogen) and treated
with RNase-free DNase (Ambion, DNA-free kit). For reverse transcrip-
tion, AMV-RT (New England BioLabs) was used and quantitative real-
time RT-PCR was performed in an ABI StepOnePlus real-time PCR
system using SYBR-green PCR master mix (Applied Biosystems). The
relative abundance of the specific mRNAs was normalized to B-actin
mRNA. The specific primers used were as follows: Mecp2, forward 5'-
AGG CAG GCA AAG CAG AAA CAT CAG-3' and reverse 5'-TCA TAC
TTT CCA GCA GAT CGG CCA-3'; B-actin, forward 5'-GGC TGT ATT
CCC CTC CAT CG-3’ and reverse 5'-CCA GTT GGT AAC AAT GCC
ATG T-3'; for Synaptotagmin 1, forward 5'-GAA CTG CAT AAA ATC
CCA TTG CC-3' and reverse 5'-CAG CAG GTC ACG ACT AGA AGG-
3'; Vglutl, forward 5'-CCG GCA GGA GGA GTT TCG GAA G-3' and
reverse 5'-GTG CAG TCC ACC ACA GGC GG-3'; PSD-93, forward
5'-CTT GTG CAT GTG TCG GAA AAG-3' and reverse 5'-TCA GAG
GAG AGA TGT GAG ACT G-3'; CaMKII, forward 5'-CGT TTC ACC
GAC GAG TAC CAG-3' and reverse 5'-GCG TAC AAT GTT GGA ATG
CTT C-3'; CaMKlIl«, forward 5'-CGC ATC TGC CGC TTG TT-3' and
reverse 5'-TCC TCG GAG ATG CTG TCA TG-3'; NMDAR2A, forward
5'-AGC CCC CTT CGT CAT CGT AGA-3’ and reverse 5'-ACC CCT
TGC AGC ACT TCT TCA C-3'; GABABR2, forward 5'-ATG CAA TAA
AGT ATG GGC CGA A-3" and reverse 5'-CGC GAT GAT AGA GGT
GAC AGA-3'; for GluR2, forward 5'-TTC TCC TGT TTT ATG GGG
ACT GA-3' and reverse 5'-CCC TAC CCG AAA TGC ACT GTA-3';
GIuR3, forward 5'-GTG CAG TTA TAC AAC ACC AAC CA-3" and
reverse 5'-GAG CAG AAA GCA TTA GTC ACA GA-3'.

Western blot analysis. Protein extracts were prepared from different
parts of the brain using the modified Dignam method (Ballas et al., 2009).
Tissues were homogenized in a Dounce homogenizer with the loose
pestle, directly in high-salt lysis buffer. For whole-brain extract, tissues
were homogenized in a Dounce homogenizer with the loose pestle in lysis
buffer containing 5 mm sodium phosphate, pH 7.2, 320 mMm sucrose, 1
mMm sodium fluoride, and 1 mm sodium orthovanadate and protease
inhibitors (Roche). The lysates were centrifuged at 4°C for 15 min at
700 X g. Supernatants were collected and Western blotting was per-
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Figure1. MeCP2 proteinis efficiently depleted in brains of Mecp2'®%%/CreFR mice injected with Tamoxifen at 5 or 10 weeks of age. A, Top, Schematic diagram showing the Tam-induced excision
of the floxed Mecp2 cassette using the Jaenisch (J) Mecp2-lox mouse line and the CreER mouse line. Bottom, Schematic diagram showing the time period of onset and progression of RTT symptoms
in male mice with germline mutations in Mecp2 and the postnatal stages at which Mecp2 was inactivated upon Tam injections. Red arrows indicate the age of the mice when first injected with
tamoxifen. B, Representative images ofimmunostaining of brain sections of 5W-Tam- or Veh-injected Mecp 2%/ CreFR mice immunolabeled for MeCP2 (green) and NeuN (red), 19 weeks after Tam
(T) or Veh (V) injection. Note that MeCP2 (green) is absent in most neurons (NeuN +, red) and astrocytes (GFAP+, red) in the cortex and hippocampus of the Tam-injected mice, respectively. Scale
bars: left panels, 100 wm; right panels, 20 wm. €, E, Representative images of the dentate gyrus area of SW- (€) or 10W- (E) Tam- or Veh-injected Mecp2®/CreER mice immunolabeled for MeCP2
(green), and NeuN (red). DAPI (blue) represents nuclear staining. Scale bar, 50 wm. D, F, Quantitative Western blot showing the levels of MeCP2 in the indicated brain areas of 5W- (D) or 10W- (F)
Tam or Veh-injected Mecp2'™/CreFR mice and Tam-injected Mecp2®”¥ mice. Actin served as loading control. All mice were analyzed 18 weeks after injection. One-way ANOVA followed by
appropriate post hoc for multiple-comparisons test was used to determine differences between groups. Error bars are mean = SEM *p << 0.05. n = 3 mice per genotype.
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formed as described previously (Ballas et al.,
2009). The primary antibodies used are as fol-
lows: chicken anti-MeCP2 antibody (a gener-
ous gift from J.M. LaSalle, University of
California, Davis, Davis, CA) (1:10,000) or a
mouse anti-MeCP2 (Sigma) (1:2000), mouse
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anti-B actin (Abcam) (1:2000) was used for load-
ing control. The secondary antibodies used were
IRDye800 or IRDye700 conjugated (LI-COR
Biosciences) (1:10,000). Membranes were
scanned using the Odyssey-Infrared Imaging

System (LI-COR Biosciences), and the intensities
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captured images using the Odyssey imaging
software.

Immunohistochemistry. Mice were fixed by
transcardial perfusion with PBS-buffered 4%
paraformaldehyde as described previously (Bal-
las et al., 2009). Briefly, brains were removed and
postfixed overnight with PBS-buffered 4% para-
formaldehyde at 4°C. The fixed tissue was cryo-
protected with 30% sucrose in PBS buffer and
frozen in optimal cutting medium (Neg50,
Richard-Allan Scientific). Coronal sections were
obtained by sectioning the tissue on a HM505E
Microm Cryostat (Cryostat Industries) at 40 um
and preserved at —20°C in PBS-buffered 50%
glycerol until analyzed. The sections were immu-
nostained using rabbit anti-MeCP2 antibody (a
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generous gift from M. Greenberg, Harvard
Medical School, Boston, MA) (1:500), chicken
anti-GFAP (Millipore Bioscience Research Re-
agents) (1:500), or mouse anti-NeuN (Milli-
pore Bioscience Research Reagents) (1:150)
followed by incubation with the appropriate
secondary antibodies conjugated to cyanine
(Jackson ImmunoResearch). MeCP2 immuno-
staining was enhanced using biotinstreptavidin-
conjugated secondary antibodies. Images were
collected on a Zeiss confocal laser-scanning LSM
510 microscope.

