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Abstract
The high quantum efficiency of the charge-coupled device (CCD) has rendered it the imaging
technology of choice in diverse applications. However, under extremely low light conditions
where few photons are detected from the imaged object, the CCD becomes unsuitable as its
readout noise can easily overwhelm the weak signal. An intended solution to this problem is the
electron-multiplying charge-coupled device (EMCCD), which stochastically amplifies the
acquired signal to drown out the readout noise. Here, we develop the theory for calculating the
Fisher information content of the amplified signal, which is modeled as the output of a branching
process. Specifically, Fisher information expressions are obtained for a general and a geometric
model of amplification, as well as for two approximations of the amplified signal. All expressions
pertain to the important scenario of a Poisson-distributed initial signal, which is characteristic of
physical processes such as photon detection. To facilitate the investigation of different data
models, a “noise coefficient” is introduced which allows the analysis and comparison of Fisher
information via a scalar quantity. We apply our results to the problem of estimating the location of
a point source from its image, as observed through an optical microscope and detected by an
EMCCD.
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1 Introduction
The charge-coupled device (CCD) is an important digital imaging technology that has found
utility in many applications. It plays crucial roles, for example, in areas as disparate as high
sensitivity cellular microscopy and astronomy. A typical CCD has high quantum efficiency,
which enables it to detect a large percentage of the photons which impinge upon its surface.
However, a CCD is generally not suitable for imaging under extremely low light conditions.

NIH Public Access
Author Manuscript
Multidimens Syst Signal Process. Author manuscript; available in PMC 2013 September 01.

Published in final edited form as:
Multidimens Syst Signal Process. 2012 September ; 23(3): 349–379. doi:10.1007/s11045-011-0150-7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



This is mainly due to the measurement noise of the CCD, which can overwhelm the signal
when relatively few photons are detected from the imaged object. Measurement noise is
added when the signal is read out from the device, and is commonly called the readout noise
(e.g., Snyder et al. 1995).

A technology that is intended to overcome the detrimental effect of the readout noise under
low light conditions is the electron-multiplying charge-coupled device (EMCCD). Similar to
a CCD, an EMCCD is a device which accumulates electrons in proportion to the number of
photons it detects. Unlike a CCD, however, an EMCCD can significantly increase the
number of electrons through a multiplication process before they are read out. Therefore,
whereas the readout noise can overwhelm the signal detected by a CCD under low light
conditions, it is effectively drowned out by the amplified signal in the case of an EMCCD.

An EMCCD achieves signal amplification by transferring the electrons through a
multiplication register that consists of a sequence of typically several hundred stages.
Electrons are moved through the stages in sequence, repeatedly exiting one stage and
entering the next until they exit the last stage. Multiplication occurs because in any given
stage, each input electron can, with certain probabilities, generate secondary electrons via a
physical phenomenon called impact ionization. All secondary electrons are transferred to the
next stage for further amplification along with the input electrons. In this way, even when
the probabilities of secondary electron generation (typically 0.01 to 0.02 (Basden et al.
2003) for one secondary electron per input electron, and even smaller for more than one per
input electron) are small in each stage, the cascading effect can potentially produce a large
number of electrons per initial electron. An important observation is that while
multiplication is intended to drown out the readout noise, it is a random process, and hence
introduces stochasticity of its own. Therefore, when enough photons can be detected from
the imaged object such that the readout noise level is already low in comparison to the
signal, the use of electron multiplication can actually have the adverse effect of
unnecessarily introducing increased stochasticity in the acquired data.

From an image acquired using a CCD-based camera, parameters of interest can be estimated
to obtain useful information about the imaged object. In single molecule microscopy (e.g.,
Walter et al. 2008; Moerner 2007), for example, a major topic of interest has been the
accurate estimation of the location of a fluorescent molecule (e.g., Thompson et al. 2002;
Ober et al. 2004; Andersson 2008; Pavani and Piestun 2008; Ram et al. 2008), which has
important applications in, for instance, the study of intracellular processes (e.g., Ram et al.
2008). In this context, we have proposed a general framework (Ram et al. 2006) for
calculating the Fisher information, and hence the Cramer-Rao lower bound (Rao 1965), for
the estimation of parameters from an image produced by a microscope. Based on this
framework, accuracy limits have been obtained for estimating, for example, the positional
coordinates of a single molecule (e.g., Ober et al. 2004). These performance measures,
however, assume the image to have been acquired by a CCD, and hence do not apply to
EMCCD imaging.

Our current purpose is then to develop the theory that is necessary for deriving performance
measures for estimating parameters from an EMCCD image. To obtain the Fisher
information for EMCCD data, we need to find the probability distribution of the electron
count that results from the multiplication process described above. To this end, we consider
the stochastic multiplication as a branching process (e.g., Harris 1963; Athreya and Ney
2004), as others have done for EMCCDs (e.g., Hynecek and Nishiwaki 2003; Basden et al.
2003; Tubbs 2003) and other electron-multiplying devices (e.g., Matsuo et al. 1985;
Hollenhorst 1990). The probability distribution for the output of the branching process
depends on the model that is used to describe the secondary electron generation in each
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multiplication stage. While multiple secondary electrons can be generated per input electron
per stage (Hynecek and Nishiwaki 2003), for simplicity it is common to describe the
electron generation as a Bernoulli event (i.e., a secondary electron is generated per input
electron per stage with probability b, or not generated with probability 1 − b). However,
since no explicit expression exists for the probability distribution of the output electron
count of such a branching process, different approximating distributions have been proposed
(e.g., Hynecek and Nishiwaki 2003; Basden et al. 2003; Tubbs 2003). Rather than starting
with the assumption of Bernoulli multiplication, here we propose using the geometric
distribution to describe the probability of secondary electron generation.

The main contribution of the current work lies in the derivation of Fisher information
expressions for data that can be described as the output of a branching process, with or
without added readout noise. The expressions differ in the random variable, and hence the
probability distribution, that is used to model the data. In all cases, however, the input to the
branching process is modeled as a Poisson random variable. This assumption of a Poisson-
distributed initial signal is significant, in that many physical processes that give rise to
stochastic signals can be modeled as a Poisson process. Photon emission by a fluorescent
molecule (and hence the detection of those photons by a camera), for example, is typically
modeled as a Poisson process.

Importantly, in the process of presenting our theory, illustrations and comparisons are made
of different data models in terms of their Fisher information. To facilitate the investigation,
we use a quantity which we call the “noise coefficient”. The noise coefficient allows us to
analyze and compare the Fisher information of different data models via a scalar quantity,
and its definition is based on the assumption that information about the parameters of
interest is contained in the Poisson-distributed signal.

We note that in the context of EMCCD image analysis, little has been done, to the best of
our knowledge, in the way of Fisher information which importantly allows the computation
of Cramer-Rao lower bound-based accuracy limits for estimating parameters of interest from
the acquired data. The studies performed in Hynecek and Nishiwaki (2003) and Basden et
al. (2003), for example, consider the stochasticity of electron multiplication, but not from the
perspective of Fisher information. Note however that in Mortensen et al. (2010), the Fisher
information has been presented for an EMCCD data model that is characterized by a
probability distribution that has previously been described in Basden et al. (2003). This
distribution is also the probability density for what we refer to as the high gain
approximation (see Section 5.1) of our geometric model of electron multiplication. In their
analysis, Mortensen et al. ultimately arrive at a simple approximation of the Fisher
information for EMCCD data that is based on the “excess noise factor,” a well known
quantity in electron multiplication literature (e.g., Matsuo et al. 1985; Hollenhorst 1990;
Hynecek and Nishiwaki 2003). Specifically, the Fisher information for EMCCD data is
approximated as half the Fisher information for the ideal scenario where the data consists of
just the initial Poisson-distributed signal. However, as suggested in their work, as well as by
our analysis here (see Section 5.2), this approximation is appropriate only when a relatively
large number of photons are detected by an EMCCD operating at a high level of
amplification. In contrast, the Fisher information corresponding to our geometric model of
multiplication is suitable for arbitrary photon counts and amplification levels.

