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Chlamydomonas reinhardtii is one of the most important microalgae model organisms and has been widely studied toward the
understanding of chloroplast functions and various cellular processes. Further exploitation of C. reinhardtii as a model system to
elucidate various molecular mechanisms and pathways requires systematic study of gene regulation. However, there is a general
lack of genome-scale gene regulation study, such as global cis-regulatory element (CRE) identification, in C. reinhardtii. Recently,
large-scale genomic data in microalgae species have become available, which enable the development of efficient computational
methods to systematically identify CREs and characterize their roles in microalgae gene regulation. Here, we performed in silico
CRE identification at the whole genome level in C. reinhardtii using a comparative genomics-based method. We predicted a large
number of CREs in C. reinhardtii that are consistent with experimentally verified CREs. We also discovered that a large
percentage of these CREs form combinations and have the potential to work together for coordinated gene regulation in C.
reinhardtii. Multiple lines of evidence from literature, gene transcriptional profiles, and gene annotation resources support our
prediction. The predicted CREs will serve, to our knowledge, as the first large-scale collection of CREs in C. reinhardtii to facilitate
further experimental study of microalgae gene regulation. The accompanying software tool and the predictions in C. reinhardtii
are also made available through a Web-accessible database (http://hulab.ucf.edu/research/projects/Microalgae/sdcre/
motifcomb.html).

Chlamydomonas reinhardtii is a member of single-
celled green algae that diverged from the strepto-
phytes approximately one billion years ago. Being
composed of multiple mitochondria, two anterior fla-
gella, and a chloroplast, C. reinhardtii serves as an
outstanding microalgae model organism, especially for
analyzing eukaryotic chloroplast biology, action of
flagella and basal bodies, and many biological path-
ways such as circadian rhythms, cell cycle control, and
plant respiration (Rochaix, 2004; Wemmer andMarshall,
2004; Bisova et al., 2005; Cardol et al., 2005; Mittag
et al., 2005). As a photosynthetic microalgae species, C.
reinhardtii has also shown its potential in biofuel gen-
eration (Grossman et al., 2003; Beckmann et al., 2009;
Langner et al., 2009; Nguyen et al., 2009). However,
since cellular processes in general are coordinated by
transcriptional regulation of functionally related genes,
further exploitation of C. reinhardtii as a model system

to elucidate various molecular mechanisms requires
the systematic study of gene regulation (Bohne and
Linden, 2002; Li et al., 2010; Sun et al., 2010). Genome-
scale study of gene regulation in C. reinhardtii is cur-
rently in the very early stages. For example, cis-
regulatory elements (CREs) are genomic DNA seg-
ments that play important roles in gene regulation by
modulating gene activities through their interaction
with RNAs or regulatory proteins called transcription
factors (TFs). The discovery and functional annotation
of CREs is thus one of the immediate next steps toward
global understanding of gene regulatory mechanisms
in C. reinhardtii (Wang et al., 2009). However, there are
less than one dozen CREs annotated in C. reinhardtii to
date, even though many TFs have been collected and
deposited in a number of databases (Wingender et al.,
1996; Higo et al., 1999; Rombauts et al., 1999; Portales-
Casamar et al., 2010). The correspondences between
CREs and regulatory proteins remain largely un-
known.

Unprecedented large-scale microalgae genomic data
have now become available, which makes it possible to
perform the genome-wide identification of CREs in C.
reinhardtii. For example, the complete nuclear genome
sequence of C. reinhardtii was published in 2007, and
around 15,000 protein-coding genes were predicted
(Merchant et al., 2007). Since then, several updates of
the C. reinhardtii genome and the genome annotation
have become available, including versions 3.0 (15,256
genes), 4.0 (16,709 genes), and 4.3 (17,114 genes). Ad-
ditionally, another green algal species, Volvox carteri,

1 This work was supported by the National Science Foundation
(Chemical, Bioengineering, Environmental, and Transport Systems
grant no. 1125676 to H.H.).

* Corresponding author; e-mail haihu@cs.ucf.edu.
The author responsible for distribution of materials integral to the

findings presented in this article in accordance with the policy de-
scribed in the Instructions for Authors (www.plantphysiol.org) is:
Haiyan Hu (haihu@cs.ucf.edu).

[C] Some figures in this article are displayed in color online but in
black and white in the print edition.

[W] The online version of this article contains Web-only data.
www.plantphysiol.org/cgi/doi/10.1104/pp.112.200840

Plant Physiology�, October 2012, Vol. 160, pp. 613–623, www.plantphysiol.org � 2012 American Society of Plant Biologists. All Rights Reserved. 613

http://hulab.ucf.edu/research/projects/Microalgae/sdcre/motifcomb.html
http://hulab.ucf.edu/research/projects/Microalgae/sdcre/motifcomb.html
mailto:haihu@cs.ucf.edu
http://www.plantphysiol.org
mailto:haihu@cs.ucf.edu
http://www.plantphysiol.org/cgi/doi/10.1104/pp.112.200840


that is close to C. reinhardtii in evolution has been re-
cently sequenced, which provides a great opportunity
to study the C. reinhardtii genome by comparative
genomics (Prochnik et al., 2010). In addition to the
genomic sequence data, there is a large supply of ex-
pression data available as complementary DNA li-
braries, ESTs, microarray expression measurements,
and RNA sequencing reads (Eberhard et al., 2006;
Miller et al., 2010; Castruita et al., 2011; Fischer et al.,
2012; Urzica et al., 2012). Integrative analysis of DNA
sequence data and mRNA expression measurements
have been shown to be successful in gene regulatory
network studies at the whole-genome level (Segal
et al., 2003; Wang and Stormo, 2003).