Nissl staining. Brains were harvested and
sectioned as described above. Consecutive cor-
onal sections (40 wm) were mounted on
gelatin-coated slides, rehydrated, stained with
cresyl violet dye (Sigma), and mounted on cov-
erslips with DPX. Images were taken with a
Zeiss Axioskop microscope with SPOT soft-
ware (Diagnostic Instrument). To measure the
thickness of the pyramidal layer of the CA1 re-
gion of the hippocampus and the density of
cells in layer V of the cortex, images of several sections from each animal
(n = 3) were analyzed using the Image] software. Five different measure-
ments were performed along the pyramidal layer of the CA1 region for
each image. The number of cells present in each image of the Layer V
were counted and normalized per square micrometer.

Golgi staining. Golgi staining was performed using a modified Golgi
method (EZ Golgi method, Weill Cornell Medical College, New York,
NY) and performed according to the manufacturer’s instructions. Three
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course, respectively, of 5W-Tam-injected Mecp2®®%/CrefR and the indicated control mice. The number of micein Eis similarto the
indicated in D. G, H, Phenotypic scores and weight gain time course, respectively, of SW-Tam-injected Mecp2®”* /CreFR female
mice and the indicated control mice. The number of mice in His similar to G.J, K, Phenotypic scores and Kaplan—Meier survival time
course graphs, respectively, of 10W-Tam-injected Mecp2”¥/CreFR and the indicated control mice. The number of mice in K is
similar to the indicated in J. M, Overlay of the aggregate symptom scores from the time of injection of the SW-Tam-injected
Mecp2®"/CreER and the 10W-Tam-injected Mecp2'™”/CreER mice. Inset shows no significant differences in the mean of the
trend slopes between the 5W-and 10W-Tam-injected mice (NS, p > 0.05). Error bars are mean == SEM. t test was used to compare
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groups. €, F, I, L, Images illustrating the hindlimb clasping phenotype of the indicated Tam-injected MeCP2°/CreER or Tam-
injected MeCP2'/CreER mice. Note that the Tam-injected Me(P2®* /CreER mice (male and female) are overweight and that the
female is injured due to overgrooming (white arrow). All the mice in the images were injected with Tam at 5 weeks of age except
in L, where the mouse was injected at 10 weeks of age (10 W). Red arrows show the time of Tam or Veh injection.

brains of Veh- or Tam-injected MeCP2"?/CreER mice were incubated
in the impregnation solution and sectioned at a thickness of 150 wm.
Sixteen to seventeen pyramidal neurons in the CA1 region of the hip-
pocampus and 15 astrocytes located between the myelinated fibers and
the compacted neuronal cell body layers of the CA1 region were traced
and reconstructed using a camera lucida device blinded to genotype and
treatment. Reconstructed neurons and astrocytes were analyzed using
Neurolucida explorer software. For Sholl analysis (Sholl, 1953), the con-
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subjected for the indicated behavioral tests at 13 weeks or 27 weeks after injection, respectively. A-K, Total activity test in digiscan
activity monitor (A—C), wire-hang test (D—F), rotarod test (G-/), and dowel test (J, K). The colors of the graphs and bar graphs
correspond to the indicated genotypes in the right bottom comer. 4, D, G, J, 5W-Tam-injected Mecp2®”¥ /CreER and the indicated
control mice. B, E, H, K, 5W-Tam-injected Mecp2®”* /CreER and the indicated control female mice. C, F, I, 10W-Tam-injected
Mecp2¥(reFR and the indicated control male mice. The number of mice in Dand Gis similar to that indicated in A; in Eand Hit
is similar to B; in Fand /it s similar to C. Note that one outlier 10W-Tam-injected Mecp2®*¥/CreER mouse whose score was more
than two SDs from the group mean was removed from the rotarod analysis in 1. One-way ANOVA followed by appropriate post hoc
for multiple-comparisons test was used to determine differences between groups. Error bars are mean = SEM. *p << 0.05
represents significant differences between the different Tam-injected Mecp2®/CreFR mouse groups and all control littermate

groups.

centric circles were 10 um. Dendritic spines were counted along 100 um
lengths.

Brain-weight assessment. Mice were anesthetized at the appropriate age
with isoflurane, and the brains were harvested and immediately
weighted. Whole brains were excised by a single cut at the caudal edge of
the cerebellum between the brain and the spinal cord.

Results

Inducible loss of MeCP2 in late juvenile or adult mice results
in severe RTT-like phenotype with similar kinetics of
symptom initiation and progression

To induce MeCP2 loss at specific postnatal stages, we crossed a
transgenic mouse line carrying a Tam-inducible Cre recombinase
(CreER) transgene driven by the ubiquitous CMV/-actin pro-
moter with a mouse line carrying floxed Mecp2 allele (Mecp2'*”)
(Chen et al., 2001), which generate mutation in Mecp2 upon
excision of the loxP cassette (Fig. 1A, top). Male progeny harbor-
ing the CreER and the Mecp2™™ alleles (Mecp2'®”?/CreER) were
injected with Tam for seven consecutive days starting at two dif-
ferent time points: (1) alate juvenile stage (5 week old, referred to
as SW-Tam injected), a time at which the brain is still growing
and developing and that parallels the time period of onset of RTT

appearance of symptoms. We used the ob-
servational phenotypic scoring system
(0-10) described previously (Guy et al.,
2007) for five typical phenotypes mani-
fested in germline MeCP2-null mice,
which we termed as classic RTT: mobility,
gait, hindlimb clasping, tremors, and gen-
eral condition. Weekly scoring of the
Tam-injected Mecp2'”?”/CreER progeny
showed dramatic progression of aggregate
symptom scores including all five catego-
ries, beginning as early as 1 week after the last Tam injection and
reaching a mean score of 8 at 18 weeks after injection followed by
lethality, with 50% survival at 16 weeks after Tam injection (Fig.
2A-C). Veh-injected Mecp2'*””/CreER mice and all other Tam-
injected control mice remained equally healthy (Fig. 2A—C). Sim-
ilar results were obtained when a different floxed Mecp2 mouse
line (Guy et al., 2001) was used to generate Tam-inducible
Mecp2'>P|CreER mice (Fig. 2D-F), suggesting that the severe
RTT phenotype observed was related directly to the functional
loss of MeCP2 and not dependent on the specific mouse line or
type of Mecp2 mutation generated upon Cre excision. Further-
more, the phenotypic deficits were similar to those observed in
mice with germline mutation in Mecp2 (classic RTT). These data
show that RTT-like phenotypes can be initiated and efficiently
progressed as soon as Mecp2 is mutated at 5 weeks of age, a
postnatal stage, which coincides with the onset of classic RTT in
male mice.