This paper is organized as follows. We begin in Section 2 with a general result from which
all ensuing Fisher information expressions can be derived. This result immediately gives rise
to the Fisher information for the ideal scenario of an uncorrupted signal and the practical
scenario of a signal that is corrupted by readout noise. Based on this result, we also define
the noise coefficient. In Section 3, general Fisher information expressions are presented
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which pertain to a signal that is amplified according to a branching process. These results
assume a general model of multiplication, and allow the straightforward derivation of
expressions for specific multiplication models. In Section 4, explicit Fisher information
expressions are derived for the geometric model of multiplication. Using these results, we
examine multiplication in terms of the stochasticity that it introduces and its ability to drown
out the device readout noise. In Section 5, Fisher information expressions are presented for
two approximations of an amplified signal that are relatively easy to work with
computationally and/or analytically. In Section 6, we generalize the theory developed in
previous sections for a single signal to a collection of independent signals such as that which
comprise an EMCCD image. This is followed by an example which applies the generalized
theory to the localization of a single molecule from an EMCCD image. In this example, the
calculation of the Fisher information matrix and the Cramer-Rao lower bound-based limit of
the localization accuracy is accompanied by the results of maximum likelihood estimations
performed with simulated images. Finally, we conclude in Section 7.

2 The noise coefficient
The first part of this paper deals with the analysis of the information content of a scalar
random variable that models the data in a single pixel of an electron multiplication imaging
sensor or a similar device. The signal that impacts the detector is modeled as a Poisson
random variable, but the data is a readout noise-corrupted version of the signal that may
have been amplified with the intention to overcome the added noise.

Of particular interest in this paper is the calculation of the Fisher information matrix related
to various parameter estimation problems such as the localization of a single molecule from
its image. These estimation problems take on a typical form. The probability mass function
of the incident Poisson random variable is parameterized by its mean ν. The mean ν itself
is, however, typically a function of the parameter vector θ that is of interest, e.g., the
positional coordinates of a single molecule. Since these problems form the basis of what
follows, we first state an expression for the Fisher information of a random variable using
the specific parameterization that will be of importance for the later developments.

Theorem 1 Let Zν be a continuous (discrete) random variable with probability density
(mass) function pν, where ν is a scalar parameter. Let ν = νθ be a reparameterization of pν
through the possibly vector-valued parameter θ ∈ Θ, where Θ is the parameter space. We
use the notation Zθ (pθ) to denote Zνθ (pνθ), θ ∈ Θ. Then the Fisher information matrix I(θ)
of Zθ with respect to θ is given by

(1)

Proof Let L(θ|z) be the log-likelihood function for θ. By the definition of the Fisher
information matrix,

Chao et al. Page 4

Multidimens Syst Signal Process. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Note that the above theorem can be seen to be a special case of the transformation result for
Fisher information matrices (e.g., Kay 1993) that applies to our specific conditions, and that
the scalar expectation term in Eq. 1 is just the Fisher information of Zθ with respect to νθ.

Theorem 1 importantly breaks the Fisher information matrix I(θ) into two parts: a matrix

portion  which does not depend on the specific probability distribution pθ of Zθ,

and a scalar portion E  which does depend on pθ. This formulation provides
the foundation of our definition of a “noise coefficient” for comparing the Fisher
information of different data models. To motivate the purpose and definition of this
coefficient, we first present two corollaries which follow immediately from Theorem 1. The
results of both corollaries have been presented in our earlier work (e.g., Ober et al. 2004;
Ram et al. 2006), but are given here again as two important realizations of the general Fisher
information expression of Eq. 1.

The two corollaries pertain to data acquired under two important scenarios. The first gives
the Fisher information matrix for the ideal scenario where a Poisson-distributed number of
detected particles are read out from a device without being corrupted by measurement noise.
This scenario thus represents the best case wherein a CCD is able to read out a signal
without introducing readout noise, and will serve as the benchmark against which practical
scenarios are compared. In this and all ensuing scenarios, the function νθ will represent the
mean of the Poisson-distributed signal.

Corollary 1 Let Zθ be a Poisson random variable with mean νθ > 0, such that its probability

mass function is , z = 0, 1,…. The Fisher information matrix IP(θ) of Zθ is
given by

(2)

Proof Since pθ,P is parameterized by θ through the function νθ, by Theorem 1 IP(θ) takes
the form of Eq. 1. To prove the result, we need only evaluate the expectation term of Eq. 1,
with pθ = pθ,P:

Note that Eq. 2 reduces to the familiar result of  if the parameter to be estimated
happens to be the mean of the Poisson distribution (i.e., if θ = νθ).

The second corollary is of significance in that it gives the Fisher information matrix for the
practical scenario where measurement noise is added to a Poisson-distributed number of
detected particles when they are read out from a device. Measurement noise is typically
modeled as a Gaussian random variable, and is assumed to be such by this corollary (see
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Appendix for the proof). This scenario importantly corresponds to the practical operation of
a CCD, which adds measurement noise when electrons are read out (e.g., Snyder et al.
1995).

Corollary 2 Let Zθ = Vθ + W, where Vθ is a Poisson random variable with mean νθ > 0,

and W is a Gaussian random variable with mean ηw and variance . Let Vθ and W be
stochastically independent of each other, and let W be not dependent on θ. The probability
density function of Zθ is then the convolution of the Poisson probability mass function with

mean νθ and the Gaussian probability density function with mean ηw and variance ,

given by , z ∈ ℝ. The Fisher information matrix IR(θ)
of Zθ is given by

(3)

Note that the density function pθ,R in the above corollary can be found in Snyder et al.
(1995).

According to Theorem 1 and demonstrated by Corollaries 1 and 2, different probability
distributions of the random variable Zθ will result in Fisher information matrices that differ
from one another through the Fisher information of Zθ with respect to νθ (i.e., the scalar
expectation term of Eq. 1). We therefore introduce, for the purpose of comparing the Fisher
information of different data models, a “noise coefficient” based on this quantity. (We call it
the “noise coefficient” because, as illustrated by Corollaries 1 and 2, different data models
will typically share the same signal, but differ by the type of noise that corrupts the signal.)
Since Eq. 2 represents the best case scenario (where we have Poisson-distributed data that is
not corrupted by measurement noise), we take its Fisher information with respect to νθ (i.e.,

the quantity ) as the reference, and define the noise coefficient as follows.

Definition 1 Let Zθ be a continuous (discrete) random variable with probability density
(mass) function pθ. Let pθ be parameterized by θ through the mean νθ > 0 of a Poisson-
distributed random variable. Then the noise coefficient (with respect to νθ) of Zθ, denoted
by α, is given by

(4)

The noise coefficient of Eq. 4 is just the ratio of the Fisher information of Zθ to that of the
ideal, uncorrupted Poisson-distributed signal, both with respect to νθ. Using this quantity,
the Fisher information matrix I(θ) of a random variable which satisfies the conditions of
Definition 1 can be expressed as I(θ) = α·IP(θ), where IP(θ) is the Fisher information matrix
of Eq. 2. Note that the noise coefficient α as defined is a nonnegative scalar, and that the
larger its value, the larger the Fisher information matrix I(θ) (i.e., the higher the amount of
information I(θ) contains about the parameter vector θ, and hence the better the accuracy
with which θ can be estimated).
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For the ideal scenario of Corollary 1 where the data is Poisson-distributed, the noise
coefficient is trivially αP = 1. For the practical scenario of Corollary 2 where Gaussian-
distributed measurement noise is added to the detected Poisson-distributed signal, the noise
coefficient αR is just

(5)

and the Fisher information matrix IR(θ) can be written as IR(θ) = αR · IP(θ).

In this paper, most results will involve data that can be described as a Poisson-distributed
signal with mean νθ that is stochastically multiplied (i.e., amplified) by some random
function M before being corrupted by some additive measurement noise W. Since neither
the stochasticity introduced by the multiplication nor the measurement noise is dependent on
θ, they contribute no additional information about θ. If anything, they can deteriorate the
Fisher information. Therefore, the noise coefficient α for these data models can be expected
to be at most 1 (i.e., at most αP). We state and prove this result formally in the following
theorem.

Theorem 2 Let Θ be a parameter space and let Zθ = M(Vθ) + W, θ ∈ Θ, where Vθ is a
Poisson random variable with mean νθ > 0, M is a random function, and W is a scalar-
valued random variable. We assume that Vθ, M, and W are stochastically independent.
Then, for the noise coefficient α of Zθ, 0 ≤ α ≤ 1.

Proof Trivially, we have α ≥ 0 because by Definition 1, it is the product of a positive value
νθ and the expectation of a squared expression. We next show that α ≤ 1.

