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Abstract
Background—Up to 7% of patients with severe-to-profound deafness do not benefit from
cochlear implantation. Given the high surgical implantation and clinical management cost of
cochlear implantation (> $1 million lifetime cost), prospective identification of the worst
performers would reduce unnecessary procedures and healthcare costs. Because cochlear implants
bypass the membranous labyrinth but rely on the spiral ganglion for functionality, we hypothesize
that cochlear implant (CI) performance is dictated in part by the anatomic location of the cochlear
pathology that underlies the hearing loss. As a corollary, we hypothesize that because genetic
testing can identify sites of cochlear pathology, it may be useful in predicting CI performance.

Methods—29 adult CI recipients with idiopathic adult-onset severe-to-profound hearing loss
were studied. DNA samples were subjected to solution-based sequence capture and massively
parallel sequencing using the OtoSCOPE® platform. The cohort was divided into three CI
performance groups (good, intermediate, poor) and genetic causes of deafness were correlated
with audiometric data to determine whether there was a gene-specific impact on CI performance.

Results—The genetic cause of deafness was determined in 3/29 (10%) individuals. The two poor
performers segregated mutations in TMPRSS3, a gene expressed in the spiral ganglion, while the
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good performer segregated mutations in LOXHD1, a gene expressed in the membranous labyrinth.
Comprehensive literature review identified other good performers with mutations in membranous
labyrinth-expressed genes; poor performance was associated with spiral ganglion-expressed genes.

Conclusions—Our data support the underlying hypothesis that mutations in genes preferentially
expressed in the spiral ganglion portend poor CI performance while mutations in genes expressed
in the membranous labyrinth portend good CI performance. Although the low mutation rate in
known deafness genes in this cohort likely relates to the ascertainment characteristics (postlingual
hearing loss in adult CI recipients), these data suggest that genetic testing should be implemented
as part of the CI evaluation to test this association prospectively.

Keywords
Cochlear implant performance; spiral ganglion; hearing loss; genetic testing; massively parallel
sequencing

1. Introduction
While hearing aids are effective for mild-to-moderate degrees of hearing loss, when the loss
is severe-to-profound, cochlear implantation is the better habilitation option for improved
language and speech production.(Tomblin et al., 1999) Cochlear implantation is a common
procedure (over 41,000 adults and 25,000 children receive an implant annually in the US)
with a large associated healthcare cost ($24,475 surgical cost and over $1,000,000 lifetime
cost per patient).(2010; Cheng et al., 2000; Mohr et al., 2000) Despite the upfront surgical
cost, in most cases cochlear implantation is a cost-effective treatment that improves quality
of life and results in a net savings to society.(Cheng et al., 2000; Colletti et al., 2011;
Turchetti et al., 2011) However, among cochlear implant (CI) recipients, 3–7% do not
benefit from implantation.(Archbold, Nikolopoulos & Lloyd-Richmond, 2009; Raine et al.,
2008)

Currently, there is no method to identify poor CI performers prior to surgery, as many pre-
surgical phenotypic traits of poor performers are indistinguishable from those of excellent
performers: all have severe-profound hearing loss, similar audiometric patterns, and
favorable temporal bone imaging findings. Given that a CI ‘bypasses’ cochlear hair cells and
directly stimulates spiral ganglion neurons, we hypothesized that CI performance might be
affected by the site of the deafness-causing cochlear pathology and that genetic deafness
would adversely impact CI performance if the mutant protein caused primary spiral ganglion
pathology as opposed to membranous labyrinth/hair cell damage. To test this hypothesis, we
completed comprehensive genetic analysis in a cohort of adult CI users. In persons in whom
we could identify a genetic cause of hearing loss, we sought to correlate the expression
pattern of the relevant gene with CI performance.

2. Material and Methods
2.1 Study participants

Eligibility criteria for this study included: severe-to-profound, postlingual hearing loss (pure
tone average ≥85dB hearing threshold), at least three years of audiologic follow-up, and
cochlear implantation by one of three surgeons at the University of Iowa from 1986–2005.
All patients were Caucasian and had normal inner ear and auditory nerve anatomy as
assessed by temporal bone imaging. Exclusion criteria included: prelingual or perilingual
deafness, non-Caucasian race, acquired hearing loss including prenatal infection, TORCH
(toxoplasmosis, rubella, CMV, HSV) infection, aminoglycoside exposure, otoacoustic
trauma, meningitis, syndromic presentation (congenital abnormalities in addition to hearing
loss), low birth weight, inner ear abnormalities, or hyperbilirubinemia. All patients were
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enrolled in accordance with the University of Iowa Institutional Review Board guidelines
and gave written informed consent prior to their involvement.