Because human RTT affects mostly girls, we sought to deter-
mine whether the loss of MeCP2 in heterozygous female mice at
a late juvenile stage could also initiate RTT-like phenotypes. The
5W-Tam-injected Mecp2'*”*/CreER female mice showed effi-
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cient excision with up to 50% reduction in
Mecp2 mRNA (data not shown). Biweekly
scoring of the Tam-injected Mecp2'*/*/
CreER mice showed that, unlike in the
male mice, the onset of symptoms ap-
peared 16 weeks after Tam injection,
reaching an average score of 5-6 at 22
weeks postinjection followed by stabiliza-
tion of the symptoms (Fig. 2G). All other
control mice remained healthy through-
out the period analyzed (Fig. 2G). None of
the Tam-injected Mecp2'*”" /CreER mice
died, but 4 of 8 mice had to be killed due to
a severe self-injurious overgrooming (Fig.
21, right image), a repetitive autistic-like
behavior. Furthermore, female mice be-
came extremely obese with up to 100%
increase in body weight (Fig. 2 H; I, left
image). The delayed onset and the slow
kinetics of the appearance of symptoms
followed by their stabilization, as well as
the type of symptoms, are closely corre-
lated with the classic form of RTT in fe-
male mice (Mecp2~’") (Chen etal., 2001).

Next, we examined the effect of
MeCP2 loss at the adult stage, when the
brain is mature and has attained its full
size. For this, Mecp2'®/”/CreER mice were
injected with Tam at 10 weeks of age, and
analyzed for overt RTT-like symptoms.
Our data show, that like the juvenile mice,
adult mice also developed RTT-like symp-
toms beginning as early as 1 week after the
last Tam injection and reaching an aver-
age score of 8, 16 weeks from injection
(Fig. 2J,L). Furthermore, like the juvenile
mice, the Tam-injected adult mice all died
by 21 weeks after injection with 50% sur-
vival at 16—17 weeks after Tam injection
(Fig. 2K). The inducible loss of MeCP2 at
late juvenile and adult stages (Fig. 1) allowed
us to directly compare the effect of MeCP2
loss at the two different developmental
stages. Surprisingly, comparison of the ki-
netics of symptom progression and the
survival rate from the time of Tam injec-
tion showed no significant differences
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Figure4. Theloss of MeCP2 at late juvenile or adult stage leads to shrinkage of the brain. A, B, Representative images showing

that symptomatic Mecp2”¥/CrefR mice (loxJ/y/Cre+T), injected with Tam at 5 (4) or 10 (B) weeks of age, have smaller brains
than their control littermates, Mecp2' ™Y +T (loxJ/y+T) and Mecp2 ™Y /CreER+-V (loxJ/y/Cre+ V') mice. Brains are from mice at
16 weeks after injection. C, D, Age-dependent changes in brain weights of WT, 5W- (€) or 10W- (D) Tam- or Veh-injected
Mecp2®"[CreER and Mecp2™”¥ mice. Fragmented lines distinguish between the brains that are smaller (below) or bigger
(above) than the Me(pZ"””y/CreER brains right after the last Tam injection (6W or 11W). E, Brains of the 5W-Tam-injected
Mecp2®" CreFRmice are smaller than their control littermates at 24 weeks ofage (18 weeks after injection), and smaller than the
WT brains at 5 weeks of age and the 5W-Tam-injected Mecp2™”¥/(reER at 6 weeks of age (after the last Tam injection). F, Brains
of the 10W-Tam-injected Mecp2™*/CreER mice are smaller than the brains of the 10W-Veh-injected Mecp 2/ (reER mice at
29-32 weeks of age (18 —21 weeks after injection) and smaller than the WT brains at 10 weeks of age and the 10W-Tam-injected
Mecp2™|(reFR brains at 11 weeks of age (after the last Tam injection). G, Brains of the 5W-Tam-injected Mecp2™”* /CrefR
female mice are smaller than the brains of their control littermates at 39 —50 and 79—99 weeks of age. Two-way ANOVA analysis
followed by appropriate post hoc for multiple-comparison tests were performed to determine differences between Veh/Tam
groups and between the different age groups. Error bars are mean = SEM. *p << 0.05. n = 4—6 mice per genotype. H, I, Time
course analysis of body weight gain of 5W- (H) or 10W- (1) Tam-injected Mecp2'™”” /CreER mice and the indicated control male
mice. n indicates the number of mice used. Red arrows indicate the time of Tam or Veh injection.

stage when their symptoms stabilized and reached a mean score of 6,

between juvenile and adult mice (Fig. 2 M, N), suggesting similar
and absolute requirement for MeCP2 at the critical stage of brain
maturation (late juvenile) and after, when the brain is already
mature (adult).

We further compared the Tam-injected juvenile and adult male
mice for behavioral deficits at 13 weeks after injection, a stage when
they were not severely symptomatic but reached a median score of 6
(Fig. 2M). We found that the total activity in a digiscan activity
monitor of the 5W- and 10W-Tam-injected Mecp2'*??/CreER mice
was reduced by 40-50% relative to all other control mice (Fig.
3A,C). In a wire hang test, the 5W- and the 10W-Tam-injected
Mecp2'?/CreER mice showed altered forelimb strength with
shorter latency to fall (Fig. 3D,F), and their motor coordination
evaluated on an accelerating rotarod was impaired, as evident by
their shortlatency to fall (Fig. 3G,I). We also evaluated the 5SW-Tam-
injected heterozygous female mice at 27 weeks after Tam injection, a

and found poor performance in all tests (Fig. 3, compare B,E,H, K,
A,D,G)]). In fact, the female mice performed worse than the male
mice, likely due to their severe obesity. These behavioral deficits are
comparable to the known behavioral deficits in classic RTT (Ricceri
et al., 2008).