Existing CRE motif-finding methods often assume
that a bona fide CRE motif must be overrepresented in
the input sequences (i.e. the overrepresentation prop-
erty of motifs; Stormo and Hartzell, 1989; Lawrence
et al., 1993; Bailey and Elkan, 1994). However, because
of the degenerative nature of motifs, overrepresen-
tation alone is often not enough to distinguish true
motifs from random patterns formed by DNA seg-
ments (Blanchette and Tompa, 2002; Wang and
Stormo, 2003). To improve the sensitivity and speci-
ficity of CRE motif prediction, dozens of motif-finding
methods have been developed to exploit the co-
occurrence property of motifs (i.e. multiple CREs are
often co-occurring in short regions; Frith et al., 2001;
Zhou and Wong, 2004; Gupta and Liu, 2005; Hu et al.,
2008). Alternative methods require evolutionary con-
servation of motifs to further filter false-positive dis-
coveries (Loots et al., 2000; Blanchette and Tompa,
2002; Wang and Stormo, 2003; Liu et al., 2004; Sinha
et al., 2004; Elemento and Tavazoie, 2005; Li and
Wong, 2005; Li et al., 2005). The rationale is that
functional motifs should be evolutionarily conserved
across multiple species (Loots et al., 2000), Considering
evolutionary conservation as an additional criterion
indeed has been shown effective in identifying bona
fide CRE motifs, whereas how to better quantify the
evolutionary conservation for CRE motif finding is
worth further investigation. For example, the current
common practice to quantify the evolutionary conser-
vation of a potential CRE motif is to score the multiple
sequence alignment (MSA) of its corresponding DNA
segments in orthologous sequences. For this quantifi-
cation strategy, there can be at least two issues. One is
that short DNA segments are not always well aligned
with their corresponding segments in MSA, and con-
sequently, a plethora of not-well-aligned CREs can be
missed (Li and Wong, 2005). The other issue is that
even for DNA segments that can be aligned well with
their corresponding segments, current strategies to
score conservation are often debatable. For example,
one commonly used strategy is to compare a CRE
candidate with its corresponding DNA segments in
different orthologous sequences, and if the number of
mismatches is smaller than a specified cutoff, then the
CRE candidate is defined as conserved. Since species
divergence time is not considered, strategies like this

may result in inaccurate assessment for conservation
(Li et al., 2005).

In this paper, we present, to our knowledge, the first
genome-wide computational identification of CREs
in C. reinhardtii using a comparative genomics-based
approach named MERCED, short for “modeling evo-
lution rate across species for cis-regulatory element
discovery.” MERCED searches for CREs through
uncovering CRE motifs (i.e. common patterns of CREs
that can be bound by the same TFs). By simultaneously
considering multiple properties of motifs, including
overrepresentation, co-occurrence, and evolutionary
conservation, MERCED is able to reduce false-positive
predictions significantly. Most importantly, consider-
ing species divergence time when evaluating evolu-
tionary conservation leads to better incorporation of
the evolutionary information of individual DNA seg-
ments. By comparatively integrating V. carteri and
C. reinhardtii genome information, MERCED predicted
66,530 CREs, corresponding to 317 CRE motifs. A total
of 164 (51.7%) of these CRE motifs tend to frequently
co-occur in regulatory sequences flanking the tran-
scription start sites. The existence of many such
frequently co-occurring motifs, termed motif combi-
nations, indicates the potential of these motifs to coor-
dinately regulate target genes. Many of these identified
motifs and motif combinations are consistent with
experimentally verified motifs from public databases.
Further integration of gene transcriptional profiles and
gene annotation data resources also provide multiple
functional lines of evidence supporting the predictions.
The motif predictions generated from this study and
the accompanying software tool MERCED have been
deposited into our Web-accessible database, which
will be useful to experimental biologists interested in
gene regulation in algae species.

RESULTS

MERCED: Genome-Scale Prediction of CRE Motifs in
C. reinhardtii

We developed the MERCED algorithm to predict
conserved CREs between microalgae species C. rein-
hardtii and V. carteri. Different from available methods,
MERCED defines conserved DNA segments by care-
fully modeling the species divergence time. The algo-
rithm consists of the following steps (for details, see
“Materials and Methods”). (1) Define orthologous
gene pairs in C. reinhardtii and V. carteri as reciprocal
best hits obtained by applying PSI-BLAST (for Position-
Specific Iterative Basic Local Alignment Search Tool)
to the protein sequences in the two species (Altschul
et al., 1997). (2) Construct a nucleotide substitution
matrix to model the neutral evolution rate of nucleo-
tide substitution between C. reinhardtii and V. carteri
based on 4-fold degenerate sites in proteins of ortho-
logous genes (Li et al., 1985). (3) Define conserved k-
mers in regulatory sequences of orthologous genes
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based on their statistical significance estimated from
the nucleotide substitution matrix constructed in step
2. A k-mer is a k-bp-long DNA segment. Generating
functions are applied here to improve the efficiency for
significance calculation (Huang et al., 2004). (4) Group
conserved k-mers using hierarchical clustering with
average linkage (Sokal and Michener, 1985; Fig. 1). In
brief, we calculate the similarity between every pair
of conserved k-mers. The similarity of two k-mers is
estimated as 1 2 d/k, where d is the number of mis-
matches between the two k-mers. We then apply the
hierarchical clustering with the average linkage to
cluster-conserved k-mers based on the pairwise simi-
larities. We require any pair of conserved k-mers in a
cluster have a similarity score greater than 0.6 at this
step (Fig. 1). (5) Define CRE motifs based on patterns
of k-mers in the same clusters obtained in step 4, and
define k-mers underlying these patterns as the CRE
instances of the corresponding motif. During this step,
we require a cluster to contain a significant number
of k-mers to take the overrepresentation property of
motifs into account.
The MERCED algorithm has several advantages

