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Evidence for Hyperbolic Temporal Discounting of Reward in
Control of Movements
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Suppose that the purpose of a movement is to place the body in a more rewarding state. In this framework, slower movements may
increase accuracy and therefore improve the probability of acquiring reward, but the longer durations of slow movements produce
devaluation of reward. Here we hypothesize that the brain decides the vigor of a movement (duration and velocity) based on the expected
discounted reward associated with that movement. We begin by showing that durations of saccades of varying amplitude can be accu-
rately predicted by a model in which motor commands maximize expected discounted reward. This result suggests that reward is
temporally discounted even in timescales of tens of milliseconds. One interpretation of temporal discounting is that the true objective of
the brain is to maximize the rate of reward—which is equivalent to a specific form of hyperbolic discounting. A consequence of this idea
is that the vigor of saccades should change as one alters the intertrial intervals between movements. We find experimentally that in
healthy humans, as intertrial intervals are varied, saccade peak velocities and durations change on a trial-by-trial basis precisely as
predicted by a model in which the objective is to maximize the rate of reward. Our results are inconsistent with theories in which reward
is discounted exponentially. We suggest that there exists a single cost, rate of reward, which provides a unifying principle that may govern
control of movements in timescales of milliseconds, as well as decision making in timescales of seconds to years.

Introduction
Temporal discounting of reward is a ubiquitous phenomenon in
decision making. Across many types and magnitudes of reward,
multiple timescales, and various species, small, immediate re-
wards are often preferred over larger, delayed rewards. Mathe-
matically, temporal discounting of reward may be described in
terms of a multiplicative discount function:

V�t0 � t� � V�t0� F�t�. (1)

In Equation 1, reward value at current time t0 is discounted by a
function F(t) to produce value at time t0 � t, with F(0) � 1. The
two most common forms of F(t) that have been used to describe
discounting are exponential

F�t� � exp��kt� (2)

and hyperbolic

F�t� � 1/�1 � �t�. (3)

For example, exponential temporal discounting is routinely used
in a form of reinforcement learning known as temporal differ-
ence learning (Sutton and Barto, 1981), which provides a prom-

inent theory of learning in the basal ganglia (Schultz et al., 1997).
Exponential discounting has also been suggested in models of
human decision making (Schweighofer et al., 2006). Hyperbolic
discounting, however, is more consistent with behavioral data in
humans (Myerson and Green, 1995) and monkeys (Kobayashi
and Schultz, 2008). While it is clear that the brain temporally
discounts reward, the exact shape of this function is not entirely
clear. Perhaps more significantly, the reason why temporal dis-
counting occurs at all is poorly understood.

Recently we proposed that the way the brain discounts reward
may have implications for control of movements (Shadmehr et
al., 2010). Suppose that a movement is made with the purpose of
acquiring some rewarding state that has value V(t0) � a. In this
framework, the duration of the movement acts as a delay in ac-
quiring reward. Performing a movement slowly diminishes the
value of reward upon its acquisition (movement end), making it
preferable to move quickly. Fast movements, however, are more
variable (Fitts, 1954; Schmidt et al., 1979), reducing the proba-
bility of success for the movement. Therefore, the expected value
of a stimulus that is acquired after some movement duration � is
affected by two factors: probability of successfully acquiring the
stimulus P[success��], which increases with duration �, and tem-
poral discounting of reward value F(�), which decreases with
duration �:

E�reward��� � aP�success��� F���. (4)

Thus, if the objective for the brain is to produce movements that
maximize the expected value of reward, then movement speed
and duration or, collectively, vigor should be a balance between
the competing concerns of time and variability.
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However, our proposed link between temporal discounting in
motor control and decision making is tenuous: the movements
that we are considering (saccades) are tens of milliseconds in
duration. Why should a few milliseconds make a meaningful
difference in the value of reward? Here, we show that one inter-
pretation of hyperbolic temporal discounting is that the brain
selects actions so as to maximize the rate of reward. This idea
leads to a novel prediction about how the brain should select
vigor in response to changes in the intertrial interval between
movements. We propose that rate of reward provides a unifying
principle that governs control of movements in timescale of mil-
liseconds, as well as decision making in timescales of seconds to
years.