Inducible loss of MeCP2 at late juvenile or adult stage causes
global brain shrinkage and compaction of neuronal cell
bodies

To understand the underlying cause of RTT-like phenotype and
behavioral deficits in mice that lost MeCP2 at a late juvenile or
adult stage, we analyzed in depth the anatomy of the brain of the
symptomatic mice and the morphology of their neurons and glia.
Because in our mouse models the brain was similar in size to the
wild-type brain at the time of Tam injection, we first asked
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The brain anatomy is severely affected upon the loss of MeCP2 at a late juvenile or adult stage. A, B, Images of Niss| staining showing smaller brain structures for the 5W- (4) and 10W-

(B) Tam-injected mice at 24 and 30 weeks of age, respectively, when compared with their control Veh-injected littermates. CTX, Cortex; LV, lateral ventricle; HP, hippocampus; TH, thalamus; HY,
hypothalamus. Scale bars, 800 wm. €, D, Representative images of Nissl staining showing smaller hippocampal structure for the SW- (€) and 10W- (D) Tam-injected mice. DG, Dentate gyrus. Scale
bars, 400 um. E, F, The cell bodies of the pyramidal (Py) neuronsin the CA1 area of the hippocampus of the 5W- (E) and 10W- (F) Tam-injected MecpZ"’"’/y/CreER mice are more compact. so, Stratum
oriens; py, pyramidal layer; sr, radiatum. Scale bars, 20 m. G, H, The thickness of the pyramidal neuronal cell bodies in the CA1 area of the SW- (G) and 10W- (H) Tam-injected Mecp2 ™" /CreFR
miceis significantly reduced. 1, J, Representative images of Niss| staining showing a higher density of neuronal cell bodies in layer V of the motor cortex of the 5W- (/) or T0W- (J) Tam-injected mice
when compared with 5W- or 10W-Veh-injected MecpZ"’“/y/(reER mice. Scale bars, 40 m. K, L, The density of the neurons in layer V of the motor cortex of 5W-(K') and the 10W- (L) Tam-injected
Mecp2¥CreER mice is significantly higher than the Veh-injected control mice. ¢ test was used to compare within Veh and Tam groups. Error bars are mean = SEM. *p << 0.05.n = 3 mice per

genotype.

whether the loss of MeCP2 would negatively affect the brain size.
Unexpectedly, we found that the loss of MeCP2 upon Tam treat-
ment of Mecp2'®”/CreER mice, whether at a late juvenile or
adult stage, both resulted in significantly reduced brain size when
compared with Veh-injected Mecp2'”?”/CreER or Tam-injected
Mecp2'™” age-matched littermates (Fig. 4A,B). Time course
analysis of normal brains from wild-type mice showed that the
brain reaches its full size only at ~10 weeks of age (Fig. 4C). Thus,
Tam injection at 5 or 10 weeks of age represents two different
developmental stages in terms of global brain maturation. 5SW-Tam-

injected MecpZIo"]/ ?/CreER mice, like all other control male mice,
had similar brain weights by the end of the seventh consecutive
injection (Fig. 4E, 6 weeks of age). However, at 24 weeks of age
(18 weeks after injection), while the size of the brains of all con-
trol mice were similar and significantly larger than the brain size
ofthe corresponding mice at 6 weeks of age (Fig. 4 C,E), the brains
of the Tam-injected Mecp2'”/CreER mice were significantly
smaller (by 10%) than the brains of all control mice at 24 weeks of
age (Fig. 4C,E). In fact, at 24 weeks of age, the brains of the
symptomatic 5W-Tam-injected Mecp2”?”/CreER mice were
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Figure 6.  Dendritic complexity of hippocampal pyramidal neurons is severely affected upon the loss of MeCP2 at late juvenile stage. A, Representative Camera lucida tracing of CAT pyramidal
neurons in the hippocampus of symptomatic SW-Tam-injected Mecp2®”¥/(reER and the SW-Veh-injected Mecp2®””/(reER control littermate mice. Concentric circles for Sholl analysis in 10 um
radius increments are superimposed in red. Scale bars, 40 wm. B, E, Sholl analysis of the SW-Tam-injected mice showing that the basal (B) and apical (E) dendrites of CA1 pyramidal neurons at 18
weeks after the last Tam injection (24 weeks of age) are significantly less complex than those of the SW-Veh-injected Meqp2®”¥/(reFR age-matched littermate mice and even less complex than the
dendrites of Tam-injected mice right after the last injection (6 weeks of age). Two-way repeated-measures ANOVA followed by appropriate post hoc for multiple-comparisons test was used to
determine differences within Veh and Tam groups at 18 weeks after injection or within 0 and 18 weeks after the last Tam injection of SW-Tam-injected Mecp2™”¥/CrefR mice. €, D, F, G, CA1
pyramidal neurons of 5SW-Tam-injected Mecp 2/ CreFR mice exhibit fewer and shorter basal (€, D) and apical (F, G) dendritic branches at 18 weeks after Tam injection. Mann and Whitney test was
used to compare within Veh and Tam groups at 18 weeks after injection or within the SW-Tam-injected Mecp2'™*¥/CrefR mice at 0 and 18 weeks after injection. H, Representative images of Camera
lucida tracing of CA1 pyramidal neurons in the hippocampus showing structural abnormalities in spines and the associated secondary dendrites of the SW-Tam-injected Mecp2™*¥/CrefR mice when
compared with Veh-injected Mecp2®”Y/Cre£R or Tam-injected wild-type (WT) mice, 18 weeks after injection. Arrows indicate swelling or thickening of the associated dendritic branches. Scale bars,
2 um. I, CA1 pyramidal neurons of SW-Tam-injected Mecp2'™*¥/CreER mice demonstrate significant reduction in dendritic spine density. Spine density per 100 tm length was measured on
secondary dendrites. One-way ANOVA followed by appropriate post hoc for multiple-comparison tests was used to determine differences between groups. Error bars are mean == SEM. *p << 0.05
significant differences in dendritic complexity of the SW-Tam-injected Mecp2™Y/CrefR at 0 and 18 weeks after the last injection. *p < 0.05 significant differences between 5W-Tam and
Veh-injected Mecp2™*/(refR mice at 24 weeks of age (18 weeks after injection). n = 3 mice per genotype and age. n = 5 6 neurons per animal.