2.2 Targeted capture and massively parallel sequencing
DNA was extracted from peripheral whole blood obtained by venipuncture using standard
methods.(Grimberg et al., 1989) Targeted sequence capture and massively parallel
sequencing of all genes implicated in non-syndromic hearing loss were performed using the
OtoSCOPE® genomic enrichment platform as described previously.(Shearer et al., 2010) In
brief, patient genomic DNA was sheared and Illumina sequencing adaptors were ligated
after blunt end-repair and A-tailing. The prepared DNA library and complementary biotin-
labeled RNA baits, designed to target all exonic regions associated with non-syndromic
deafness, were then hybridized. After capture of targeted regions using streptavidin-coated
beads, non-targeted DNA was washed away, and targeted DNA was amplified to generate
an enriched library for sequencing on the Illumina HiSeq2000.

2.3 Sequence analysis
Read mapping was performed using BWA and variants were called using the GATK Unified
Genotyper.(Li & Durbin, 2010; McKenna et al., 2010) Variant analysis was completed using
our custom variant calling pipeline. We used 40X depth of coverage as a minimum threshold
for calling variants. Variations were annotated using population-scale data from publicly
available databases (1000 Genomes project and Exome Variant Server) and filtered for
variants that were exonic and non-synonymous, splice site, or indels and rare (< 2% allele
frequency). Any reported deafness-causing mutations were identified using our Deafness
Variation Database (http://deafnessvariationdatabase.org). All potentially clinically relevant
variants were confirmed with Sanger sequencing.

2.4 Cochlear implant performance
The speech perception tests used to measure CI performance were chosen based on the
recommendations of the Committee on Hearing and Equilibrium of the American Academy
of Otolaryngology-Head and Neck Surgery.(Luxford & Ad Hoc Subcommittee of the
Committee on Hearing and Equilibrium of the American Academy of Otolaryngology-Head
and Neck Surgery, 2001) Patients were followed for at least three years post-implantation
with the Consonant-Nucleus-Consonant (CNC) word test and the Hearing in Noise Test
(HINT), and the mean score from multiple testing sessions beginning one year after
implantation was calculated for each respective test.(Nilsson, Soli & Sullivan, 1994;
PETERSON & LEHISTE, 1962) Two lists of 50 CNC words were presented at 60 dBA in
quiet from a front-facing loudspeaker (0°) at 1m distance. Four lists of 12 HIN T sentences
were administered in noise at +10 S/N ratio using 11-talker babble at 0°-azimuth. CNC
scoring was based on percent-correct performance at both the word and the phoneme levels
and the HINT sentences were scored by dividing the total number of key words correctly
identified by the total number of key words possible. Individual as well as combined scores
for these two tests were obtained and used to stratify patients by performance.

2.5 Statistical analyses
Patients were subdivided into three groups based on CI performance. Good performers were
defined as those who performed one standard deviation above the mean on the combined
performance measure (average of HINT and CNC scores), and poor performers were
defined as those performing one standard deviation below the mean on the combined
performance measure. Intermediate performers performed within one standard deviation of
the mean. Differences between performance groups were evaluated by one-way ANOVA
and confirmed with post hoc Bonferroni adjustments for the following variables: age of
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initial onset of hearing loss, age of onset of severe-profound hearing loss, duration of
hearing loss progression, age at implantation, length of severe-profound hearing loss prior to
implantation, and residual hearing (pure tone average prior to implantation). Differences in
age and sex between groups were evaluated with the chi-squared test. Due to limited sample
size comparisons of individual genes based on expression pattern were descriptive only.

2.6 Literature Review
A comprehensive literature review was completed such that all identifiable studies
examining genotype-phenotype interactions in cochlear implant patients were tabulated. A
pubmed search was completed with keywords “cochlear implant performance” and
“genetics”. In addition, all individual genes included on the OtoSCOPE platform were
individually searched in pubmed using the gene name and “cochlear implant”.