over MSA-based methods. One of them is that MERCED
is more practical for conservation estimation of short
DNA segments compared with MSA-based methods.
This is because the latter will not work for the not-well-
aligned DNA segments, whereas DNA segments, es-
pecially the short ones, are often difficult to align well
using existing MSA algorithms. Additionally, in con-
trast to MSA-based methods, MERCED considers
species divergence time rather than merely the number
of mismatched nucleotides between DNA segments in
aligned orthologous sequences. As a result, we can
obtain very accurate estimation of evolutionary con-
servation even for very short DNA segments. This is
because the conservation between two DNA segments
from two orthologous sequences depends on not only
the number of mismatches but also the evolutionary
distance between them, whereas the absolute value
of mismatch number is not always proportional to
the evolutionary distance (Frazer et al., 2001). In fact,
highly similar sequences between closely related
species (e.g. human [Homo sapiens] and mouse [Mus
musculus]) can be present either as a result of active
conservation due to functional constraints or as a re-
sult of shared ancestry due to insufficient divergence
time (Frazer et al., 2001). For example, as illustrated in
Figure 2B, one 8-mer in a C. reinhardtii sequence with a
zero mismatch compared with a similar 8-mer in the
orthologous V. carteri sequence may have a P value of
0.011 according to our model and thus will not be
considered as a conserved 8-mer pair. On the contrary,
another 8-mer with two mismatches compared with
its similar 8-mer in the same orthologous sequences
will be considered as conserved because of the much
smaller P value, 2.84E-05. One additional beneficial
side effect of the MERCED is that when comparing
potential instances of a CRE motif in different
species for CRE conservation quantification, MERCED

avoids setting an arbitrary cutoff for the number of
mismatches.

The Predicted Motifs Are Consistent with Experimentally
Verified CRE Motifs

Applying MERCED to the upstream regulatory se-
quences of 8,741 groups of orthologous genes in C.
reinhardtii and V. carteri, we predicted 317 conserved
CRE motifs (false discovery rate [FDR], 0.05 based on
permutation) and 66,530 corresponding CREs (k = 8;
Supplemental Table S1). We compared the predicted
motifs with the known motifs in the PLACE database
(http://www.dna.affrc.go.jp/PLACE/; Higo et al.,
1999) based on the STAMP software tool (Mahony and
Benos, 2007). PLACE has so far compiled 469 experi-
mentally verified motifs in plants from literature (Higo
et al., 1999), and the STAMP tool is commonly used to
assess motif similarities with statistical significance
estimation. We found that 195 (62.5%) of the 317 pre-
dicted motifs are similar to the PLACE motifs with the
STAMP E-value cutoff as 1E-5, which was used in
previous studies to define similar motifs (Fauteux
et al., 2008; Reed et al., 2008; Supplemental Table S1).
Take the predicted motif M75, for example; the con-
sensus of its reverse complement is GNCGGCCA,
which is similar to the PLACE motif GRAZMRAB17-
GGGCGGCCAGTG (E-value = 4.18E-11). As another
example, the predicted motif M78 is similar to the
known motif LRENPCABE-ACGTGGCA, with the con-
sensus of its reverse complement as CNTGGCA
(E-value = 3.5E-11). We also found that 129 (27.5%)
PLACE motifs are similar to the predicted 317 motifs,
and multiple predicted motifs may be similar to the
same PLACE motif. For instance, the predicted motifs
M4 and M5 have the motif consensus GCAGCTGC and
YCAGCAGC, respectively, which are similar to the
same known PLACE motif ANAERO2CONSENSUS,
with the consensus AGCAGC (Supplemental Table S1).
In the mean time, many of these experimentally verified
motifs in PLACE database are not similar to the pre-
dicted motifs. One possible explanation is that, rather
than from the algae, the majority of the PLACE motifs
are from land plant species, especially Arabidopsis

Figure 1. Identified CRE motifs from conserved k-mers. [See online
article for color version of this figure.]
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(Arabidopsis thaliana; Higo et al., 1999). Therefore, the
difference between the PLACE motifs and the predicted
motifs might suggest the evolution of gene regulatory
mechanism over the long evolutionary distance between
the algae and the land plants.

In addition to the comparisons with experimentally
verified motifs, we also found literature support for
the predicted motifs. For instance, TGACGCCA is an
experimentally verified CRE in the C. reinhardtii gene
GPX5, which has been shown to be relevant to the
oxidative stress response in C. reinhardtii (Fischer et al.,
2009). This CRE is similar to the consensus of the
predicted motif M44, T[CG]C[ACGT]GCCA, where
nucleotides included in brackets are those frequently
occurring at the specified positions. Moreover, we
found that the target genes of the motif M44 signifi-
cantly share the following functions based on Gene
Ontology (GO) enrichment analysis (Boyle et al., 2004):
response to stress (GO:0006950; corrected P value of

7.34E-08), which is consistent with the function of
GPX5. We have also found the predicted motif M44 to
be similar to PLACE motif GRAZMRAB28 (E-value =
1.78E-08). GRAZMRAB28 is found in the promoters
of abscisic acid (ABA)-responsive genes (Busk and
Pagès, 1998), which also supports the functionality
of M44.