For any random variable Uθ that depends on the parameter θ ∈ Θ, we denote by SUθ its
score function and by IUθ(θ) = E [(SUθ)T SUθ] its Fisher information matrix with respect to
the parameter θ. If we let Yθ = M(Vθ), we first show that IYθ(θ) ≤ IVθ(θ).

We explicitly denote the dependence of the multiplication random function M on the
random event ω ∈ Ω, i.e., M : ℕ × Ω → ℝ; (n, ω) ↦ M(n, ω). For a fixed ω0 ∈ Ω, M(·, ω0)
can be considered as a constant statistic for the Poisson random variable Vθ. Then by the
monotonicity of the Fisher information matrix (e.g., Rao 1965), we have that for each ω0 ∈
Ω, IM(Vθ,ω0)(θ) ≤ IVθ(θ).

Using the identity E [E [A|B]] = E [A], where A and B are random variables, we condition
on the random events that yield constant (i.e., non-random) multiplication functions to
obtain the required inequality

We next consider the addition of the random variable W to Yθ. Let F be the statistic defined
by F ([A B]T) = [1 1][A B]T = A + B, where A and B are random variables. We then have
that Zθ = F ([Yθ W]T), and by the monotonicity of the Fisher information matrix, we have
IZθ(θ) ≤ I[Yθ W]T(θ).
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By the stochastic independence of Yθ and W, the joint probability density function of [Yθ
W]T is the product of their respective density functions pYθ and pW. (Note that Yθ and W
can each be either discrete or continuous, but for ease of treatment, we consider them both to
be characterized by density functions.) Then,

Therefore, we have IZθ(θ) ≤ IYθ(θ) ≤ IVθ(θ). Since IVθ(θ) is just IP(θ) of Corollary 1, and
since IZθ(θ) = α · IP(θ), it follows that α ≤ 1. □

Note that if the multiplication random function M in Theorem 2 is the identity function (i.e.,
M(Vθ) = Vθ), then we recover the signal plus measurement noise scenario of Corollary 2.
Hence, Theorem 2 immediately implies that the noise coefficient αR of Eq. 5 is between 0
and 1, and that the Fisher information matrix IR(θ) is no greater than IP(θ) of the ideal
scenario of Corollary 1. For illustration, Fig. 1 plots, for ηw = 0 and different values of σw
corresponding to different levels of readout noise, the noise coefficient αR as a function of
the mean νθ of the Poisson-distributed signal. The plot shows that for all readout noise
levels and for all values of νθ, the value of the noise coefficient αR is no less than 0 and no
greater than 1.

For each value of νθ, Fig. 1 shows that the value of αR decreases with increasing levels of
the readout noise. This agrees with the expectation that the Fisher information deteriorates in
proportion to the amount of noise. Moreover, for each readout noise level, we see that the
value of αR increases with increasing values of νθ. This demonstrates that, by increasing the
signal to effectively drown out the readout noise, the Fisher information matrix IR(θ) can be
expected to approach IP(θ) of the ideal scenario. Practically, however, it may be impossible
to acquire the necessary amount of signal. In this case, the signal can be amplified before it
is read out. Signal amplification that can be modeled as a branching process is the subject of
what follows.

3 Fisher information for signal multiplication
In a basic multiplication, or branching, process (e.g., Harris 1963; Athreya and Ney 2004),
an initial number of particles are fed into a series of stages where, in each stage, an input
particle can generate secondary particles of the same kind with certain probabilities. The
particles at the output of one stage become the input of the next, resulting in a cascading
effect that can produce a large number of particles, and hence an amplification of the initial
particle count. While motivated by electron multiplication in an EMCCD, the theory we
present is general and can be used for other multiplication applications. Therefore,
consistent with the literature on branching processes, we will use the generic term “particle”
to refer to the physical entities that are multiplied. We begin by giving the definition of a
basic branching process, in a form similar to that found in Kimmel and Axelrod (2002).

Chao et al. Page 8

Multidimens Syst Signal Process. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Definition 2 A branching process with an initial particle count probability distribution
(qk)k=0,1,… and an individual offspring count probability distribution (pk)k=0,1,… is a
sequence of nonnegative integer-valued random variables (Xn)n=0,1,…, given by

(6)

where the initial particle count random variable U is nonnegative and integer-valued with
probability distribution (qk)k=0,1,…, and for each Xn, n = 1, 2, …, the individual offspring
count random variables Yj, j = 1, …, Xn−1, are nonnegative and integer-valued, and are
mutually independent and identically distributed with probability distribution (pk)k=0,1,….

Note that if Xn−1 = 0, then .

In Definition 2, the random variable Xn denotes the number of particles at the output of the
nth stage of multiplication, with X0 understood to be the initial number of particles U prior
to multiplication. In the definition of Xn for n = 1, 2, …, the random variable Yj, j = 1, …,
Xn−1, denotes the number of offspring particles due to the jth of the Xn−1 particles at the
output (input) of the previous (current) stage. In this way, the cascading effect of the
multiplication process is captured. Note that the number of offspring particles Yj includes
the jth input particle itself.

For a branching process with N stages of multiplication, where N is a nonnegative integer,
the mean and variance of the number of particles XN at the output of the Nth stage are well
known results (e.g., Harris 1963; Athreya and Ney 2004). For a general initial particle count
probability distribution (qk)k=0,1,… (which by Definition 2 has mean E[X0] and variance
Var[X0]) and a general individual offspring count probability distribution (pk)k=0,1,… with
mean m and variance σ2, the mean E[XN] and variance Var[XN] of XN are as given in Table
1. The table also gives expressions for E[XN] and Var[XN] that correspond to combinations
of different definitions of (qk)k=0,1,… and (pk)k=0,1,…. These expressions are easily verified
by substituting E[X0] = Var[X0] = νθ, and/or appropriate expressions for m and σ2 (see
Section 4 for definitions of the standard and zero modified geometric distributions), into the
general expressions for E[XN] and Var[XN].

From Table 1, we see that E[XN] is the product of the mean initial particle count E[X0] and
the term mN, which is the mean of XN given a single initial particle (i.e., given that X0 = 1).
The term mN is commonly called the mean gain of the branching process, and is an indicator
of the amount of multiplication that can be expected from a branching process.

Definition 2 specifies a general branching process by leaving the initial particle count
probability distribution (qk)k=0,1,… and the individual offspring count probability
distribution (pk)k=0,1,… to be defined. We are, however, interested in the scenario where the
initial particle count random variable is Poisson-distributed (e.g., photons detected as
electrons by an EMCCD according to a Poisson process). Using the Poisson distribution for
(qk)k=0,1,…, the next theorem gives the probability distribution, the noise coefficient, and the
Fisher information matrix of the particle count XN,θ at the output of an N-stage branching
process.

Theorem 3 Let XN,θ, N ∈ {0, 1, …}, be the number of particles at the output of an N-stage

branching process with an initial particle count probability distribution , k = 0, 1,
… and an individual offspring count probability distribution (pk)k=0,1,… that is not
dependent on θ.
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1. The probability distribution of XN,θ is given by the probability mass function

(7)

2. The noise coefficient corresponding to the probability mass function pθ,M is given
by

(8)

and the Fisher information matrix of XN,θ is IM(θ) = αM · IP(θ), where IP(θ) is as
given in Eq. 2.

Proof 1. By the law of total probability, for x = 0, 1, …,

2. Since the individual offspring count probability distribution (pk)k=0,1,… is not dependent
on θ, the conditional probability P(XN,θ = x|X0,θ = j), j = 0, 1, …, is not dependent on θ.
Hence, pθ,M is parameterized by θ through the mean νθ of a Poisson-distributed random
variable. By Definition 1, αM is then given by Eq. 4 with pθ = pθ,M, and the resulting
expectation term can be evaluated analogously in step-by-step fashion as in the proof of
Corollary 2. The matrix IM(θ) then follows directly from Definition 1. □

Eqs. 7 and 8 are expressed in terms of P(XN,θ = x|X0,θ = j), which is the general probability
mass function of the output particle count XN,θ conditioned on the initial particle count X0,θ.
They therefore allow the straightforward realization of concrete expressions for the
probability mass function and the noise coefficient of XN,θ once the conditional mass
function is determined. The conditional mass function, in turn, needs to be defined through a
specific individual offspring count probability distribution (pk)k=0,1,…, which specifies how
the particles are multiplied. Indeed, this approach is taken in Section 4 to arrive at the Fisher
information matrix for the case where (pk)k=0,1,… is a geometric probability distribution.