even smaller (by 5%) than the normal wild-type brains at 5 weeks is likely caused, at least in part, by shrinkage of the developing
of age, the starting point of Tam injections, and smaller than all ~ brain. This phenomenon is even more noticeable in brains of
other control mice right after the last Tam injection (6 weeks of ~ symptomatic Mecp2'*””/CreER mice treated with Tam at 10
age) (Fig. 4 C,E). These results suggest that the reduced brain size ~ weeks of age, a time by which the normal brain reaches its full size.
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Figure7. Theloss of MeCP2 atadult stage induces reduction in dendritic complexity and spine density. A, D, Sholl analysis of the
10W-Tam-injected mice showing that the basal (4) and apical (D) dendrites of CAT pyramidal neurons at 29 weeks of age (18
weeks after Tam injection) are significantly less complex than those of 11 weeks of age (right after the last Tam injection) and less
complex than the dendrites of the 10W-Veh-injected Mecp2®?/(refR age-matched littermates. Two-way repeated-measures
ANOVA followed by appropriate post hoc for multiple-comparisons test was used to determine differences within Veh and Tam
groups at 18 weeks after injection or within 0 and 18 weeks after the last Tam injection of 10W-Tam-injected Mecp2™”/CrefR
mice. B,C, E, F, The CA1 pyramidal neurons of 10W-Tam-injected Mecp2®”¥/CreER mice exhibit fewer and shorter basal (B, €) and
apical (E, F) dendritic branches at 29 weeks of age (18 weeks after injection). Mann and Whitney test was used to compare within
Veh and Tam groups at 18 weeks after injection or within the 10W-Tam-injected Mecp2'®Y/CreER mice at 0 and 18 weeks after
injection. G, Representative images of Camera lucida tracing of CAT pyramidal neurons in the hippocampus showing structural
abnormalities in spines and the associated secondary dendrites of the 10W-Tam-injected Mecp2® CreER mice when compared
with Veh-injected Mecp2*¥/(reER mice, 18 weeks after injection. Arrows indicate swelling or thickening of the associated
dendritic branches. Scale bars, 2 m. H, CA1 pyramidal neurons of 10W-Tam-injected Mecp2'*/(refR mice demonstrate signif-
icant reduction in dendritic spine density. Spine density per 100 ,m length was measured on secondary dendrites. t test was used
to compare within Veh and Tam groups. Error bars are mean == SEM. *p << 0.05 significant differences in dendritic complexity of
the 10W-Tam-injected Mecp2™"¥/CreER at 0 and 18 weeks after the last injection. *p << 0.05 significant differences between
10W-Tam and Veh-injected Mecp2™”/CreERmice at 29 weeks of age (18 weeks after injection). n = 3 mice per genotype and age.
n = 5-6neurons per animal.
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This analysis revealed that in fact the 5W-
or 10W-Tam-injected Mecp2”” mice
were somewhat overweight compared
with all other control littermate mice (Fig.
4H,I). The body weight gain was previ-
ously reported with the same mutation in
male mice with classic RTT (Chen et al.,
2001). Remarkably, similar to the males,
the brains of the 5W-Tam-injected
Mecp2'* /CreER heterozygous female
mice, which were extremely obese at their
symptomatic stage (Fig. 2G-I), were also
reduced in size by 10% (Fig. 4G). This
suggests that even though MeCP2 loss is
mosaic and occurs only in 50% of the cells
at most, the effect on the anatomy of the
female brain is global. Together, these
data strongly suggest that postnatal loss of
MeCP2, whether at late juvenile or adult
stage, elicited shrinkage of the mature
healthy brain in hemizygous males as well
as in heterozygous females.

Analysis of the histology of the brains
of the 5W- and 10W-Tam-injected
Mecp2'”/CreER mice showed global
shrinkage of the brain with no other de-
tectable malformations (Fig. 5A, B). De-
tailed analysis of the hippocampus
showed overall shrinkage of all areas, in-
cluding CA1, CA2, CA3, and the dentate
gyrus, of both 5W- and 10W-Tam-
injected Mecp2'*/”/CreER mice in their
symptomatic stage compared with the
hippocampus of Veh-injected Mecp2'*¥?/
CreER littermate mice (Fig. 5C,D). Fur-
thermore, the thickness of the pyramidal
layer of CALl area in the symptomatic brains
was significantly reduced (up to 30%), and
neuronal cell bodies appeared more compact
(Fig. 5E-H)). The cortical area of symptomatic
5W-and  10W-Tam-injected ~Mecp2™”?/
CreER mice was affected similarly with 10—
15% higher cell density than in the cortex
(layer V) of Veh-injected Mecp2®”*/CreER
mice (Fig. 5I-L).

The loss of MeCP2 at late juvenile or
adult stage induces retraction of
dendritic arbor structures of mature
neurons and reduces the complexity of
astrocytic processes

Indeed, the brains of all control mice as well as the Tam-injected
Mecp2'*”¥/CreER mice were similar in size right after injection of
Veh or Tam (11 weeks of age) and similar to the brain size of the
control mice at 28—-32 weeks of age (Fig. 4D,F). However, at
28-32 weeks of age, the brain size of symptomatic 10W-Tam-
injected Mecp2'”/CreER mice was reduced by 10% relative to
the brain size of the different control mice or to the brain size of
the same Mecp2'*/”/CreER mice right after injection (Fig. 4 D,F).
To verify that the reduced brain size of symptomatic 5W- or
10W-Tam-injected Mecp2'>"*/CreER mice is brain specific and
not due to simply reduced body size, we analyzed the body weight
from the time of injection to their severe symptomatic period.

Next, we analyzed the morphology of the pyramidal neurons in
the CA1 area of the hippocampus in mice that lost MeCP2 at a
late juvenile or adult stage. For this, we evaluated the hippocampal
dendritic complexity of symptomatic Tam-injected Mecp2'™””/
CreER mice, 18 weeks after injection, using Golgi impregnation.
Interestingly, comparison of the CA1 pyramidal neurons of the
5W-Veh- and Tam-injected Mecp2™””/CreER mice revealed that
the Tam-injected Mecp2'*”/CreER mice developed severe den-
dritic anomalies (Fig. 6 A). While the number of primary den-
drites was unchanged, Sholl and branch analyses showed that the
pyramidal neurons of Tam-injected Mecp2'”/CreER mice ex-
hibited fewer and shorter basal and apical dendritic branches when
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compared with Veh-injected Mecp2'™”/
CreER littermates at 24 weeks of age (18
weeks after injection) (Fig. 6A-G). Such
abnormalities in dendritic arbor structure
were previously found in human RTT and
RTT mouse models with germline muta-
tions in MeCP2 (Armstrong et al., 1995,
Kishi and Macklis, 2004, Ballas et al.,
2009). Potentially, these differences in
dendritic arbors could be due to develop-
mental stagnation, but they could also be
caused by retraction of dendritic arbors.
The ability to induce postnatal loss of
MeCP2 in our mouse model allowed us