The Predicted Motif Combinations Are Consistent with
Experimentally Verified Ones

In high eukaryotes, multiple TFs often coordinately
regulate their target genes by binding to their respec-
tive CREs that co-occur in the short regions of a few
hundred base pairs (Yuh et al., 1998; Blanchette et al.,
2006; Ding et al., 2012). Many co-occurring CREs in
plants have also been identified by experimental
studies. These CREs can be associated with a pair of
interacting TFs or individual TFs with multiple DNA-
binding domains (Singh, 1998). To see whether CREs
of the predicted motifs significantly co-occur in the
regulatory sequences of C. reinhardtii, we applied our
previously developed method (Cai et al., 2010) to
identify motif combinations containing multiple motifs
whose instances frequently co-occur in the regulatory
sequences. In total, we predicted 92,694 motif combi-
nations based on the identified CRE motifs (k = 8),
each of which consists of two to six motifs. The per-
centage of motif combinations composed of two to six
motifs is 0.08%, 40.40%, 47.44%, 11.75%, and 0.33%,
respectively (Supplemental Table S2). As a way to eval-
uate our prediction, we compared the predicted motif
combinations with seven well-known co-occurring motif
pairs (Table I; Singh, 1998; Steffens et al., 2005). We
found that five out of the seven known motif combi-
nations were subsets of our predicted combinations
(Supplemental Table S3). In general, a known combi-
nation can be a subset of multiple predicted combina-
tions. For instance, one of the knownmotif combinations
is composed of two motifs, CAACA and CACCTG, that
can be bound by the APETALA2/Ethylene-Responsive
element binding factor (AP2/ERF) and B3 domain-

Table I. Comparison of predicted motif combinations with seven known combinations

bZIP, Basic Leucine Zipper Domain; Dof, DNA-binding with one finger; hox3, homeobox3; HD, homeodomain.

Known Combinations Recognition Motifs of Known Combinations No. of Predicted Similar Motif Combinations

bHLH+MYB bHLH-CANNTG 1,299
MYB-[AT]AACCA or [CT]AAC[GT]G

bZIP+Dof bZIP-ACGT 24
Dof-AAAG

MADS+MADS MADS-CC[AT][AT][AT][AT][AT][AT]GG 0
bZIP+bZIP bZIP-ACGT 0
RAV1 RAV1 AP2-like-CAACA 378

RAV1 B3-like-CACCTG
bZIP+MYB bZIP-ACGT 1

MYB-CANNTG
hox3 hox3-HD1-TCCT 3,233

hox3-HD2-GATC

Figure 2. A, The substitution matrix that models the neutral evolution
rate of nucleotides. The (i,j) entry, Sij in S, represents the probability
that the i-th type of nucleotides in C. reinhardtii corresponds to the j-th
type of nucleotides in V. carteri, and i and j are one of the four types of
nucleotides and are in the order A, C, G, and T. B, Three 8-mer pairs as
examples to illustrate that smaller conservation P values are not always
corresponding to smaller mismatch numbers. [See online article for
color version of this figure.]
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containing TF RAV1 at the APETALA2-like N-terminal
domain and the B3-like C-terminal domain, respectively.
A total of 378 predicted motif combinations have been
found to include these two motifs. With different addi-
tional motifs, these different motif combinations con-
taining the same known combinations can regulate
different sets of target genes. For instance, two predicted
motif combinations, MOD3428 and MOD3431, both in-
clude the above RAV1-binding motif combination of
M164 (GTCNCGGC) and M27 (CAGGYGC; Table I;
Supplemental Tables S2 and S3). MOD3428 includes one
additional motif, M11 (CGYCGCCA), and MOD3431
includes one additional motif, M21 (CCCNCGCC). It
turns out that MOD3428 regulates 204 predicted target
genes and MOD3431 regulates 230 predicted target
genes, and only 104 of these target genes are shared by
both motif combinations, suggesting that the additional
motifs M11 and M21 play extra roles in these two motif
combinations.
Further investigation of the motifs co-occurring with

known motif combinations in a predicted motif com-
bination showed that the functions of additional motifs
relate to those of known motifs in the same combina-
tions. For instance, MOD5159 is a combination of three
motifs, M13, M167, and M0. The first two motifs
comprise the known combination basic helix-loop-
helix (bHLH)-MYB and correspond to the binding
sites of TFs with bHLH and MYB protein domains,
respectively. Both bHLH- and MYB-containing TFs
have been shown to be involved in ABA signaling
(Abe et al., 2003). The additional motif, M0, is also
implicated in ABA signaling because of its similarity to
the known PLACE motif AGCBOXNPGLB, which is
known to be the binding sequence of the stress signal-
response factors ERFs (Fujimoto et al., 2000). There-
fore, the additional motif M0 is also related to ABA
signaling, and its function is consistent with that of
the known combination in terms of ABA signaling. In
addition, we found that the target genes of this motif
combination MOD5159 significantly share the follow-
ing functional annotation term: response to stress
(GO:0006950; corrected P value of 1E-4), which further
supports the coherent function of the three motifs and
that of the motif combination.

Functional Enrichment of Predicted Motif Combinations

We also performed functional analysis of the pre-
dicted motif combinations by investigating the overlap
between their target genes and sets of genes with the
same GO annotations (see “Materials and Methods”).
Significant overlapping with function-annotated gene
sets indicates the function coherence of a motif com-
bination in terms of gene coregulation (Blanchette
et al., 2006). In other words, motifs contained in such
motif combinations are likely to work together to
regulate their target genes. We found that target
genes of 87.5% of the predicted motif combinations
in C. reinhardtii significantly share the same functions

(FDR , 0.05; see “Materials and Methods”). The fol-
lowing two examples illustrate the functional rele-
vance of predicted motif combinations.

Example 1.