Theorem 3 assumes that the output particle count XN,θ of the multiplication process is the
data from which θ is to be estimated. In a device such as an EMCCD, however,
measurement noise is added to XN,θ during the readout process. In this case, the data Zθ is
the sum of XN,θ and a Gaussian random variable W which models the noise. By the
stochastic independence of XN,θ and W, the density function pθ,MR (Eq. 31) of Zθ is the
convolution of the mass function of XN,θ (Eq. 7) and a Gaussian density function. Using
pθ,MR, application of Definition 1 and a calculation analogous to the proof of Corollary 2
will readily yield the noise coefficient αMR (Eq. 32). These results are stated as Corollary 4
in the Appendix.
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4 Fisher information for geometric multiplication
Theorem 3 and Corollary 4 provide general Fisher information expressions for a Poisson-
distributed initial particle count that has been stochastically multiplied according to some
individual offspring count probability distribution (pk)k=0,1,…. In this section, we consider
the case where (pk)k=0,1,… is a zero modified geometric distribution, which we define as
follows (Haccou et al. 2005).

Definition 3 A zero modified geometric distribution is a probability distribution (pk)k=0,1,…
given by

(9)

The zero modified geometric distribution has mean  and variance ,
which can be easily verified. It has a probability generating function of linear fractional
form. Due to this special property, the probability distribution of the number of particles
XN,θ at the output of an N-stage branching process with a geometrically distributed
individual offspring count can be expressed explicitly without recursion (e.g., Harris 1963;
Athreya and Ney 2004). From Eq. 9, it can be seen that the zero modified geometric
distribution allows the individual offspring count to take on increasing positive integer
values with decreasing probabilities, and if desired, the value zero with a non-zero
probability. This makes it suitable for modeling processes like electron multiplication in an
EMCCD, where higher offspring counts per input particle per stage can be assumed to
become increasingly unlikely. (Note that this assumption is inferred from Hynecek and
Nishiwaki (2003), where it is suggested that the generation of more than one secondary
electron per input electron per stage in an EMCCD multiplication register can be assumed to
be an event that practically does not occur.) The ability to define a non-zero probability for a
zero individual offspring count also enables the modeling of any particle loss mechanisms
that may exist.

By setting the parameter a = 0, the zero modified geometric distribution of Eq. 9 reduces to
the standard geometric distribution pk = (1 − b)bk − 1, k = 1,2,…. This distribution has easily

verifiable mean  and variance . We will use the more general zero
modified geometric distribution in the theory that follows. However, the standard geometric
distribution will be used for illustration purposes since it produces a branching process
where there is no possibility of losing a particle. The absence of particle loss is often
assumed in the modeling of, for example, electron multiplication in an EMCCD.

For an N-stage branching process with a Poisson-distributed initial particle count and a
geometrically distributed individual offspring count, the following theorem gives the
probability distribution, the noise coefficient, and the Fisher information matrix of the
output particle count XN,θ. In brief, the proof (see Appendix) for this theorem uses the
theory of probability generating functions to derive the conditional probability mass function
of XN,θ given an initial particle count X0,θ (see Eq. 34). The results then follow by using the
conditional mass function in the general mass function and noise coefficient of Eqs. 7 and 8.

Theorem 4 Let XN,θ, N ∈ {0, 1, …}, be the number of particles at the output of an N-stage

branching process with an initial particle count probability distribution , k = 0, 1,
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…, and a zero modified geometric individual offspring count probability distribution
(pk)k=0,1,… that is not dependent on θ.

1. The probability distribution of XN,θ is given by the probability mass function

(10)

where A = (1 − a)(m − 1)mN, B = b(mN − 1)m + (1 − a)(m − 1), C = b(mN − 1)m,

D = mN(1 − a)2(m − 1)2,  denotes “x − 1 choose j”.

2. The noise coefficient corresponding to the probability mass function pθ,Geom is
given by

(11)

and the Fisher information matrix of XN,θ is IGeom(θ) = αGeom · IP(θ), with IP(θ)
as given in Eq. 2.

For the special case where we have a standard geometric individual offspring count

probability distribution, setting a = 0 in Eqs. 10 and 11 yields, for , the simpler
expressions

(12)

(13)

Fig. 2 plots, in open circles, the probability mass function pθ,Geom(x) of Eq. 12 for six
different values of the mean initial particle count νθ. For small values of νθ (1 and 5), the
shape of the function is characterized by a large value at x = 0. This is because the output
particle count of the multiplication will be 0 whenever the initial particle count is 0, a likely
event given the small νθ. However, as νθ becomes larger, the shape of the probability mass
function starts to resemble that of a Gaussian density function (see Section 5.2).

Multiplication is a random process, and hence adds stochasticity to the detected signal. This
is illustrated by Fig. 3(a), which plots the noise coefficient αGeom of Eq. 13 as a function of
the mean νθ of the initial particle count. The figure shows curves for different values of the
mean gain mN of the multiplication process, with N set to 536 stages. (The value 536 is the
number of multiplication stages in a CCD97 chip (E2V Technologies, Chelmsford, UK), a
sensor which is used in many EMCCD cameras.) In accordance with Theorem 2, the
stochasticity added by the multiplication is seen in the fact that the noise coefficient αGeom
is less than one for all values of the mean gain and νθ shown in the plot. This directly
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implies that the corresponding Fisher information matrix IGeom(θ) is smaller than IP(θ) of
the ideal scenario.

For each value of νθ, Fig. 3(a) shows that multiplication with a higher mean gain results in a
smaller value of αGeom, indicating that the amount of added stochasticity is proportional to
the mean gain. Moreover, for each mean gain value, we see that the value of αGeom
decreases with increasing values of νθ, suggesting that multiplication adds the least amounts
of stochasticity when the signal to be amplified is small.

Despite the fact that multiplication adds stochasticity to the data, it can be useful in the
practical scenario wherein measurement noise is introduced by the device. In this case, the
derivations of the probability density pθ,GeomR (Eq. 35) of the final data Zθ and the
associated noise coefficient αGeomR (Eq. 36) will be analogous to the proof of Theorem 4 in
the Appendix, using instead the general expressions of Eqs. 31 and 32 of Corollary 4, which
account for the added Gaussian noise. The results are stated as Corollary 5 in the Appendix,
where expressions for the special case of standard geometric multiplication are also given.

To illustrate that multiplication can be beneficial when readout noise is present, Fig. 3(b)
plots the noise coefficient αGeomR of Eq. 38 as a function of the mean νθ of the initial
particle count. Curves are shown for the same set of mean gain values as in Fig. 3(a), and a
zero mean Gaussian readout noise with a standard deviation of σw = 8 is assumed. As a
reference for comparison, the noise coefficient αR of Eq. 5, which corresponds to the
absence of multiplication, is shown for the same readout noise level as a red curve.

Fig. 3(b) shows that, for the given set of mean gain values, multiplication yields a better
noise coefficient than no multiplication (i.e., αGeomR is greater than αR) for νθ values of up
to roughly 60 particles. In this range of νθ values, a higher mean gain generally yields a
larger αGeomR. Beyond roughly νθ = 60 particles, however, multiplication starts to produce,
in order of decreasing mean gain, a noise coefficient that is worse than no multiplication
(i.e., αGeomR starts to drop below αR). By roughly νθ = 130 particles, multiplication with
any of the given mean gain values offers no benefit, with a higher mean gain yielding a
smaller αGeomR.

Fig. 3(b) therefore demonstrates that multiplication, especially at high mean gain, is
beneficial when the signal level is relatively small (or equivalently, when the readout noise
level is relatively significant). On the other hand, when the signal level is relatively large
such that the readout noise level is already relatively insignificant, multiplication has the
undesirable net effect of introducing additional stochasticity.