3. Results
3.1 CI Performance

Twenty-nine of the 30 adult CI patients enrolled in the study met the inclusion criteria. The
CNC and HINT were highly correlated (r = 0.78, p < 0.01) and the combined score
effectively stratified groups (Figure 1). Sex and device type were not statistically different
between performance groups. One-way ANOVA analysis revealed no differences between
performance groups for the following variables: age of initial onset of hearing loss, age of
onset of severe-profound hearing loss, duration of hearing loss progression, age at
implantation, length of severe-profound hearing loss prior to implantation, and residual
hearing (pure tone average prior to implantation).

3.2 Sequencing Results
An average of 65 million sequence reads were generated per sample, with an average of
85% of reads mapping to the reference sequence (human genome version hg19) and 52%
overlapping targeted regions. The average depth-of-coverage per targeted base was 3,486
reads (standard deviation (SD) 1,921) with 97% (SD 0.5%) of targeted bases having 40X
coverage, our variant calling threshold.

3.3 Mutation Detection and Clinical History
A genetic cause for the presenting hearing loss was identified in 3 of 29 patients (10%)
(Figure 1; Table 1). Two patients, CI-11 and CI-33, were found to carry pathogenic
mutations in TMPRSS3 (DFNB8/10). In the third patient, we identified pathogenic
mutations in the gene LOXHD1 (DFNB77).(Edvardson et al., 2011; Grillet et al., 2009)

CI-11 is a 58-year-old male with a history of postlingual progressive hearing loss that began
at age five and progressed to severe-to-profound sensorineural hearing loss (SNHL) by age
45. The family history was remarkable for hearing loss in 3 of 11 siblings and two nephews.
The patient underwent left-sided cochlear implantation at age 47 with an Advanced Bionics
CII device. At implantation his residual hearing (pure tone average implanted side) was 93
dB HL. This patient was a poor CI performer as assessed by his HINT (47), CNC (28), and
combined performance (37) scores (Figure 1). OtoSCOPE® testing identified two
previously reported deafness-causing mutations in TMPRSS3: p.Ala138Glu and
p.Arg216Cys.(Elbracht et al., 2007; Hutchin et al., 2005) (Table 1).

CI-33 is a 58-year-old female with a history of postlingual progressive hearing loss that
began at the age of six and progressed to severe-to-profound SNHL by the age of 17. The
patient had a family history of hearing loss including her two brothers (3 of 8 siblings
affected). The patient underwent left-sided cochlear implantation at age 32 with a Ineraid
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device. Prior to implantation her residual hearing (pure tone average implanted side) was 98
dB HL. This patient subsequently underwent explantation and reimplantation with an
Advanced Bionics CII device due to hardware infection (pedestal). This patient was a poor
CI performer as assessed by her HINT (25), CNC (21), and combined performance (23)
scores (Figure 1). OtoSCOPE® testing identified two previously reported deafness-causing
mutations in TMPRSS3: p.Ala138Glu and p.Ala306Thr (Table 1).

Individual CI-19 is a 77-year-old female with a history of adult onset, progressive hearing
loss that began at the age of 40 and progressed to severe-to-profound hearing loss at age 67.
The patient has a positive family history of hearing loss in one maternal aunt, however, her
parents, siblings, and children have normal hearing. She underwent right cochlear
implantation at age 68 after four years of severe-to-profound hearing loss with an Advanced
Bionics Clarion HiFocus II-CII device. Prior to implantation her residual hearing (pure tone
average implanted side) was 97 dB HL. Despite two years of severe-to-profound deafness
prior to implantation, this patient was a good CI performer (HINT (90), CNC (73),
combined (81.3)) (Figure 1). Genetic analysis revealed compound heterozygosity for two
novel variants in LOXHD1, p.Gly398Glu and p.Arg383X. Neither of these variants had
been reported, however the missense p.Gly398Glu variant is predicted to be damaging by
the only in silico prediction available for this variant, and both variants are either not present
or very rare in large population-scale genomic databases (Table 1).

3.4 Analysis of Previously Reported Cochlear Implantation Performance
We performed a systematic literature review and identified 70 studies examining the effect
of genetic mutation on CI performance (Table 2).

3.4.1 Membranous Labyrinth Expressed Genes—Genotype-phenotype correlations
have been reported for 11 genes, which are primarily expressed in the membranous labyrinth
(Table 2). The majority of studies have investigated the impact of GJB2 (25 studies, 307
individuals), SLC26A4 (5 studies, 49 individuals), and OTOF (4 studies, 12 individuals)
mutations on CI performance. Mutations in these three genes are associated with good
performance. The remaining genes (LOXHD1, MYH9, CDH23, MYO7A, KCNQ1, TMC1,
COCH, POU3F4) have not been as well studied. These eight genes have also been
associated with good cochlear implant performance with the exception of MYH9 and
POU3F4, which demonstrate variable performance (Table 2).