Mecp2®Y/CreER+V
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healthy (Fig. 2A). Comparison of the den-
dritic complexity of the Tam-injected
Mecp2'*¥|CreER mice at 6 weeks of age
and of the Veh-injected Mecp2*?”/CreER
mice at 24 weeks of age indicated that the
dendritic complexities of the pyramidal
neurons are largely similar to each other
except for the basal dendritic branches
closer to the soma, which seemed less
complex in the 6-week-old Tam-injected
Mecp2'”|CreER mice (Fig. 6B). At 24
weeks of age, however, the Tam-injected
Mecp2'*/CreER mice showed signifi-
cant reduction in the number and length of both apical and basal
dendritic branches even when compared with Tam-injected
Mecp2'”/CreER mice right after injection (6 weeks of age) (Fig,
6 B—G). These results suggest that the loss of MeCP2 in the develop-
ing 5-week-old mice mediated retraction of the already existing den-
dritic arbors. Interestingly, the observed reduced dendritic
complexity was even more robust than previously reported for clas-
sic RTT, suggesting a central role for MeCP2 in maintaining the
dendritic complexity of the maturing and mature neurons. Impor-
tantly, analysis of the dendritic spines showed robust reduction (up
to 40%) in spine density of pyramidal neurons of the SW-Tam-
injected Mecp2'*””/CreER mice at their symptomatic stage when
compared with Veh-injected Mecp2'™/?/CreER or Tam-injected
wild-type age-matched littermates (Fig. 6 H,I). Furthermore, the as-
sociated dendritic branches showed morphological abnormalities,
such as swelling and thickening (Fig. 6 H).

Notably, analysis of the pyramidal neurons of adult 10W-
Tam-injected Mecp2'*””/CreER mice, 18 weeks after injection
(29 weeks of age), showed similar aberrations in basal and apical
dendritic complexity when compared with 10W-Veh-injected
Mecp2'*/CreER age-matched littermates (Fig. 7A—F). Simi-
larly, comparison of the 10W-Tam-injected Mecp2'”?”/CreER
mice, immediately after injection (11 weeks of age), when MeCP2
levels are reduced by 30—40% (data not shown), and at their
symptomatic stage (29 weeks of age), shows dramatic reduction
in both basal and apical dendritic complexity (Fig. 7A-F), further
supporting the idea that dendritic arbors were retracted from a
more mature state in the absence of MeCP2. Similar to the 5W-

Figure 8.

Distance from the soma (um)

Age (weeks)

Age (weeks)

Processes projected from hippocampal astrocyte cell bodies are severely affected upon the loss of Me(P2 at late
juvenile stage. A, Representative Camera lucida tracing of astrocytes in CA1 area of the hippocampus of symptomatic 5W-Tam-
injected Mecp2®”” /CreFR and the SW-Veh-injected Mecp 2 /CreER control littermate mice. Concentric circles for Sholl analysis
in 10 wm radius increments are superimposed in red. Scale bars, 20 um. B, Sholl analysis of the 5W-Tam-injected mice showing
that the processes of hippocampal astrocytes at 18 weeks after the last Tam injection (24 weeks of age) are significantly less
complex than those of the SW-Veh-injected Mecp2™”/CreFR age-matched littermate mice. Two-way repeated-measures ANOVA
followed by appropriate post hoc for multiple-comparisons test was used to determine differences within Veh and Tam groups at
18 weeks after injection. €, D, Hippocampal astrocytes of symptomatic SW-Tam-injected Mecp 2% /CreER mice exhibit fewer (€)
and shorter (D) branches at 18 weeks after Tam injection. t test was used to compare between Veh and Tam groups. *p < 0.05
significant differences between 5W-Tam and Veh-injected Mecp2®*¥/CrefR mice at 24 weeks of age (18 weeks after injection).
Error bars are mean == SEM. n = 3 mice per genotype. n = 5 astrocytes per animal.

Tam-injected mice, the 10W-Tam-injected mice showed also sig-
nificant reduction in spine density (Fig. 7H). Furthermore, the
associated dendritic branches showed morphological abnormal-
ities, such as swelling and thickening, similar to the 5W-Tam-
injected mice (Fig. 7G). Together, these data indicate that
inducible loss of MeCP2, whether at late juvenile or adult stage,
mediates dendritic abnormalities, reflected in significant reduc-
tion in dendritic arborization as well as in spine density.

Our previous studies showed that not only neurons, but also
astrocytes contribute to manifestation of RTT neuropathology
(Ballas et al., 2009) (Lioy et al., 2011). Therefore, we asked
whether the morphology of astrocytes is altered upon depletion
of MeCP2. To this end, we analyzed the processes of hippocampal
astrocytes in the CAl area in brains that had been subject to
Golgi impregnation. We found that astrocytes of the symp-
tomatic 5W-Tam-injected Mecp2'®”/CreER mice (18 weeks
after injection) had abnormal morphology compared with as-
trocytes of the Veh-injected Mecp2'“/?/CreER age-matched
littermates (Fig. 8 A), supporting our previous finding of glial
involvement in RTT. While the number of primary processes
radiating from the cell body of astrocytes of symptomatic mice
was not altered, they possessed significantly less ramified pro-
cesses (30% reduction) as assessed by Sholl analysis (Fig. 8 B)
and fewer nodes (50% reduction) (Fig. 8C). Moreover, the
average length of processes projected was significantly shorter
(28% reduction) in astrocytes of symptomatic 5W-Tam-
injected Mecp2®?”?/CreER mice when compared with astrocytes
of Veh-injected Mecp2'®?”/CreER age-matched littermates (Fig.
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Figure9. The loss of MeCP2 at late juvenile and adult stage results in specific reduction of synaptic protein expression in symptomatic Tam-injected Mecp2™””/CreER mice. A, Western
blot showing significant reduction in the levels of MeCP2, and the following synaptic proteins: CaMKllce, CaMKII 3, GluR2/3, GABABR?2, Vglut1, NMDAR2A, and Synapsin 1 in the whole
brain of symptomatic 5W-Tam-injected Mecp2'”¥/(reER mice when compared with their levels in the brains of the SW-Tam-injected Mecp2™” or the 5W-Veh-injected Mecp2™*¥/
CreER mice. B-D, Western blot showing significant reduction in the levels of CaMKllcx protein in the indicated areas of the brain of symptomatic Tam-injected Mecp2'™”Y/CrefR (3) male
miceinjected at 5 (B) or 10 (C) weeks of age, as well as of symptomatic Mecp2'™®¥/CrefR (3) mice injected with Tam at 5 weeks of age (D). Tam-injected Mecp 2™ or Mecp2™®”¥ (1) and
Veh-injected Mecp2™"¥/CreER or Mecp2™®” /CreFR (2) are control littermates. Actin served as loading control. One-way ANOVA followed by appropriate post hoc for multiple-comparison
tests were used to determine differences between groups. E, Quantitative RT-PCR analysis showing significant reduction in the level of Mecp2 mRNA in whole brain extracts of
symptomatic 5SW-Tam-injected Mecp2'™””/(reER mice but no significant differences in the levels of the indicated mRNAs encoding the specific synaptic proteins when compared with the
mRNA levels in brains of Veh-injected Mecp2'Y/CreER control littermates. t test was used to compare within Veh and Tam groups. Error bars are mean = SEM. *p << 0.05.n = 3 mice
per genotype.
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8D). These data indicate that postnatal
loss of MeCP2 affects the morphology of
neurons as well as glia.
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Postnatal loss of MeCP?2 affects
expression of both excitatory and
inhibitory synaptic proteins