5 Approximations of the output of multiplication
Though exact, the probability distributions and noise coefficients of Theorem 4 and
Corollary 5 can be difficult to analyze and time-consuming to compute. In this section, we
present two ways to approximate the output of geometric multiplication that yield
expressions that are relatively simple to analyze and/or compute. The first approximation is
based on the behavior of a branching process as its mean gain converges to infinity, and
applies specifically to geometric multiplication. The second approximation models the
output of a branching process as a Gaussian random variable, and can be used with any
multiplication model. This approximation allows for a relatively easy analytical
demonstration of the behavior of the noise coefficient.
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5.1 High gain approximation
Let (Xn,θ)n=0,1,… be a branching process with initial particle count X0,θ = 1 and a zero
modified geometric individual offspring count probability distribution with mean

. Then it is shown in Harris (1963) that as the number of multiplication stages n
converges to infinity, the sequence of random variables (Yn = Xn,θ/mn)n=0,1,… converges,
with probability 1 and in mean square, to a random variable Y with a zero modified
exponential distribution given by

(14)

Based on this result, for a large N, the particle count XN,θ at the output of an N-stage
branching process with initial particle count X0,θ = 1 and a zero modified geometric
individual offspring count probability distribution with mean m > 1, can be approximated by
the random variable mNY, whose probability density function can be verified to be a scaled
version of Eq. 14:

(15)

If instead the branching process has an initial particle count of X0,θ = j, j = 1, 2, …, then the
distribution of the output particle count XN,θ can be approximated by the j-fold convolution
of p(x) of Eq. 15 with itself. The resulting density function can be shown to be, for 0 ≤ a < b
< 1,

(16)

To obtain the approximating probability density function and noise coefficient for the case
where the initial particle count X0,θ is Poisson-distributed with parameter νθ, we note that
Eq. 16 is the approximating probability density function of the output particle count XN,θ
conditioned on X0,θ. It is thus similar to the conditional probability mass function that is
required by the general expressions of Eqs. 7 and 8. However, since it is a density function,
continuous analogues of Eqs. 7 and 8 are needed. By proceeding in similar fashion as in the
proof of Theorem 3, the general expressions for the continuous case can be verified to be

(17)

(18)
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Substituting Eq. 16 into Eq. 17 gives the required density function, which we use in our next
theorem.

Theorem 5 Let Xθ be a random variable with probability density function

(19)

where 0 ≤ a < b < 1 and . Then the noise coefficient corresponding to pθ,H is

(20)

and the Fisher information matrix of Xθ is IH(θ) = αH · IP(θ), where IP(θ) is as given in Eq.
2.

Proof The noise coefficient αH follows by substituting Eqs. 19 and 16 into Eq. 18 and
simplifying. The Fisher information matrix IH(θ) then follows directly from Definition 1. □

To approximate standard geometric multiplication, setting a = 0 in Eqs. 19 and 20 yields the
simpler expressions

(21)

(22)

The functions I1 and I0 are the first and zeroth order modified Bessel function of the first
kind, respectively, and they are obtained by applying the identity (Abramowitz and Stegun
1965)

with v = 1 and v = 0 during the simplification. Note that Eq. 21 appears in an equivalent
form, without the jump at x = 0 and without the modified Bessel function representation, in
Basden et al. (2003). It can also be found, in identical form as presented here and along with
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some associated Fisher information analysis, in Mortensen et al. (2010). Note also that
whereas the mean gain mN is present in the density functions of Eqs. 19 and 21, it
disappears by simple substitution in deriving the noise coefficients of Eqs. 20 and 22.

According to its derivation, the high gain approximation can be expected to apply only in
the case of a large mean gain. For illustration, the probability density function of Eq. 21 is
shown, for a relatively large mean gain of mN = 1015.46, as a red curve in each plot of Fig.
2. For each of the six values of the mean initial particle count νθ, a close agreement can be
seen between this density function and the probability mass function of Eq. 12 (◦).
Similarly, a close match can be seen in Fig. 3(a) between the noise coefficient αH of Eq. 22
(red curve) and the noise coefficient αGeom of Eq. 13 computed for mN = 1015.46 (△). As
expected, Fig. 3(a) also demonstrates that the agreement between αH (which again does not
depend on the mean gain mN) and αGeom becomes increasingly poor with decreasing mean
gain values for αGeom.

When measurement noise is present, the approximating probability distribution of the final
data will be the convolution of the approximating distribution of Eq. 19 and a Gaussian
distribution. The resulting density function pθ,HR (Eq. 39) and the associated noise
coefficient αHR (Eq. 40) are stated as Corollary 6 in the Appendix, where expressions
pertaining to standard geometric multiplication are also given.

The high gain approximation offers the important advantage of computational efficiency. At
least for the case of standard geometric multiplication, we have found that its associated
expressions can be evaluated in significantly less time than their exact counterparts in
Section 4. Importantly, as demonstrated above, they produce values which are similar to that
of their exact counterparts at high mean gain. In Section 6.2.2, we will make use of this
approximation when performing maximum likelihood estimations where the probability
distribution of the data is computed many times with different values of the estimated
parameters.

5.2 Gaussian approximation
In this section, we present a Gaussian approximation of the output of multiplication. Unlike
the high gain approximation, its applicability is not restricted to geometric multiplication. It
has been reported (e.g., Hynecek and Nishiwaki 2003; Basden et al. 2003) that given a large
initial particle count, the probability distribution of the output particle count Y of a
branching process can be approximated by a Gaussian distribution with the same mean and
variance as that of Y. For an N-stage branching process with a Poisson initial particle count
probability distribution and a general individual offspring count probability distribution
(pk)k=0,1,…, the mean and variance of the number of particles XN,θ at its output are given in
Table 1. Taking this mean and variance to be that of a Gaussian random variable Xθ, the
following theorem gives the noise coefficient and the Fisher information matrix of the
particle count Zθ = Xθ + W, where W is a Gaussian random variable representing
measurement noise. In contrast to previous sections, here we are presenting the more general
case first because the case without measurement noise is a trivial special case of the more
general result.

Theorem 6 Let Zθ = Xθ + W, where Xθ and W are Gaussian random variables that are
stochastically independent of each other, and W is not dependent on θ. Let Xθ have mean

ηx,θ = mNνθ and variance , where νθ > 0, m > 0, m ≠ 1, σ2

≥ 0, and N ∈ {0, 1, …}. Let W have mean ηw and variance . Then the noise coefficient
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corresponding to the probability density function of Zθ, which is Gaussian with mean ηz,θ =

ηx,θ + ηw and variance , is given by

(23)

and the Fisher information matrix of Zθ is IGaussR(θ) = αGaussR · IP(θ), with IP(θ) as given
in Eq. 2.

Proof By Definition 1, αGaussR is the product of νθ and the Fisher information of the
Gaussian random variable Zθ with respect to νθ. The Fisher information of a Gaussian

random variable is well known (e.g., Kay 1993). For Zθ with mean ηz,θ and variance , its
Fisher information with respect to νθ is

(24)

By evaluating Eq. 24 and multiplying the result by νθ, we arrive at Eq. 23. □

For the case where measurement noise is absent, the random variable Zθ of Theorem 6
reduces to the Gaussian random variable Xθ as defined in the theorem. By making this
adjustment in the proof of Theorem 6, one can easily verify the resulting noise coefficient to
be, for m > 0, m ≠ 1, and σ2 ≥ 0,

(25)

The Fisher information matrix of Xθ is then just IGauss(θ) = αGauss · IP(θ), with IP(θ) as
given in Eq. 2.

In electron multiplication literature (e.g., Matsuo et al. 1985; Hollenhorst 1990; Hynecek
and Nishiwaki 2003), the excess noise factor is defined as the ratio of the variance of the
output particle count of a multiplication process to the variance of the initial particle count,
normalized by the square of the mean gain. It is thus a measure of the increase in the
stochasticity of the data as a result of the multiplication. Interestingly, the expression

 in Eqs. 23 and 25 is easily verifiable to be the excess noise factor for the
case of a Poisson-distributed initial particle count. We will revisit the excess noise factor
later in this section.

By substituting  for the standard geometric distribution into the

mean ηx,θ and the variance  of Xθ, the resulting Gaussian density function is plotted, for
a mean gain of m536 = 1015.46, as a blue curve in Fig. 2 for each of the six values of the
mean initial particle count νθ. We see that for small values of νθ, the Gaussian density
matches poorly with the probability mass function of Eq. 12 (◦). However, with increasing
values of νθ, the Gaussian density starts to coincide more and more with the mass function.