3.4.2 Mitochondrial—Mutations in mitochondrial genes cause both syndromic and non-
syndromic forms of deafness and also increase susceptibility to aminoglycoside-associated
hearing loss. In the cochlea, both the stria vascularis and hair cells have extremely high ATP
demands and are mitochondrial rich. Several studies of patients with non-syndromic,
syndromic and aminoglycoside-associated mitochondrial hearing loss have demonstrated
good CI performance.(Counter et al., 2001; Tono et al., 2001; Ulubil, Furze & Angeli, 2006)

3.4.3 Spiral Ganglion Expressed Genes—There have been very few investigations
into genotype-phenotype correlations in genes primarily expressed in the spiral ganglion.
TMPRSS3 is a transmembrane serine protease that may be involved in cleavage of
neurotrophins in spiral ganglion neurons.(Guipponi et al., 2002; Weegerink et al., 2011b)
The two persons we identified were compound heterozygotes for reported TMPRSS3
mutations and poor CI performers. Our results conflict with two reports of TMPRSS3-
related deafness, which demonstrate good performance. In one report, describing four
affected siblings, no performance data are provided although the paper reports that bilateral
cochlear implantation was performed “with good results”.(Elbracht et al., 2007) The second
report provides more details and notes improved CNC scores after implantation, with nine
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persons showing better performance than the control group.(Weegerink et al., 2011b)
Neither study reports the age at implantation or duration of deafness prior to implantation.

Two other spiral ganglion expressed genes, CHD7 and DDP1/TIMM8a, result in syndromic
forms of deafness and have been associated with poor CI performance. Mutation of CHD7
results in CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth
and development, genital hypoplasia, ear abnormalities). One study of persons with
confirmed CHD7-related hearing loss noted variable CI performance (5 good, 3 poor), while
another study of individuals with CHARGE syndrome with unknown genotype
demonstrated limited benefit.(Lanson et al., 2007; Song et al., 2011) Mutation of DDP1/
TIMM8a results in deafness-dystonia-optic neuronopathy syndrome (Mohr-Tranebjærg
syndrome, DFN-1), which is associated with SNHL and neurologic manifestations (visual
impairment, dystonia, cognitive defects). Histopathology in such individuals demonstrates
near complete absence of spiral ganglion neurons and as expected these patients perform
poorly with CIs.(Brookes et al., 2008; Nadol & Merchant, 2001) Genotype-phenotype
correlations for CHD7 and DDP1/TIMM8a are confounded by cognitive impairment.

3.4.4 Auditory Neuropathy—Auditory neuropathy is a heterogeneous group of disorders
with a characteristic clinical phenotype: functioning outer hair cells (normal OAE) and
aberrant neurotransmission (abnormal or absent ABR). The location of the underlying lesion
(hair cell, ribbon synapse, spiral ganglion neuron, or auditory nerve) in auditory neuropathy
is much debated and likely differs based on the genetic defect. For a detailed review of
auditory neuropathy and genetics the reader is directed to Santarelli’s review.(Santarelli,
2010) A recent systematic review of the literature regarding CI performance in children with
auditory neuropathy has demonstrated that implantation is generally beneficial.(Roush et al.,
2011) In general, similar outcomes have been demonstrated in adult CI recipients with
auditory neuropathy, however there are reports of more variable performance.(Mason et al.,
2003; Teagle et al., 2010) In aggregate, these reports are consistent with the observation that
the most common genetic cause of auditory neuropathy is mutation of OTOF.(Loundon et
al., 2005; Rodriguez-Ballesteros et al., 2003; Rouillon et al., 2006; Wu et al., 2011b) Its
translated protein, otoferlin, is required for synaptic vesicle fusion in inner hair cells.