The motif combination MOD22676 contains four
predicted motifs, M39, M4, M25, and M15. All of
these four motifs are similar to known motifs that
have been shown to be relevant to plant stress re-
sponse. For example, M4 is similar to the PLACE motif
AGCBOXNPGLB-AGCCGCC, which is the binding se-
quence of stress signal-response factors ERFs (Fujimoto
et al., 2000). M39 is similar to the PLACE motif
GRAZMRAB28-CATGCCGCC, which was found in
the promoter of an ABA-responsive gene that also
plays a critical role in response of environmental stress
(Busk and Pagès, 1997). M15 is similar to the PLACE
motif ABREMOTIFIIIOSRAB16B-GCCGCGTGGC, which
is known to be required for ABA responsiveness as
well (Ono et al., 1996). Finally, M25 is similar to
ABRE3OSRAB1616-GTACGTGGCGC, which is the
known CRE motif called ABA-responsive element
found in rice (Oryza sativa) and related to biotic and
abiotic stresses (Skriver et al., 1991). In addition, we
also found that the target genes of MOD22676 signif-
icantly share the following GO annotation terms: re-
sponse to stress (GO:0006950; corrected P value of
4.65E-3), response to oxidative stress (GO:0006979;
corrected P value of 4.85E-3), response to stimulus
(GO:0050896; corrected P value of 0.015), and response
to chemical stimulus (GO:0042221; corrected P value of
0.033). These GO functional annotations agree well
with the functions of the predicted motifs in this motif
combination, supporting the functionality of this motif
combination MOD22676.

Example 2.

The motif combination MOD9430 is composed of
three predicted motifs, M60, M63, and M22. All three
motifs have similar known motifs that have been
reported to be involved in photoregulation. For ex-
ample, M60 is similar to the PLACE motif BOXBPSAS1
that is found in the light-regulated Asymmetric
Leaves1 gene (Fujimoto et al., 2000), M63 is similar
to the PLACE motif PE3ASPHYA3 with a role in
photoregulation (Bruce and Quail, 1990), and M22 is
similar to the PLACE motif PREMOTIFNPCABE that
is also related to photoregulation (Castresana et al.,
1988). Additionally, we found that the target genes of
MOD9430 significantly share the following GO term:
photosynthesis (GO:0015979; corrected P value of
0.01). This GO term is consistent with the functions of
the predicted motifs in this motif combination and
thus supports the functionality of the predicted motif
and motif combination.

In addition to the performed functional study using
GO-annotated gene sets, we compared target genes
of the 92,694 motif combinations with genes that are
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coexpressed in C. reinhardtii. Since coexpressed target
genes are often coregulated (Allocco et al., 2004), the
significant overlap of target genes of a motif combi-
nation with coexpressed gene sets supports the func-
tionality of the predicted motifs and motif combinations
as well (see “Materials and Methods”). We found that
target genes of 314 predicted motif combinations sig-
nificantly overlap with at least one coexpressed gene
set obtained from four microarray data sets (FDR ,
0.05; Supplemental Table S4). Consistently, for 289 of
the 314 (92.0%) motif combinations, their target genes
significantly share the same functions, based on the
above GO analysis. In addition, we found that the
functions of the predicted motifs are likely to be as-
sociated with the microarray experimental conditions.
For instance, target genes of the motif combination
MOD39131 are significantly coexpressed in the gene
expression data set GSE30648, measuring genetic re-
sponse of C. reinhardtii under different oxidative and
electrophilic stress conditions. Accordingly, a motif in
this combination, M21, is similar to the known motif
REGION1OSOSEM, which has been reported to be an
ABA-responsive element (Hattori et al., 1995) that
plays a critical role in environmental stress response
(Busk and Pagès, 1997). Besides, we also found that
the target genes of MOD39131 significantly share the
GO term response to stress (GO:0006950; corrected
P value = 0.016).

Comparison with Other Methods

There is no computational study for genome-wide
CRE prediction in C. reinhardtii. The MERCED pre-
sented here integrates multiple properties of potential
CREs as motif-finding criteria. Different from existing
motif-prediction methods applied in other species, the
MERCED takes species divergence time into account
when incorporating sequence conservation properties
to define motifs. To see whether the consideration of
species divergence time helps the CRE motif prediction
in C. reinhardtii, we compared the MERCED with three
alternative approaches using different strategies for
sequence conservation evaluation.

The first alternative approach we compared with
uses a mismatch number cutoff a to define conserved
segments. We implemented this strategy by applying
the same procedure of motif finding as in our method,
except that we defined conserved k-mers using dif-
ferent mismatch number cutoff a here rather than
the generating function-based statistical significance
P value. In other words, for every pair of promoter
sequences corresponding to the 8,741 orthologous
genes, we defined a k-mer in C. reinhardtii as conserved
if there exists at least one k-mer in its V. carteri
orthologous sequence that has at most a mismatches
with it. We chose the top x motifs based on the sta-
tistical significance, where x is equal to the number
of predicted motifs using MERCED (Liu et al., 2002).
We then compared the predicted motifs with known
motifs in the PLACE database using the STAMP motif

comparison tool (Mahony and Benos, 2007) with var-
ious E-value cutoffs. We found that under each of the
STAMP E-value cutoffs, more motifs similar to known
motifs are predicted by our method than those
predicted by the method based on various mismatch
number cutoff a (Table II).

We next compared the MERCED with FastCompare,
a more sophisticated approach (Elemento and Tavazoie,
2007). FastCompare determines conserved segments
directly from sequence comparison, which essentially
enumerates all k-mer segments in two species and
assesses their significance based on the difference be-
tween their co-occurrence in orthologous sequences of
the two species and their occurrence in individual
species. We applied FastCompare to our regulatory
sequences using the default parameters and only kept
the same number of top predicted motifs as predicted
using the MERCED for comparison. The results
showed that our method predicted slightly more mo-
tifs that are similar to known plant motifs than Fast-
Compare for various STAMP E-value cutoffs. For
instance, for the STAMP E-value cutoff 1E-5, we pre-
dicted 195 8-mer motifs that are similar to known
motifs in the PLACE database, while FastCompare
predicted 169 motifs that are similar to known PLACE
motifs. This result indicates the benefit of incorporat-
ing species divergence time to determine sequence
conservation for CRE motif finding in C. reinhardtii.