Chao et al. Page 17

Multidimens Syst Signal Process. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The same observation can be made with the noise coefficient αGauss of Eq. 25. Computed

for , and m536 = 1015.46, Fig. 3(a) shows that, for small values of νθ,
αGauss (blue curve) is in poor agreement with αGeom of Eq. 13 that has been computed for
the same mean gain (△). With increasing values of νθ, however, it becomes an increasingly
better match of αGeom. Hence, unlike the high gain approximation which applies for all
values of νθ, the Gaussian approximation only applies for large νθ as indicated in Hynecek
and Nishiwaki (2003) and Basden et al. (2003). However, unlike the high gain
approximation, the Gaussian approximation also applies for low mean gain values. For
example, Fig. 3(a) shows that for a low mean gain of m536 = 4.98, αGauss (green curve)
becomes an increasingly better match of αGeom (□) with increasing values of νθ.

As is evident from Eq. 25 and its curves in Fig. 3(a), the Gaussian approximation can
produce noise coefficients that converge to infinity when νθ converges to 0. This might
appear to contradict Theorem 2, which states that the noise coefficient can be at most 1.
However, this is not the case since the Gaussian random variable does not fall under the
category of random variables to which the theorem applies. Specifically, it is not the sum of
a random function of a Poisson random variable and a scalar-valued random variable.

Besides being easy to compute, the expressions associated with the Gaussian approximation
allow for relatively simple analytical studies. For example, it is easily verified that as the
mean gain mN converges to infinity in Eqs. 23 and 25, in both cases we obtain the same
noise coefficient

(26)

This shows that, in practice, we can drown out the measurement noise by using
multiplication with a large mean gain to amplify the signal. Furthermore, the dependence of
the noise coefficient on the inverse of νθ indicates that the high mean gain multiplication is
more beneficial when low signal levels are expected. This is consistent with what we
observed from Fig. 3(b).

Using mean  and variance  for standard geometric multiplication, Eq.
26 yields

(27)

The first summand in Eq. 27 is the inverse of the excess noise factor (see above) in the limit
that the mean gain converges to infinity. Therefore, in this limiting scenario, standard
geometric multiplication yields an excess noise factor of 2, indicating a two-fold increase in
the stochasticity of the data due to the amplification. Interestingly, for the Bernoulli
multiplication model (see Section 1) which is commonly used to describe electron
multiplication in an EMCCD, the excess noise factor has been shown to also approach the
value 2 as the mean gain converges to infinity (e.g., Matsuo et al. 1985; Robbins and
Hadwen 2003). However, the convergence to 2 for Bernoulli multiplication is dependent on
the probability of secondary particle generation tending to 0.
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If we further let the mean initial particle count νθ converge to infinity in Eq. 27, we obtain
αGaussR = αGauss = 0.5. This importantly suggests that when standard geometric
multiplication with a high mean gain is unnecessarily used to amplify an already large
signal, the Fisher information matrices IGaussR(θ) and IGauss(θ) will be no smaller than half
of IP(θ) of the ideal Poisson data scenario. This agrees with Figs. 3(a) and 3(b), which
suggest that αGeom and αGeomR converge to 0.5 as the mean gain and νθ are increased.

6 Application to EMCCD imaging
When imaging with a CCD or an EMCCD, photons from the imaged object arrive, and
hence are detected, according to a Poisson process. In each pixel of the device, electrons
accumulate in proportion to the detected photons, and in the case of an EMCCD, are
subsequently multiplied using a register consisting of several hundred stages. The readout
process then converts the electric charge to a digital count, during which time measurement
noise is added. The data in each pixel of a CCD (EMCCD) can therefore be modeled as a
Poisson-distributed particle count (that is multiplied according to a branching process), plus
a Gaussian-distributed random variable that models the readout noise. As such, the Fisher
information expressions derived thus far will readily apply for a single CCD or EMCCD
pixel. In this section, we first build on our theory by deriving results pertaining to the Fisher
information for a collection of pixels (i.e., an image). We then give an example that applies
the results to a concrete estimation problem in single molecule microscopy.

6.1 Fisher information for an EMCCD image
An image acquired by a CCD or an EMCCD consists of a two-dimensional array of pixels.
Since the data in different pixels can be assumed to be independent measurements, the
Fisher information matrix for an image is the sum of the Fisher information matrices for its

pixels. For an image of K pixels, its Fisher information matrix is thus ,
where Ik(θ) is the Fisher information matrix for the kth pixel.

Moreover, since the theory from previous sections applies to the data in each pixel, we can

write , where αk is the noise coefficient for the kth pixel, and

 is the Fisher information matrix for the kth pixel in the ideal
scenario where the data at that pixel is just the initial electron count which is Poisson-
distributed with mean νθ,k. It follows that for the ideal K-pixel image, αk = 1 for k = 1,

…,K, and its Fisher information matrix is . We now give an inequality
which relates Iim(θ) for a practical image to Iim,P(θ) for its corresponding ideal image.

Theorem 7 Let , and let . Let αmin and αmax
denote, respectively, the smallest and the largest elements in the sequence (αk)k=1,…,K. Then
we have

Proof Let J = Iim(θ)−αmin ·Iim,P(θ). Then for the left-hand side inequality, we need to show
that J ≥ 0. Writing out the matrices Iim(θ) and Iim,P(θ) explicitly as defined, we get
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Then, for any x ∈ ℝn, where J is n × n, we have that

Note that we have the inequality at the end since, for all k, (αk − αmin) ≥ 0 and xT IP,k(θ)x ≥
0. The latter is true because for each k, IP,k(θ) is a Fisher information matrix, and therefore
positive semidefinite. Since xT Jx ≥ 0 for all x ∈ ℝn, we have that J ≥ 0. The proof for the
right-hand side inequality is analogous. □

Theorem 7 is of importance in that it can be used to assess, in terms of the Fisher
information, how close a practical image is to its corresponding ideal image. If, for example,
the smallest noise coefficient for a practical image is close to 1, then the image contains
nearly the same amount of information about θ as the ideal image. On the other hand, if the
largest noise coefficient is small compared to 1, then the image contains very little
information about θ compared to the ideal image. In general, provided that suitable models
are used to compute Iim,P(θ) and the noise coefficients (αk)k=1,…,K, Theorem 7 can be used
to obtain a quantitative lower and upper bound of an image’s information content.

We now consider the case where the data in each pixel of a K-pixel EMCCD image is
modeled using the Gaussian approximation of Theorem 6. Specifically, we assume the
approximation of a standard geometric multiplication process with infinite mean gain, such
that the noise coefficient for each pixel is in the form of αGaussR of Eq. 27. For this special
scenario, we give a corollary which follows directly from Theorem 7.

Corollary 3 Let , where for k = 1, …,K, .

Let , and let νθ,max and νθ,min denote, respectively, the smallest and the
largest elements in the sequence (νθ,k)k=1,…,K. Then we have the inequality

(28)

Corollary 3 is a realization of Theorem 7 which, due to the simpler form of the noise
coefficient for the assumed conditions, gives an inequality that depends on just the
maximum and the minimum mean initial electron counts in the pixels comprising the image.
Importantly, Eq. 28 shows that if we let νθ,k converge to infinity for all pixels k = 1, …,K,

then . Practically, assuming that the data can be modeled using the
Gaussian approximation, this indicates that when standard geometric multiplication is used
at high mean gain to amplify an image with an already high signal level in every pixel, the
Fisher information of the amplified image will at worst be half of that of its corresponding
ideal image.
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6.2 Example: Limit of the accuracy for localizing a point source
In this section, we apply our theory to an important estimation problem in single molecule
microscopy, namely the localization of a fluorescent molecule. We first compute and
compare the noise coefficients for three different data models of an image acquired of a
single molecule. These data models consist of the ideal scenario of an image with Poisson-
distributed data, the practical scenario of a readout noise-corrupted CCD image, and the
practical scenario of a stochastically multiplied and readout noise-corrupted EMCCD image.
We then use the noise coefficients to compute Fisher information matrices for the estimation
of the location of the single molecule from its image. From the matrices, we readily obtain
the Cramer-Rao lower bound-based limits of the accuracy for the location estimation, which
we compare with the standard deviations of maximum likelihood location estimates obtained
with simulated image data sets. (For other studies involving point source parameter
estimation from EMCCD images, see, for example, DeSantis et al. (2010), Mortensen et al.
(2010), Quan et al. (2010), Thompson et al. (2010), and Wu et al. (2010).)

Note that in the material that follows, a standard geometric model of electron multiplication
is assumed for the EMCCD. To perform the same analyses using a different model of
multiplication, the results presented in Section 3 for a general model of multiplication may
be used to obtain the necessary mathematical expressions.