Materials and Methods
Our concern is the general question of why movements have their spe-
cific kinematic properties, i.e., why movements of a given amplitude have
a particular duration and velocity. Here, we present a novel framework
for considering the influence of temporal discounting of reward on
movement vigor. Our focus is on saccades, as numerous theories have
been proposed to explain the kinematic patterns of these simple move-
ments, enabling us to focus on the question of how temporal discounting
influences choice of movement vigor. Our principal new theoretical re-
sult, presented in the Results section, is that the shape of the discount
function should leave its signature in how the brain alters saccadic vigor
in response to changes in intertrial intervals between saccades. We will
first present the computational methods that we used to study the theo-
retical relationship between movement vigor and temporal discount
functions, and then the experiments that we performed to test some of
the predictions.

Model of eye plant. We modeled the oculomotor plant as a second
order dynamical system:

mẍ � �kx � bẋ � f. (5)

In this equation, x is the lateral deviation from the equilibrium point of
the eye, m is the inertia of the eye, k is stiffness, b is viscosity, and f is the
instantaneous force generated by the extra-ocular muscles, which act as a
first-order linear filter of the motor command u:

� ḟ � �f � u. (6)

Here, � is a time-constant that determines how quickly motor com-
mands are transmitted into forces. If we represent the full state of the
plant by the vector x � �x, ẋ, f�T, the dynamics can be more compactly
expressed in continuous time as:

ẋ � Acx � bcu, (7)

with Ac � � 0 1 0
� k⁄m � b⁄m 1⁄m

0 0 � 1⁄�
� and bc � � 0

0
1⁄�
�. As with our

previous work (Shadmehr et al., 2010), we set the parameters of the eye
plant to match the three timescales described by Robinson (1986): �1 �
0.224, �2 � 0.013, and �3 � 0.004 s. This can be achieved by setting k � 1,
b � �1 � �2, m � �1�2, and � � �3. These equations were converted into
discrete-time using matrix exponentials for a time step � of 0.1 ms:

xt�� � Axt � but.

Next, we added signal-dependent �t � N(0,� 2ut
2�) and non-signal-

dependent 	t � N(0,
 2�) noise to the model:

xt�� � Axt � b�ut � �t � 	t� (8)

as described by van Beers (2007). It is difficult to reliably estimate the
magnitude of signal-dependent noise from empirical data due to the
many potential sources of variability in eye movements, although con-
stant noise is more reliably inferred (van Beers, 2007). We therefore set

 � 0.0075 kg m s 	2 to match the horizontal endpoint variability re-

ported in that work, and left the magnitude of signal-dependent noise �
as an open parameter.

To extend this one-dimensional model to a more realistic two-
dimensional one, we assumed independent vertical and horizontal com-
ponents of the eye, with independent sources of noise. Following the
method of van Beers (2007), we scaled variability in the vertical direction
by a factor of 1.14 to reflect the sparser innervation of muscles in that
direction relative to horizontal. Our experiments presented targets ap-
proximately along the horizontal axis. As a result, the magnitude of
signal-dependent noise introduced for the vertical component of move-
ment was found to be negligible for all movements we considered and
we therefore included only signal-independent variability along this
axis. We used this two-dimensional plant model in all subsequent
simulations.

Making saccades to maximize probability of success. Suppose that suc-
cess or failure of a point-to-point movement such as a saccade is deter-
mined by whether or not the location of the effector at the end of the
movement falls within a specified goal region. The probability of success
depends on the distribution of the effector endpoints. For our linear
system with Gaussian additive and multiplicative noise (Eq. 8), for a
movement of duration �, the endpoint distribution for any sequence of
motor commands u0, . . . ,u�	1 is Gaussian. Suppose that, in one dimen-
sion, for a particular sequence of motor commands the end position x� of
the saccade has a distribution with mean � and variance � 2. If the target
of the movement is at location a with respect to the fovea, and the fovea
has width w, then the probability of success (i.e., acquiring reward) is
defined as:

P�success� � �
a	

1

2
w

a�
1

2
w

1

�2
�2
exp��

�x� � ��2

2�2 �dx�. (9)

We assumed that w � 1° (approximate width of the fovea). If we assume
that the mean of the endpoint distribution is aligned with the target
center, the probability of success becomes:

P�success� � erf� w

2�2�2�. (10)

In two dimensions, we made the simplifying assumption that the overall
probability of success was given by a product of the corresponding prob-
abilities of success along the horizontal and vertical axes (effectively as-
suming that the target was a 1° 
 1° square).

For a given target position, we needed to compute the probability of
success as a function of duration �. To do so, for a given � we found the
motor commands that maximized the probability of success. This was
achieved by finding the motor commands that minimized endpoint vari-
ance with the constraint that the mean of the endpoint distribution was at
the target position at time � and remained there for a further 50 ms hold
period. We solved this constrained optimization problem analytically
using Lagrange multipliers.