We also compared the MERCED with another al-
ternative strategy used in the PhyloNet (Wang and
Stormo, 2005). Like FastCompare, PhyloNet is one of
the only a few methods that can de novo identify
motifs on the genome scale. Briefly, PhyloNet BLASTs
conserved segments in a group of orthologous se-
quences against conserved segments in all other groups
of orthologous sequences to identify motifs. The con-
served segments in PhyloNet are defined by the
wconsensus algorithm (Hertz and Stormo, 1999),
which uses the information content to measure the
similarity of segments and motifs. After applying
PhyloNet to our data and comparing the same number
of top-ranked motifs predicted by PhyloNet and the
MERCED, we found that, again, the MERCED pre-
dicted more motifs that are similar to known plant
motifs than PhyloNet for various STAMP E-value

Table II. Comparison of predicted motifs with known plant motifs

The comparisons are based on 8-mers. The comparison becomes
unnecessary when the mismatch number a is larger than 1, since
84.5% of 8-mer segments in C. reinhardtiiwill be defined as conserved
8-mers by the mismatch number-counting method when a = 2.

Method
E Value Cutoff

1E-5 1E-6 1E-7

MERCED 195 (62%) 112 (35%) 72 (23%)
a = 0 171 (54%) 103 (32.5%) 52 (16.4%)
a = 1 179 (56.5%) 100 (31.5%) 57 (18.0%)
FastCompare 169 (53.3%) 97 (30.6%) 50 (15.8%)
PhyloNet 188 (59.3%) 104 (32.8%) 33 (10.4%)
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cutoffs (Table II). Not considering the species diver-
gence time in PhyloNet can be the partial cause, since
we observed that many highly similar segments in
orthologous sequences that are defined as conserved in
PhyloNet may not be conserved if we take species
divergence time into account. For instance, GAGAA-
GAA is exactly shared by the regulatory sequences of
two orthologous genes, Cre07.g327250 in C. reinhardtii
and Vocar2001129m in V. carteri. However, it only
has a relatively large conservation P value of 0.057
according to our model. It is thus not considered
conserved with the FDR cutoff as 0.05. The overall
comparisons shown in Table II demonstrated the ne-
cessity of considering species divergence time for CRE
motif prediction.

A Public Database for cis-Regulatory Information in
C. reinhardtii

Based on the results obtained in C. reinhardtii, we
further developed a Web-accessible database (http://
hulab.ucf.edu/research/projects/Microalgae/sdcre/
motifcomb.html) where researchers can download
the MERCED software tool and all the currently
predicted CRE motifs, CREs, and motif combinations
in C. reinhardtii. The database supports a variety of
queries for specific predicted motifs, motifs similar
to PLACE or TRANSFAC motifs, predicted and/or
known motif combinations, target genes of specific
motifs and/or motif combinations, and so on. A query-
based search is able to output the position weight
matrix-represented motifs and their target genes
labeled with known expression profiles and GO an-
notation. The user can choose to view the query results
in various formats.

DISCUSSION

Genome-wide identification of CREs in the C. rein-
hardtii genome is critical to further study gene regu-
lation and molecular functions. We thus performed, to
our knowledge, the first large-scale CRE prediction in
C. reinhardtii. Different from available CRE prediction
methods, our approach considers the species diver-
gence time and the nucleotide content rather than
depending on MSA and mismatch number counting
to determine whether DNA segments are conserved
CREs and motifs. According to sequence permutation
test, the developed method has a very low FDR.
Compared with alignment and mismatch number
counting-based approaches, the developed method is
more efficient in filtering divergent segments while
keeping conserved segments that have quite a few
mismatches compared with their counterpart seg-
ments. In total, we have predicted 66,530 CREs corre-
sponding to 317 CRE motifs in C. reinhardtii that are
conserved in the green alga V. carteri. We found that
62.5% of the predicted 317 motifs are similar to known
PLACE motifs, and 27.5% of known PLACE motifs are

included in our prediction. In addition, we discovered
that the predicted motifs form 92,694 statistically sig-
nificant motif combinations in C. reinhardtii. These
statistically significant motif combinations are evalu-
ated and supported by known motif combinations, GO
enrichment analysis, and gene expression analysis. The
large number of CRE motifs and combinations pre-
dicted in this study will further facilitate algae research
for various applications.

In addition to the genome-wide CRE prediction in
C. reinhardtii, further analysis of the predicted CREs in
C. reinhardtii implies that the transcriptional regulation
mechanisms may be significantly different between
the green algae and land plant species. We found that
two out of the seven well-known motif combinations
shared by land plant species are not included in
our predicted motif combinations. The missing well-
known motif combinations in land plant species
suggest that the green algae may have their specific
regulatory mechanisms. In fact, whereas genes en-
coding MADS domains are widespread in land plant
genomes (Riechmann and Meyerowitz, 1997; de Folter
et al., 2005), there are only two predicted TFs with
MADS domains in C. reinhardtii (Pérez-Rodríguez
et al., 2010). This can also be a possible explanation for
the lack of motif combinations that contain the well-
known MADS-MADS motif combinations. Interest-
ingly, the comparisons of the predicted motifs with
experimentally verified known motifs also suggest that
C. reinhardtii may have both plant-like and animal-like
motifs. For instance, the predicted motif M3 is similar
to several known motifs related to photosynthesis,
such as PE3ASPHYA3 (Bruce et al., 1991). In the mean
time, we found that some predicted motifs tend to
have animal-like functions related to flagellum. For
instance, the predicted motif M10, not similar to any
known PLACE motif, was found in 76 out of 263 (29%)
motif combinations whose target genes contain IFT88
(Cre.07.gee5750), which is known to be related to fla-
gellum function (Lucker et al., 2010). This indicates
that M10 may be a novel motif related to flagellum
function.