Finally, we asked whether the reduced
dendritic complexity and spine density
also accompanied alterations in the
amounts of synaptic proteins. To this end,
we analyzed the levels of several known
synaptic proteins with key roles in synap-
tic structure and plasticity. These experi-
ments revealed dramatic reduction, up
to 50%, in the levels of several excitatory
synaptic proteins, such as CaMKlla,
CaMKIIB, and NMDAR2A, as well as the
two synaptic vesicle proteins, Vglutl and
Synapsinl, and up to 35% in the level of
GluR2/3, in symptomatic Tam-injected
Mecp2'™/CreER mice when compared
with Tam-injected Mecp2"”” or Veh-

injected Mecp2'™”/CreER littermate mice ~ Figure 10.

Healthy mature
astrocyte

Healthy mature
neuron

RTT astrocyte
RTT neuron
o Early synaptic proteins
o Late synaptic proteins
RTT symptoms

Schematic model for the function of MeCP2 during critical stage of postnatal brain development and in the

(Fig. 9A). Furthermore, the level of
GABABR?2, an inhibitory synaptic pro-
tein, was also reduced by up to 40% (Fig.
9A). This reduction in synaptic protein
levels was not global, but rather specific, as
the levels of the presynaptic protein, Syn-
aptotagmin 1 (Syt1), and the postsynaptic
scaffolding proteins, PSD93 and PSD95,
were not altered (Fig. 9A). We analyzed
more systematically the alteration in
CaMKlIle, one of the critical synaptic pro-
teins implicated not only in synaptic plas-
ticity but also in stabilization of dendritic
arbor structure. Our results show that the

mature brain. A, During postnatal development, the size and weight of normal brain are increased while neurons mature
as evident by the increase in dendritic complexity and synaptogenesis. The addition of synaptic proteins during late
maturation increases synaptic strength, which in turn increases dendritic branching and stability of dendritic arbor struc-
ture. This process involves neuron:astrocyte interactions. B, In classic RTT caused by germline mutations in Mecp2, the brain
is smaller than normal and neurons exhibit reduced dendritic arborization and synaptic protein expression. , D, Inactiva-
tion of Mecp2 in otherwise normal mice during their late juvenile period of development (C) or at adult age (D) results in
brain phenotypes typical for classic RTT. However, while the reduced brain size in late juvenile mice is caused partly by
developmental stagnation and partly by shrinkage of the normally developed brain, in adult mice it is caused solely by
shrinkage. In both cases, synaptic protein expression is reduced, and dendritic arbors of the already matured neurons are
retracted. Similar to neurons, the morphology of astrocytes is also altered exhibiting fewer and shorter processes which
together likely affect neuron:astrocyte interactions and therefore disruption of the mature neuronal networks. The loss of
MeCP2, whether due to germline mutations or induced at postnatal stages, during late developmental stage (late juvenile
stage) oradult stage, results in similar brain abnormalities, which lead to RTT phenotypes. E, In the reverse situation, global
reexpression of MeCP2 in symptomatic RTT mice with germline mutation in Mecp2 results in reversal of RTT symptoms and
neuronal function (Guy et al., 2007), and postnatal reexpression of MeCP2 in astrocytes inhibits the progression of RTT
phenotypes and restores dendritic arbor structure and the level of at least the synaptic protein Vglut1 (Lioy et al., 2011).

level of CaMKIlex protein was dramatically
reduced in all areas of the brains of symptom-
atic 5SW-Tam-injected Mecp2'*””/CreER mice, including cortex
and hippocampus (50% reduction), cerebellum, and brainstem (75—
80% reduction) (Fig. 9B). Furthermore, the 10W-Tam-injected
Mecp2'*¥/CreER mice exhibited similar reduction (up to 60%) in
CaMKll« in all brain areas (Fig. 9C). Importantly, using another
mouse model with different mutation in Mecp2 (Tam-injected
Mecp2'”P?/CreER; Fig. 2 D-F ), we found similar dramatic decreases
in the level of CaMKlIla in all brain areas (Fig. 9D). These data
strongly suggest that the impaired expression of CaMKII« and likely
other synaptic proteins is directly related to the functional loss of
MeCP2. Importantly, when we analyzed the mRNA levels of the
genes whose protein levels were altered, we found no significant
changes (Fig. 9E), suggesting that MeCP2 likely regulates these syn-
aptic proteins by posttranscriptional mechanism, directly or
indirectly.

Discussion

Our results indicate that RTT-like symptoms, which are caused nor-
mally by germline mutations in Mecp2, can be recapitulated if
MeCP2 is lost during the postnatal stage that coincides with the
onset period of classic RTT (late juvenile stage). The immediate on-
set of symptoms in males, as soon as Mecp2 is mutated, and the
severity of symptoms, including death, indicate that MeCP2 func-