Discounting probability of success. How does one decide the vigor with
which to perform a movement? A simple hypothesis is that we choose the
motor commands that maximize probability of success (Eq. 10; van
Beers, 2008). However, as we will see, generating motor commands that
maximize probability of success produces movement durations that
agree with observed data on small amplitude saccades, but fails for large
amplitude saccades. Our theory proposes that this failure is because re-
ward does not have a constant value as a function of time. Rather, reward
is discounted as a function of movement duration � by a temporal dis-
count function F(�). We consider different forms for this temporal dis-
count function (as described in Results), compute the discounted reward
value, and then numerically find the movement duration that maximizes
the expected value of the discounted reward function.

The value of the signal-dependent noise parameter � is unknown and
difficult to estimate. Furthermore, the duration-amplitude relationships
of all models we considered were highly sensitive to the exact value of this
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parameter. To generate the relationship between saccade amplitude and
duration, we fit this single open parameter separately for the discounted
reward model and for the maximum probability of reward model by
finding the values that yielded a predicted duration of 105 ms for a 30°
saccade. This yielded estimates for � of 0.0066 and 0.0055 for the dis-
counted reward and maximum probability of reward models, respec-
tively. The estimate of � for the discounted reward model was then used
directly to predict the influence of changes in intertrial interval on move-
ment vigor. There, we also assumed that subjects maintained an estimate
of the intertrial interval on each trial p̂i, and then updated this estimate
based on the observed intertrial interval: p̂i�1 � p̂i � �( pi 	 p̂i). We set
� � 0.7. We then set the intersaccade interval in the discount function (�
in Eq. 14) equal to the estimated intertrial interval plus a reaction time of
150 ms and determined the movement duration that theoretically max-
imized the discounted reward. Peak velocity was computed by simulating
the saccade at the optimal movement duration using the motor com-
mands that minimize the endpoint variance.

Experimental methods. A critical prediction of our theoretical work
is that, if movement duration is determined by maximizing reward
rate, then the brain should alter movement vigor in response to
changes in the intertrial interval (ITI) between movements in a par-
ticular way. Our theory suggests that alternative forms of discounting
may have different characteristic patterns by which changes in ITI
lead to changes in movement vigor. We performed experiments to
test our predictions. All experimental procedures were approved by
the Johns Hopkins Institutional Review Board.

For our main experiment, we recruited n � 6 healthy volunteers
(mean age 28, range 23– 47, five females). Subjects sat in a dark room in
front of a CRT monitor (36.5 
 27.5 cm, 1024 
 768 pixel, light gray
background, frame rate 120 Hz) with head restrained using either a den-
tal bite bar or chin and forehead rests and their left eye covered. Targets
(blue, diameter � 1°) were presented with Matlab 7.4 (MathWorks)
using the Psychophysics Toolbox. The screen was placed at a distance of
31 cm from the subject’s face, and an EyeLink 1000 (SR Research) infra-
red camera recording system (sampling rate � 1000 Hz) was used to
record movement of the right eye.

Subjects were asked to make saccades between targets having a hori-
zontal separation of 40°, and positioned symmetrically about the center
of the screen. Each saccade was cued by the appearance of one of two
possible targets, having a vertical separation of 5° between them. Includ-
ing two potential targets discouraged subjects from generating predictive
saccades in advance of the actual target presentation. After an initial
training period, subjects completed 12 blocks of 80 trials. Each trial con-
sisted of three parts: intertrial interval, reaction time, and movement
time. The intertrial interval began when the subject’s gaze was within 3°
of the target and ended with extinction of the current target and presen-
tation of the next target. There were three different block types in which
the intertrial interval was varied in different ways. In the constant ITI
blocks, the ITI was fixed at 1 s throughout the block. In the increasing ITI
blocks, the ITI was set to 1 s for the first 10 trials, then was abruptly
decreased to 0.4 s, before slowly increasing to 1.6 s over the next 60 trials,
then was restored to 1 s for the final 10 trials of the block. In the decreas-
ing ITI blocks, the opposite sequence of ITIs was used, with an initial
abrupt increase to 1.6 s preceding a slow decrease to 0.4 s. Blocks were
presented in a pseudorandom sequence that was different for each indi-
vidual subject.

An additional n � 5 subjects (mean age 26, age range 21– 47, 4
females) participated in a control experiment in which the previous
target did not disappear when the new target was presented, but
remained on the screen until the gaze reached the new target. Instead
of two potential targets for each saccade, there was only one possible
target in this control experiment.