4. Discussion
The advent of massively parallel sequencing technology has revolutionized the diagnosis of
genetic hearing loss by making it possible to screen all known deafness genes
simultaneously.(Brownstein et al., 2011; Shearer et al., 2010; Tang et al., 2012) This
breakthrough may impact cochlear implantation by making it possible to diagnose genetic
causes of hearing loss preoperatively. We hypothesized that the expression pattern of the
involved gene would impact CI performance. We expected that mutations in spiral ganglion
expressed genes would portend poor performance, whereas mutations in membranous
labyrinth expressed genes, which are bypassed by a CI would result in good performance
(Figure 2). Although, we only identified causative mutations in three individuals, those with
mutations in TMPRSS3, which is expressed in the spiral ganglion, did perform worse than
the individual with mutations in LOXHD1, which is expressed in the stereocilia. It is notable
that there were no differences in residual hearing or length of deafness prior to implantation
between good and poor performance groups. As the cause of deafness was uncovered in
very few patients in this cohort, we examined other published genotype-phenotype
correlations in order to draw conclusions on the impact of expression pattern of the involved
gene on CI performance.
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4.1 Comprehensive Literature Review
Although much has been published on correlations of CI outcome and genetics (over 70
publications) few robust conclusions and little prognostic information can be drawn (Table
2). Previous study has been limited to retrospective case series with small sample sizes,
variable and poorly categorized performance measures, poor categorization of known
confounding variables such as residual hearing loss and duration of deafness prior to
implantation, few accounts of poor CI performance, and few gene-to-gene comparisons. We
recommend that standardized performance measures be used in future investigations of
genotype-phenotype correlations in the CI population. Specifically, in our experience the
HINT and CNC performance measures best stratify adult CI performance because these tests
challenge even the best performers. Each measure offers different challenges to the listener:
the difficulty of the HINT greatly increases as the amount of background noise is increased,
while the CNC test challenges the listener by presenting single words without the contextual
cues of a sentence. This testing battery is recommended by the Committee on Hearing and
Equilibrium of the American Academy of Otolaryngology-Head and Neck Surgery.(Luxford
& Ad Hoc Subcommittee of the Committee on Hearing and Equilibrium of the American
Academy of Otolaryngology-Head and Neck Surgery, 2001)

In general, the data reported here support our hypothesis that CI recipients with mutations in
membranous labyrinth expressed genes will be good CI performers while those with
mutations in spiral ganglion expressed genes will be poor performers with more variable
outcomes (Figure 2). However, there are several discordances. We identified reports of two
membranous labyrinth expressed genes associated with variable performance - MYH9 and
POU3F4. Robust MYH9 expression has been demonstrated in inner hair cells, outer hair
cells, the spiral limbus, and spiral ligament with only low expression in the spiral ganglion.
(Mhatre et al., 2006) A study of five members of an Australian family with CIs and MYH9-
associated hearing loss demonstrated excellent performance on the CNC word test, however
there is also a report of an individual with MYH9-related hearing loss who demonstrated
poor CI performance.(Hildebrand et al., 2006; Lalwani et al., 1997) Based on our
hypothesis, we would expect the latter individual to perform well but believe his poor
performance may be attributable to the duration of deafness prior to implantation, an
established cause of poor CI performance.(Clopton, Spelman & Miller, 1980; Nadol, Young
& Glynn, 1989; Rubinstein et al., 1999) Importantly, the five Australian individuals received
their implants after a short duration of profound deafness. In the case of POU3F4-related
deafness, the comorbid cognitive impairment and cochlear dysplasia likely contribute to the
variable CI performance thereby confounding genotype-phenotype correlations.

With respect to genes expressed in the spiral ganglion neurons, our results differ from two
reports, which examined genotype-phenotype correlations in individuals with TMPRSS3-
related deafness. TMPRSS3 encodes a transmembrane serine protease, which is expressed in
the spiral ganglion.(Guipponi et al., 2002) We predicted such individuals would be poor CI
performers, which our results corroborated. The two contradictory reports include 10
patients, 9 of whom were likely less than 30 years old at the time of the report.(Elbracht et
al., 2007; Weegerink et al., 2011b) This contrasts greatly from the patients in our cohort who
were in their sixth decade at the time of testing. In addition, neither report notes the age at
implantation and in one, the measures used to evaluate performance are not provided
making comparisons difficult.(Elbracht et al., 2007). Given that TMPRSS3-associated
hearing loss is progressive, one might predict that CI performance in the patients detailed in
these two reports will decline with time, which is consistent with histological studies of a
mouse model of TMPRSS3-related deafness (a truncating mutation of Tmprss3, Y260X)
demonstrating progressive spiral ganglion neuron degeneration.(Fasquelle et al., 2011) Two
other spiral ganglion expressed genes, CHD7 and DDP1/TIMM8a, were associated with
poor performance, however these results are confounded by comorbid cognitive impairment.
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Another interesting group of CI recipients are persons with auditory neuropathy. Although
auditory neuropathy is a heterogeneous group of disorders, 55–87% of cases are due to
mutations in OTOF. The translated protein, otoferlin, is expressed in the inner and outer hair
cells and is believed to be involved in synaptic vesicle exocytosis at the afferent hair cell
ribbon synapse.(Rodriguez-Ballesteros et al., 2008; Yasunaga et al., 1999) As such, persons
with OTOF auditory neuropathy initially display a classic phenotype (normal otoacoustic
emission (OAE) and absent auditory brainstem response (ABR) until the hearing loss
progress and outer hair cells also degenerate) and would be expected to be good CI
performers. However other forms of auditory neuropathy are associated with variable CI
performance.(Teagle et al., 2010) It is possible that this variability correlates with variability
in the site of the underlying defect. Thus, while we would expect good CI performance with
lesions affecting the hair cell or hair cell synaptic ribbon, we would expect poor CI
performance if the spiral ganglion neurons and/or auditory nerve degenerate.