tion is critical at this juncture. Interestingly, although MeCP2 loss in
heterozygous female mice was induced by tamoxifen at a similar
postnatal stage as in males, the onset of symptoms was delayed until they
were 20 weeks old, similar to the onset of symptoms in female mice with
germline mutations in Mecp2. Furthermore, the type of symptoms and
the kinetics of symptom progression and stabilization were similar to
heterozygous female mice with germline mutation in Mecp2. These data
further support a critical role for MeCP2 at the specific postnatal time
window where RTT symptoms normally appear in males and
females, and further indicate that the absence of MeCP2 at earlier
stages is not a prerequisite for manifestation of a severe RTT-like
phenotype at later stages. Remarkably, a direct comparison of the
loss of MeCP2 at late juvenile and adult stages showed parallel
onset and progression of RTT symptoms, including the rate of
lethality, and suggested an equal and critical requirement for
MeCP2 function at these two different developmental stages.
Different mechanisms could potentially cause similar RTT-
like symptoms at late juvenile and adult stages or upon the loss of
MeCP2 in germ cells and postnatal stages. However, our detailed
analysis of the brains that lost MeCP2 at postnatal stages suggests
that although the state of brain maturation is different at late
juvenile and adult stages, the loss of MeCP2 mediated similar
brain abnormalities (Fig. 10). The brain abnormalities caused by
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the loss of MeCP2 at these postnatal stages are comparable in
nature to the abnormalities caused by germline mutations in
MeCP2; however, they are clearly more robust and unequivocal.
These results are surprising because manifestation of similar
brain phenotypes upon loss of MeCP2 in adult brain requires
regression from a more mature state of the brain, as opposed to
developmental stagnation, which is thought to occur in RTT pa-
tients and mouse models with germline mutation in Mecp2. In-
deed, our analysis shows that while the reduced brain size upon
the loss of MeCP2 at a late juvenile stage was due partly to devel-
opmental stagnation and partly to shrinkage; at the adult stage, a
time at which the brain already reached its full size, the reduced
brain size was mediated solely by shrinkage of the brain (Fig. 10).
The increase in neuronal cell packing, which is reciprocal to the
reduced brain size, suggests that shrinkage of the brain is likely
not due to neuronal degeneration. Interestingly, the loss of
MeCP2 in heterozygous female mice elicited shrinkage of their
brain similar to hemizygous male mice, suggesting that even mo-
saic depletion of MeCP2 in 50% of the cells in the brain is suffi-
cient to affect the brain globally. Our detailed analysis of the
pyramidal neurons in the hippocampus of symptomatic mice
that lost MeCP2 either at late juvenile or adult stage clearly shows
that dendritic complexity was significantly reduced, mainly due
to retraction of dendritic arbors from a more advanced state of
neuronal maturation. Our analysis further shows that dendritic
spine density is dramatically reduced, suggesting that the loss of
MeCP2 in the maturing or mature brain mediates alterations in
synaptic structural plasticity. It is likely that in human RTT pa-
tients and RTT mouse models, in addition to developmental stag-
nation, shrinking of the maturing brain and retraction of
dendritic arbor structures also take place. This scenario could
explain the regression in RTT girls that manifests in loss of the
already acquired developmental milestones, such as speech and
motor coordination, which may not be simply a consequence of
halting developmental processes, but rather, a result of actual
regression of fundamental anatomical and functional neuronal
features in the brain. Previously, it was shown that RTT symp-
toms can be reversed upon global reactivation of MeCP2 (Guy et
al., 2007) and attenuated by reactivation of MeCP2 in glia (Lioy et
al., 2011) (Fig. 10). Our present studies, which demonstrate that
RTT-like brain abnormalities could be elicited similarly in nor-
mal adult brain, provide further support for the idea that the
function of MeCP2 in maintaining mature neuronal networks
may be dynamic and that RTT has the potential to be fully
reversed.

Importantly, our structural analysis of the hippocampal astro-
cytes shows that, like neurons, they acquired altered morphology
upon the loss of MeCP2 (Fig. 10). Given that astrocytes not only
provide metabolic support to neurons, but are in fact an integral
part of synapses, with their processes ensheathing synapses
(Bolton and Eroglu, 2009), it is not surprising that such alteration
in complexity of astrocytic processes could negatively affect the
structure/function of the entire neuronal networks in the RTT
brain.

Interestingly, our analysis of synaptic protein expression
showed that, of the array of proteins analyzed, few were unal-
tered, more were robustly downregulated, and none were up-
regulated. The selective rather than global downregulation of
synaptic protein expression may indicate that MeCP2 regulates
specific synaptic proteins, directly or indirectly, to upregulate
their expression in the normal maturing or mature brain (Fig.
10). Importantly, none of the genes whose protein expression was
altered showed significant changes in their mRNA expression,
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suggesting that either MeCP2 directly regulates these genes post-
transcriptionally, or indirectly by as yet unidentified primary tar-
get genes. These data could also explain why only subtle changes
were mostly observed in mRNA levels in brains of conventional
RTT mouse models (Tudor et al., 2002, Chahrour et al., 2008).
Recent studies show aberrant expression of microRNA genes in a
mouse model of RTT (Urdinguio et al., 2010, Wu et al., 2010). It
is possible that specific microRNAs bind to the mRNAs of these
specific synaptic proteins and inhibit their translation. Among
the synaptic proteins that were downregulated, we identified pre-
synaptic and postsynaptic proteins, both inhibitory and excit-
atory, supporting previous studies demonstrating that specific
loss of MeCP2 in excitatory or inhibitory neurons could initiate
RTT-like phenotypes (Chen et al., 2001, Chao et al., 2010). In
normal brain, dendritic arbor growth is highly dynamic, and ac-
cumulating evidence suggests that synaptic strength and branch
stability are concurrent (Cline and Haas, 2008). Interestingly,
several synaptic proteins, which were dramatically reduced upon
postnatal loss of MeCP2, such as CaMKIla, CaMKIIS, AMPA
receptors (GluR2/3 subunits), and NMDAR?2A are involved in
excitatory synapse maturation as well as in increasing and stabi-
lizing dendritic arbor structures (Fink et al., 2003, Haas et al.,
2006). It is likely that the reduction in the levels of these synaptic
proteins upon loss of MeCP2 mediates the retraction of dendritic
arbors. However, we cannot exclude the possibility that the loss of
dendritic arbors and synaptic contacts may trigger the degrada-
tion of proteins localized within these compartments. The effect
of MeCP2 loss on the level of specific synaptic proteins in classic
RTT mouse models remains ambiguous and partially controver-
sial; however, several synaptic proteins that we found downregu-
lated upon postnatal loss of MeCP2 are also downregulated in
RTT mice with germline mutations in Mecp2. Examples are
NMDAR2A (Asaka et al., 2006) and Vglutl (Chao et al., 2007),
which we also recently showed reduced in a RTT mouse model
and rescued by reactivation of MeCP2 in astrocytes (Lioy et al.,
2011). Similarly, GABA, receptor subunits are downregulated in
classic RTT (Samaco et al., 2005, Medrihan et al., 2008), and our
data showed that GABAj receptor subunit (GABABR?2) is also
downregulated as it is in postmortem brain of autistic patients
(Fatemi et al., 2009). It is likely that reduced levels of both
ionotropic and metabotropic GABA receptor subunits are also
involved in manifestation of RTT symptoms. The reduction in
the levels of synaptic proteins together with the reduction in
dendritic complexity and spine density support the view that
MeCP2 is required during late stages of brain maturation to
establish and maintain mature neuronal circuitry throughout
life (Fig. 10). Although studies using mouse models with
germline mutations in Mecp2 helped to advance our knowl-
edge about RTT development, a mouse model presented here,
which allows to induce loss of MeCP2 at desired timing in
otherwise healthy brain, provides a powerful tool for analyz-
ing the direct effect of MeCP2 loss on brain structure/func-
tion. Further identification of key synaptic proteins and the
mechanism by which MeCP2 regulates these proteins could
provide important insights into the molecular pathways un-
derlying the manifestation of brain abnormalities and identify
new potential targets for therapeutic intervention of RTT.
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