6.2.1 Noise coefficient comparison—We consider the estimation of the location of an
in-focus point source (e.g., single molecule) from its image as observed through a
fluorescence microscope and detected by a CCD or EMCCD camera. For this problem, the
mean of the Poisson-distributed photon count (or equivalently, electron count) that is
detected from the point source at the kth pixel of the device can be shown to be

(29)

where Nphoton is the expected number of photons detected from the point source, M is the
magnification of the microscope, Ck is the region in the xy-plane occupied by the pixel, x0
and y0 are the x and y coordinates of the point source in the object space where it resides,
and q is a function which describes the image formed from the detected photons. More
specifically, q is called the “image function”, and gives the image at unit magnification of a
point source that is located at the origin of the object space coordinate system (Ram et al.
2006). Eq. 29 is a realization of a more general formula in Ram et al. (2006), as it assumes
the rate at which photons are detected from the point source to be a constant. In general, νθ,k
can also include as additional summands the means of Poisson-distributed components (e.g.,
photon count detected from something other than the point source) which are stochastically
independent of one another, and of the electron count due to the point source.

We assume that q is given by the Airy point spread function (Born and Wolf 1999), a model
which has classically been used to describe the image of an in-focus point source. The Airy
image function can be written as (Ram et al. 2006)

(30)

where na is the numerical aperture of the objective lens, λ is the wavelength of the detected
photons, and J1 is the first order Bessel function of the first kind. The Airy image function is
circularly symmetric, with a strong central peak and ripples that increasingly diminish in
amplitude away from the center.
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Noise coefficients are computed for an 11-by-11 pixel array (i.e., image), with the mean
initial electron count νθ,k (Eq. 29) at the kth pixel calculated with the point source attributes
and imaging parameters given in Fig. 4. Mirroring the shape of the Airy image function of
Eq. 30, and due to the centering of the point source image on the pixel array, the resulting
profile of νθ values over the pixel array is circularly symmetric, with the largest values in
the center region and a maximum value of 53.48 electrons at the center pixel.

For the ideal Poisson data model, the noise coefficient is, by definition, 1 for each pixel of
the image. For the two practical data models, the noise coefficients for all pixels in the
image are plotted in Fig. 4. For the CCD scenario, a Gaussian readout noise with mean ηw =
0 e− and standard deviation σw = 8 e− in every pixel is assumed. The chosen standard
deviation represents a noise level that is typical of a CCD, and is the number specified, for
example, for the normal readout mode of our laboratory’s Hamamatsu C4742-95-12ER
CCD camera. In this case, Fig. 4(a) shows that αR of Eq. 5 is relatively small for every
pixel. The center region of the image has the largest αR values, with the center pixel having
the maximum value of only 0.456. This and the circular symmetry of the αR values
correspond to the profile of νθ values, which is in accordance with Fig. 1 showing the value
of αR to be proportional to the value of νθ. By Theorem 7, the maximum αR value of 0.456
implies that the Fisher information for this scenario is less than half of that for the ideal
scenario.

For the EMCCD scenario, standard geometric multiplication using a 536-stage register is
assumed. The mean gain is set to m536 = 1015.46, and a Gaussian readout noise with mean
ηw = 0 e− and standard deviation σw = 24 e− in every pixel is assumed. The higher readout
noise level of 24 e− is within the range of typical values for an EMCCD, and is
representative of the noise level for the settings at which our laboratory’s Andor iXon
EMCCD cameras are often operated. In this case, Fig. 4(b) shows that the value of αGeomR
of Eq. 38 is at least 0.5 in every pixel. This demonstrates a significant increase in the
information content of every pixel due to the high mean gain multiplication. Moreover, the
pixels in the center of the image have αGeomR values that are closer to 0.5, while the rest
have αGeomR values that are closer to 1. This is in accordance with the curve with the same
high mean gain in Fig. 3(b) which, though shown for σw = 8 e−, indicates that the value of
αGeomR decreases with increasing values of νθ. The minimum αGeomR value in this case is
0.503, which implies, by Theorem 7, that the Fisher information for this scenario is greater
than half of that for the ideal scenario.

6.2.2 Limit of the localization accuracy comparison—To arrive at the limit of the
localization accuracy for each data model, the estimated parameters are defined as the
coordinates of the point source, i.e., θ = (x0, y0). Given θ and the noise coefficients
computed above, we readily obtain the Fisher information matrix for each data model as
described in Section 6.1. The limit of the localization accuracy for x0 (y0) is then defined as
the square root of the Cramer-Rao lower bound on the variance of the estimates of x0 (y0),
and is thus a lower bound on the standard deviation of any unbiased estimator of x0 (y0).
Due to the centering of the circularly symmetric Airy image function on a square pixel
array, the accuracy limits for x0 and y0 are the same. Hence, we give only a single limit for
each data model.

The limits of the localization accuracy for the three data models are shown in Table 2. As
expected, the ideal scenario of Poisson-distributed data has the best (i.e., the smallest)
accuracy limit of 8.50 nm. In comparison, the CCD scenario has a significantly higher
accuracy limit of 21.14 nm due to the readout noise of standard deviation σw = 8 e− in every
pixel. In contrast, by using high mean gain multiplication to drown out the readout noise, the
EMCCD scenario has an accuracy limit of 11.58 nm that is only a little higher than that of
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the ideal scenario. Note that this is despite a larger readout noise standard deviation of σw =
24 e− per pixel, which for the CCD scenario would more than double its accuracy limit to
57.27 nm.

Table 2 also shows, for each data model, the mean and standard deviation of the estimates of
the x0 coordinate from maximum likelihood estimations carried out on 1000 simulated
images of the point source. The image simulation and the estimation are performed in
MATLAB (The MathWorks, Inc., Natick, MA). For an ideal image, the kth pixel value, with
mean νθ,k of Eq. 29, is generated using MATLAB’s poissrnd function. For a CCD image,
the kth pixel value is the sum of a similarly generated Poisson random number and a
Gaussian random number with mean 0 and standard deviation 8 generated using
MATLAB’s randn function. For an EMCCD image, the kth pixel value is the sum of a
number generated from the standard geometric multiplication probability mass function of
Eq. 12 (with mN = 1015.46 and νθ = νθ,k) using the inverse transform method, and a
Gaussian random number with mean 0 and standard deviation 24.

By the independence of the pixels, the log-likelihood function that is maximized for a given
image is the sum of the log-likelihood functions of its individual pixels. For an ideal and a
CCD image, the log-likelihood function of the kth pixel is the logarithm of, respectively, the
Poisson mass function with mean νθ,k of Eq. 29 and the density function given in the
statement of Corollary 2 with νθ = νθ,k, ηw = 0, and σw = 8. For an EMCCD image, the kth

pixel’s log-likelihood function is approximated by the density function of Eq. 41 with mN =
1015.46, νθ = νθ,k, ηw = 0, and σw = 24. The high gain approximation is used (as opposed
to the standard geometric multiplication density function of Eq. 37) because it computes
significantly faster while, as the results will show, retaining reasonable accuracy. In all
cases, the maximization is realized by minimizing the negative of the log-likelihood function
using MATLAB’s fminunc function. Also, initial estimates for x0 and y0 are randomly
generated per image to be within 20% of the true value of 880 nm.

For each data scenario, Table 2 shows that the standard deviation of the maximum
likelihood estimates of x0 comes reasonably close to the corresponding limit of the
localization accuracy. In each case, the mean of the estimates also recovers reasonably
closely the true value of x0. (For the results of maximum likelihood estimations performed
on additional simulated EMCCD data sets that differ in the expected number of detected
photons Nphoton, see Table 3 in the Appendix. As in the case of the results of Table 2, the
mean values and the standard deviations of the x0 estimates of these data sets reasonably
recover, respectively, the true value of x0 and their corresponding limits of the localization
accuracy.)