Given these preliminary results we believe that genetic testing will eventually become a
standard part of the preoperative cochlear implant evaluation. As additional studies are
completed genotype-phenotype correlations will become more robust and offer valuable
prognostic information. In addition, the establishment of the genetic diagnosis of hearing
loss in individual patients will allow for more patient-centered care. A potential example of
this is patients whose deafness results from mutations in spiral ganglion-expressed genes. As
has been demonstrated for TMPRSS3, hearing loss is progressive, perhaps due to continued
loss of spiral ganglion neurons. If progressive hearing loss in this population is secondary to
spiral ganglion degeneration, it is possible that following such patients with ABR may prove
a useful metric for the ‘amount’ of remaining neuronal substrate. We would predict that
progressive loss of ABR thresholds would coincide with decreasing cochlear implant
performance.

There are several limitations associated with this study, most notably the small number of
persons with an identifiable genetic cause of hearing loss. This outcome reflects the certain
inclusion of many cases of acquired or complex causes of hearing loss in the adult
population we studied. A secondary limitation is the OtoSCOPE® platform itself, which has
a ‘solve’ rate of just over 50% for all comers with presumed non-syndromic hearing loss
(unpublished data). This solve rate reflects the vast heterogeneity of non-syndromic hearing
loss and implies that many deafness-causing genes await discovery. Nevertheless, the
availability of comprehensive genetic testing for deafness now makes it possible to complete
rigorous studies to correlate genotype with phenotype in CI patients. The data we have
presented support the completion of this type of study. Establishing genotype-phenotype
correlations may make it possible to tailor CI programming strategies to a patient’s specific
needs as determined by their genetic cause of hearing loss, provide genetic-based CI
performance metrics, and reduce the likelihood of ineffective cochlear implantation thereby
decreasing healthcare costs.

5. Conclusions
Our data support the underlying hypothesis that mutations in genes preferentially expressed
in the spiral ganglion portend poor CI performance while mutations in genes expressed in
the membranous labyrinth portend good CI performance. Although the low mutation rate in
known deafness genes in this cohort likely relates to the ascertainment characteristics
(postlingual hearing loss in adult CI recipients), these data suggest that genetic testing
should be implemented as part of the CI evaluation to test this association prospectively.
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Highlights

• We hypothesize the site of the genetic defect impacts cochlear implant outcome

• We apply comprehensive genetic testing and literature review to test our
hypothesis

• We demonstrate mutations affecting the spiral ganglion portend poor outcome

• Mutations affecting membranous labyrinth expressed genes portend good
outcome

• Genetic testing should become a standard part of cochlear implant evaluation
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Figure 1.
Cochlear implant performance by patient. HINT, CNC, and combined scores are shown.
Data is sorted by combined score. *indicates individuals for which the genetic cause of
hearing loss was determined in this study. Poor, intermediate, and good performance groups
are separated by dashed lines.
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Figure 2.
Expression pattern of hearing loss genes. Genes with established genotype-phenotype
correlations are included. Genes expressed in the membranous labyrinth (labeled blue)
include: GJB2, SLC26A4, OTOF, LOXHD1, KCNQ1, CDH23, MYO7A, POU3F4, MYH9,
TMC1, and COCH. Genes expressed in the spiral ganglion (labeled red) include: TMPRSS3,
CHD7, and DDP1/TIMM8a. (Adapted from the Hereditary Hearing Loss Homepage,
hereditaryhearingloss.org, with permission from Van Camp G and Smith RJH)
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