A few caveats exist for applying our methods. First,
the identification of input regulatory sequences is a
complicated issue, since the CREs can be anywhere in
the upstream sequences. In this study, the regulatory
sequences were restricted to the upstream 1-kb-long
sequences (Vandepoele et al., 2006; Ma and Bohnert,
2007). We compared the results with those obtained
from shortened upstream sequences (800 bp) and those
from extended upstream sequences (1,200 bp). We
found that more than 83.5% of predicted motifs are
shared by upstream regions defined in the three dif-
ferent ways. Second, the length of potential motifs to
be identified needs to be determined. We used k-mer
motifs to illustrate the MERCED algorithm for k = 8,
while k could be any number between 6 and 14. We
used 8-mers, because the most dominant length of
motifs in the TRANSFAC database is eight (Wingender
et al., 1996), andmany previous studies have successfully
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identified meaningful motifs in plants and other species
using 8-mers (Mariño-Ramírez et al., 2004; Yamamoto
et al., 2011). We also predicted 7-mer and 9-mer motifs.
We found that more than 88% of predicted 7-mer and
9-mer motifs are similar to the predicted 8-mer motifs
(STAMP E-value , 1E-5 [Mahony and Benos, 2007]). In
the MERCED software, a user can set different lengths
for the regulatory sequences and different parameter
k for k-mer CRE prediction. Third, one needs to pay
attention to the criteria used to evaluate the similarity
between motifs. We measured the similarity of pre-
dicted motifs and known motifs in the PLACE data-
base by using the STAMP software. Despite the high
significance of the similarity, the functional conse-
quences of the dissimilar positions between the pre-
dicted motifs and the known motifs need to be
carefully assessed by experiments.

Finally, although we have shown various sources of
evidence that support our predictions, these predic-
tions need to be experimentally validated. Currently,
the number of genes with annotated functions in the
two algae species is small and experimentally verified
CREs are rare. With more and more genomic data
available, the prediction accuracy can be further im-
proved and better evaluated. For example, recent se-
quencing technology has generated more large-scale
measurement of gene expression and TF binding and
produced ChIP-seq (for chromatin immunoprecipita-
tion followed by massively parallel DNA sequencing)
and RNA-seq (for high throughout sequencing of
RNA) data sets in many species (Johnson et al., 2007;
Robertson et al., 2007). There are already four RNA-
seq data sets available in the Gene Expression Omni-
bus (GEO) and 15 samples available in the Sequence
Read Archive in C. reinhardtii (Miller et al., 2010;
Castruita et al., 2011; Fischer et al., 2012; Urzica et al.,
2012). Although the number is still small and the data-
processing strategies (e.g. data normalization and iso-
form identification) are still under development, we
can foresee in the near future that a large number of
RNA-seq and ChIP-seq data sets can be integrated for
CRE prediction and evaluation under different exper-
imental conditions. Additionally, with more genomes
sequenced, we will be able to integrate more species
into our comparative genomics study, for which spe-
cies divergence time incorporation is expected to pro-
duce more accurate conservation estimation.

MATERIALS AND METHODS

Protein, DNA Sequences, and Orthologous Gene Pairs

We defined the promoter sequence of a gene as the upstream 1,000-bp
sequence relative to the translation start site of this gene. We used upstream
sequences relative to the translation start sites instead of transcription start sites,
because CREs have been found in sequences downstream of the transcription
start sites and upstream of the translation start sites (Feldbrügge et al., 1994;
Ovadia et al., 2010). In addition, translation start sites can be more reliably
obtained than transcription start sites. All genes and their promoter sequences
in Chlamydomonas reinhardtii and Volvox carteri were downloaded from the
Phytozome database (http://www.phytozome.net/). The Joint Genome In-
stitute (JGI) version 4.3 and the JGI version 1.0 releases were used for the two

species, respectively. In total, we obtained 17,116 genes in C. reinhardtii
and 14,546 genes in V. carteri. Repeats in the upstream sequences were then
masked using RepeatMasker (http://www.repeatmasker.org/). We also
obtained all protein sequences in the two species from the Phytozome data-
base. The PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search
Tool) program (Altschul et al., 1997) was then applied to these sequences to
find the reciprocal best hits between proteins in the two species. In total, we
defined 8,742 orthologous pairs based on reciprocal best hits (E-value# 1E-10)
in C. reinhardtii and V. carteri (Supplemental Table S5).

Gene Expression Data and Coexpressed Clusters

We selected four gene expression data sets in C. reinhardtii from the GEO
database, requiring that each of them contains at least 15 samples (Edgar et al.,
2002). The data sets we used were GSE20860, GSE20861, GSE30646, and
GSE30648. We then BLASTed the probe sequence in each data set against the
genes in the C. reinhardtii genome to identify genes corresponding to each
probe sequence. If a BLAST hit (a partial gene sequence) matched more than
95% of a probe sequence with more than 95% identity, we assigned the cor-
responding gene to the probe from the GEO data set. We then calculated the
pairwise Pearson’s correlation for every pair of genes in each data set. These
gene correlations were then used to obtain coexpressed gene sets by applying
a hierarchical clustering algorithm with the average linkage (Sokal and
Michener, 1985). In total, we obtained 437 gene sets, each of which contains
more than three genes and has gene correlation no less than 0.6 (Supplemental
Table S6).

Model of the Neutral Evolution Rate of
Nucleotide Substitution

We constructed a substitution matrix to describe the neutral evolution of
nucleotides between C. reinhardtii and V. carteri. The construction is based on
the 4-fold degenerate sites in orthologous proteins in the two algae species. We
first aligned each pair of orthologous proteins by using the widely used
protein-alignment software MUSCLE (Edgar, 2004). We then obtained all
aligned 4-fold degenerate sites with the same amino acid in the alignments. A
4-fold degenerate site is a position in a codon where all nucleotide substitu-
tions at this site are synonymous. For each of the positions containing 4-fold
degenerate sites, we obtained their corresponding nucleotides and counted
how many times a given type of nucleotide in C. reinhardtii corresponds to
another given type of nucleotide in V. carteri. In the end, we obtained a four-
by-four substitution matrix (S) involving the four types of nucleotides, A, C, G,
and T, as illustrated in Figure 2A.