7 Conclusion
We have derived various Fisher information expressions pertaining to data that can be
described as the output of a branching process with potentially added measurement noise.
All expressions assume a Poisson-distributed initial signal which is characteristic of many
physical processes. General expressions which make no assumptions about the model of
signal amplification allow the straightforward derivation of specific expressions once the
probability distribution of the amplified signal is known. On the other hand, specific results
which assume the geometric model of amplification can readily be applied to, for example,
imaging with an EMCCD. Meanwhile, expressions based on two approximations of an
amplified signal offer computational efficiency and/or ease of analysis. Throughout the
presentation, illustration and comparison of different data models have been performed
using a noise coefficient that has been defined based on the common form taken by the data
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models. As demonstrated with a point source localization example, the developed theory has
applications in the Fisher information analysis of practically important problems.
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Appendix
Corollary 2 Proof:

Since pθ,R is parameterized by θ through νθ, by Theorem 1 IR(θ) takes the form of Eq. 1.
To prove the result, we need only evaluate the expectation term of Eq. 1 with pθ = pθ,R:

Corollary 4 Let Zθ = XN,θ + W, where XN,θ is as defined in Theorem 3, and W is a

Gaussian random variable with mean ηw and variance . Let XN,θ and W be stochastically
independent of each other, and let W be not dependent on θ.

1. The probability distribution of Zθ is given by the probability density function

(31)

2. The noise coefficient corresponding to the probability density pθ,MR is given by
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(32)

The Fisher information matrix of Zθ is given by IMR(θ) = αMR · IP(θ), with IP(θ) as given
in Eq. 2.

Theorem 4 Proof:

1. Let f be the probability generating function of the zero modified geometric distribution
(pk)k=0,1,… of Eq. 9. By the definition of the generating function, for s ∈ ℂ and |s| ≤ 1,

Given an N-stage branching process with initial particle count 1 (i.e., U = 1 in Definition 2)
and an individual offspring count probability distribution (pk)k=0,1,…, the probability
generating function of the probability distribution of the particle count XN,θ at the output of
the branching process is well known to be the Nth iterate of the probability generating
function of (pk)k=0,1,… (e.g., Harris 1963; Athreya and Ney 2004; Grimmett and Stirzaker
2001). Denoted by fN(s), the Nth iterate of f(s) can be shown by induction to be, for

,

(33)

According to Definition 2, each initial particle of a branching process multiplies
independently of the other initial particles, but according to a common stochastic model.
Therefore, if the initial particle count is a positive integer j, then the probability mass
function of the output particle count XN,θ will be the j-fold convolution of, in this case, the
probability mass function corresponding to Eq. 33 with itself. By a well known result from
the theory of generating functions, the generating function of XN,θ is then just [fN(s)]j (e.g.,
Grimmett and Stirzaker 2001).

Using this generating function, the conditional probability that the output particle count XN,θ
= x given j ∈ {1, 2, …} initial particles can be obtained based on the definition of the
generating function. For x = 0, it is given by [fN(s)]j evaluated at s = 0, and for x = 1, 2, …,
it is given by the xth derivative of [fN(s)]j evaluated at s = 0 and divided by x! (e.g.,
Grimmett and Stirzaker 2001). This can be shown to yield, for A, B, C, and D as given for
Eq. 10,
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(34)

Note that Eq. 34 also applies for j = 0, since P(XN,θ = x|X0,θ = 0) is 1 for x = 0, and is 0
otherwise. Finally, for an initial particle count that is Poisson-distributed with mean νθ,
using the conditional mass function of Eq. 34 in the general expression of Eq. 7 gives the
desired probability mass function of XN,θ.

2. The noise coefficient αGeom follows by substituting Eqs. 34 and 10 into Eq. 8 and
simplifying. The Fisher information matrix IGeom(θ) then follows directly from Definition 1.
□

Corollary 5 Let Zθ = XN,θ + W, where XN,θ is as defined in Theorem 4, and W is a

Gaussian random variable with mean ηw and variance . Let XN,θ and W be stochastically
independent of each other, and let W be not dependent on θ.

1. The probability density function of Zθ is, for z ∈ ℝ, given by

(35)

2. The noise coefficient corresponding to the probability density pθ,GeomR is given by

(36)

The Fisher information matrix of Zθ is IGeomR(θ) = αGeomR · IP(θ), with IP(θ) as given in
Eq. 2.

For standard geometric multiplication, setting a = 0 in Eqs. 35 and 36 yields, for ,

(37)

(38)
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Corollary 6 Let Zθ = Xθ + W, where Xθ is as defined in Theorem 5, and W is a Gaussian

random variable with mean ηw and variance . Let Xθ and W be stochastically
independent of each other, and let W be not dependent on θ.

1. The probability density function of Zθ is, for 0 ≤ a < b < 1 and

,

(39)

2. The noise coefficient corresponding to the probability density pθ,HR is given by

(40)

The Fisher information matrix of Zθ is given by IHR(θ) = αHR · IP(θ), where IP(θ) is as in
Eq. 2.

To approximate standard geometric multiplication, setting a = 0 in Eqs. 39 and 40 yields, for

, 0 < b < 1,

(41)

(42)
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Fig. 1.
Noise coefficient αR (Eq. 5), for the scenario of a Poisson-distributed signal with Gaussian-
distributed measurement noise, as a function of the mean νθ of the signal. The values of νθ
range from 0.27 to 201.28. The different curves correspond to measurement noise with mean
ηw = 0 and standard deviation σw = 1 (*), 2 (◦), 4 (×), 8 (⋄), 16 (·), 24 (◁), 32 (□), 64 (+),
and 128 (△).
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Fig. 2.
Probability mass function (Eq. 12) of X536,θ, the particle count at the output of a 536-stage
branching process with a standard geometric (◦) individual offspring count probability
distribution and a mean gain of m536 = 1015.46, for six different values of the mean νθ of
the Poisson-distributed initial particle count. For each value of νθ, the probability density
functions resulting from the high gain approximation (Eq. 21) (red curve) and the Gaussian
approximation (see discussion of Theorem 6) (blue curve) of the output of the standard
geometric multiplication are also shown.
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Fig. 3.
(a) Noise coefficient αGeom (Eq. 13), for the scenario of a Poisson-distributed signal that is
amplified by multiplication, and (b) noise coefficient αGeomR (Eq. 38), for the scenario of a
Poisson-distributed signal that is amplified by multiplication and subsequently corrupted by
measurement noise. In both (a) and (b), the noise coefficient is shown as a function of the
mean νθ of the signal, which ranges in value from 0.27 to 201.28. The signal is amplified
through N = 536 stages of standard geometric multiplication, and the different curves
correspond to mean gain values of mN = 1.01 (*), 1.03 (◦), 1.06 (×), 1.31 (⋄), 1.71 (·), 4.98
(□), 14.49 (+), and 1015.46 (△). In (a), the red curve represents the noise coefficient αH
(Eq. 22) of the high gain approximation, while the blue and green curves represent the noise
coefficient αGauss (Eq. 25) of the Gaussian approximation for mean gains of 1015.46 and
4.98, respectively. In (b), the measurement noise is Gaussian-distributed with mean ηw = 0
and standard deviation σw = 8, and as a reference, the red curve represents the noise
coefficient αR (Eq. 5) for the scenario where there is no signal amplification.
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Fig. 4.
Noise coefficient (αR for (a), αGeomR for (b)) profile for (a) a CCD image and (b) an
EMCCD image of an in-focus point source. The point source is assumed to emit photons of
wavelength λ = 655 nm, which are collected by an objective lens with magnification M =
100 and numerical aperture na = 1.3. The image of the point source is given by the Airy
image function, and is centered on an 11-by-11 array of 16 µm by 16 µm pixels (i.e., x0 = y0
= 880 nm, assuming the upper left corner of the pixel array is (0, 0)). The expected number
of detected photons is set to Nphoton = 200, a reasonable number that could be detected from
a single fluorescent molecule. In (a), readout noise with mean ηw = 0 e− and standard
deviation σw = 8 e− is assumed for every pixel. In (b), the standard deviation is higher at σw
= 24 e−, and standard geometric multiplication with a mean gain of m536 = 1015.46 is
assumed.
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Table 1

The mean E[XN] and variance Var[XN] of the number of particles XN at the output of an N-stage branching
process for various combinations of the initial particle count probability distribution (qk)k=0,1,… and the
individual offspring count probability distribution (pk)k=0,1,…. The mean and variance of a general (pk)k=0,1,…

are denoted by m and σ2, where m ≥ 0 for E[XN], and m > 0, m ≠ 1 for Var[XN].

(qk)k=0,1,… (pk)k=0,1,… E[XN] Var[XN]

General General mNE[X0]

Poisson(νθ) General mNνθ

Poisson(νθ) Geometric(b)

Poisson(νθ) Zero modified geometric(a, b)
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