Identification of Conserved k-mers in C. reinhardtii

To identify k-mers in C. reinhardtii that are conserved between C. reinhardtii
and V. carteri, we first defined conserved-to-be (CTB) k-mer pairs. A CTB
k-mer pair contains two k-mers, one from C. reinhardtii and the other from V.
carteri, which are likely to be conserved between these two species. To find
all CTB k-mer pairs, we obtained the expected number of mismatches m
between any k-mer in a promoter sequence m in C. reinhardtii and any
k-mer in m’s orthologous sequence in V. carteri. Here, m is calculated as
m ¼ k∑T

i¼Apið12 SiiÞ, where pi is the probability that the i-th type of nucleo-
tides in C. reinhardtii and Sii is the probability that the i-th type of nucleotides
in C. reinhardtii correspond to the i-th type of nucleotides in V. carteri. Note
that m is the same for all k-mers. We defined two k-mers as a CTB k-mer pair
if the observed mismatch between them was smaller than m. With all the CTB
k-mer pairs in the two species defined, we then selected k-mers from these
CTB k-mer pairs as conserved k-mers by their statistical significance (P value)
in terms of evolutionary conservation. To calculate the conservation P value of
a CTB k-mer pair that contains a specific k-mer, one needs to compare all the
4k different k-mers in V. carteri with this k-mer in C. reinhardtii. However, with
the large number of k-mers in C. reinhardtii, directly enumerating all the 4k

different k-mers in V. carteri is time consuming. Therefore, we exploited the
mathematics concept of generating function to calculate the P value. The
generating function is a representation of the probability mass function of a
random variable. For a discrete random variable X, its generating function is
defined as f ðtÞ ¼ ∑n

i¼1pit
ai , where PrðX ¼ aiÞ ¼ pi and n is the number of dif-

ferent values X can take. For every k-mer m in C. reinhardtii that has similar
k-mers in m’s corresponding orthologous sequence in V. carteri, say a1a2.ak,
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we can define a generating function of the k-mer in C. reinhardtii as
f ðt; a1a2:::akÞ ¼ ∑4k

i¼1cit
scorei , where ci is the probability that the i-th k-mer occurs

in the upstream 1,000-bp sequences in V. carteri and scorei is the substitution
score of the k-mer a1a2.ak in C. reinhardtii by the i-th k-mer in V. carteri. The
generating function can be efficiently computed as in previous studies (Staden,
1989; Huang et al., 2004). The statistical significance for the evolutionary
conservation between a1a2.ak and one of its similar k-mers in V. carteri can
then be calculated as P ¼ ∑scorei$aci, where a is the substitution score of this
k-mer pair. We claimed a k-mer pair as conserved if its Bonferroni corrected
P # 0.05.

Prediction of Motifs and Motif Combinations

To predict CRE motifs from the conserved k-mers identified in C. rein-
hardtii, we first applied the hierarchical clustering algorithm (average linkage;
Sokal and Michener, 1985) to cluster the conserved k-mers. Since conserved k-
mers forming a cluster are likely to have the same underlying pattern and thus
correspond to the same motif, we predicted a motif for each cluster. Each
predicted motif is represented by a position weight matrix (Stormo and
Hartzell, 1989). In the end, we obtained 66,530 conserved CREs and 317 un-
derlying 8-mer motifs. With the predicted motifs, we further identified motif
combinations by finding motifs frequently co-occurring in a large number of
regulatory sequences in C. reinhardtii using our previously developed method
(Cai et al., 2010). The statistical significance of each group of frequently co-
occurring motifs was determined by Poisson clumping heuristic (Cai et al.,
2010). The groups of motifs with sufficient significance (FDR , 0.05) were
predicted as motif combinations.

Functional Analysis of the Predicted Motif Combinations

To see whether motif combinations are associated with specific functions,
we investigated the overlap between the target genes of co-occurring motifs
and functional gene sets. The functional gene sets are defined as sets of genes
with specific GO function annotation (Ashburner et al., 2000) or sets of genes
with correlated transcription expression, since correlated expression often
implicates similar function (Altman and Raychaudhuri, 2001; Ideker et al.,
2001). The GO function annotation was downloaded from the JGI Web site
(http://genome.jgi-psf.org/cgi-bin/ToGo?species=Chlre4), which is the ver-
sion 4.0 C. reinhardtii annotation. The statistical significance of any overlap
between target genes of a motif combination and a given functional gene set is
calculated as follows: let S be the set of all the N genes in a genome, S1 be a
predicted target gene set of a motif combination, and S2 be a given functional
gene set, and assume the number of genes in the intersection of the three sets
S, S1, and S2 is n,M, and m, respectively. Then, the P value of the overlap of the
set S1 and the set S2 can be estimated based on the hypergeometric test

P ¼ ∑minðn;MÞ
i¼m

CðM; iÞCðN2M; n2 iÞ
CðN; nÞ , where C(x,y) is the combinatorial num-

ber of choosing y items out of x items. From such obtained P values, we then
calculate q values based on the Q-Value software to estimate the statistical
significance of the overlap (Storey and Tibshirani, 2003). All the motif com-
binations with sufficient statistical significance (FDR , 0.05) in terms of
overlapping with known functional gene sets are reported as functional motif
combinations.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Table S1. Predicted motifs.

Supplemental Table S2. Predicted motif combinations.

Supplemental Table S3. Motif combinations consistent with known TF
combinations.

Supplemental Table S4. Motif combinations with significantly coex-
pressed target genes.

Supplemental Table S5. Orthologous gene pairs in C. reinhardtii and
V. carteri.

Supplemental Table S6. Coexpressed gene clusters.
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