All data analysis was completed using Matlab R2011a (MathWorks).
The gaze position data were filtered using a second-order Savitzky-Golay
filter with a half-width of 27 ms. Saccade beginning and end were marked
using a 20°/s velocity threshold. Five criteria were used to assess saccades:
(1) Amplitude between 35 and 45°; (2) Duration between 50 and 350 ms;
(3) Reaction time between 100 and 500 ms; (4) No blinking during the
saccade; (5) Saccade velocity profile exhibits only one maximum. Any

saccade that did not meet all 5 criteria was excluded from the analysis
(approximately 10% of all saccades).

Peak velocities in a given block were normalized separately for nasal
(leftward) and temporal (rightward) saccades by dividing by the mean
peak velocity during the first 10 trials across all blocks. The normalized
peak velocity was then averaged across all four repeats per block type for
each subject. Saccade duration, amplitude, and reaction time were nor-
malized using the same method. We assessed the effect of changing ITI
on the variables of interest using an analysis of covariance on data from
all subjects for the middle 60 trials of each block (during which the ITI
changed), with trial number serving as a continuous predictor and block
type as a categorical predictor. Our hypothesis that changes in ITI should
lead to changes in the kinematic properties of saccades then corresponds
to a predicted interaction effect between trial number and block type.

Results
An early model of saccades (Harris and Wolpert, 1998) showed
that saccade trajectories for a given duration are well predicted by
a model in which motor commands are selected to minimize
endpoint variance in the presence of signal-dependent noise
(term �t in Eq. 8). That idea is equivalent to finding motor com-
mands that maximize the probability of success for a given dura-
tion. However, the question of how movement durations are
selected was not addressed. A more recent work (van Beers, 2007)
empirically demonstrated that in addition to signal-dependent
noise, the oculomotor plant suffers from non-signal-dependent
noise (term 	t in Eq. 8). The non-signal-dependent noise acts as a
natural cost that penalizes movement durations: the longer the
duration of the movement, the greater the endpoint variance due
to accumulation of this kind of noise. The impact of non-signal-
dependent noise grows monotonically with saccade duration,
producing a greater penalty for longer durations of movement.
Therefore, if one assumes that the objective is to maximize prob-
ability of success (or, equivalently minimize endpoint variance),
then one can compute the optimal movement duration for any
given saccade amplitude (van Beers, 2008).

We adopted a model of the oculomotor plant based on previ-
ous publications (Robinson, 1986; van Beers, 2007). For reasons
which we explain below, we used a value of � � 0.0066 for the
signal-dependent noise magnitude in our simulations. Using this
model, we computed the probability that at the end of a 10°
saccade the target would be placed on the fovea (Fig. 1A, top
subplot). Increasing movement duration initially increases the
probability of success (this is because of the diminishing impact
of signal-dependent noise). However, as movement durations
become long, the probability of success tends to decline (this is
because of the increasing influence of non-signal-dependent
noise). Therefore, if the objective is to maximize probability of
success, a 10° saccade should last �56 ms, a prediction that falls
within the range of durations measured for actual saccades of that
amplitude (Collewijn et al., 1988).

Figure 1B (top subplot) shows the probability of success for a
saccade of 40° amplitude. Under the maximum probability of suc-
cess hypothesis, a 40° saccade has duration of approximately 200 ms,
a value that far exceeds that of observed data (around 135 ms). As the
saccade amplitude increases further, the optimal duration begins to
increase at an increasing rate and rapidly becomes unrealistic. There-
fore, whereas maximizing probability of success under these noise
properties produces durations that match observed data for small
amplitudes, this policy grossly overestimates saccade durations for
large amplitudes (Fig. 1C). The reason for this failure is that the
variance due to signal-independent noise saturates at around 200–
300 ms. Increasing saccade duration beyond this point carries little
additional cost from signal-independent noise, but continues to
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reduce the impact of signal-dependent
noise—particularly for large amplitude sac-
cades. This characteristic is independent of
the particular value of � used in our simula-
tions. The dashed line in Figure 1C shows
the predicted durations given a value of � �
0.0055, which was chosen so that maximiz-
ing the probability of reward of a 40° saccade
yielded a correct prediction of 135 ms. Even
for this optimized parameter, large ampli-
tude saccades are predicted to have unreal-
istically long durations. If instead we were to
fix � based on the duration of larger ampli-
tude saccades, the predictions for lower am-
plitude saccades become unrealistically
short. As a result, we find that saccade dura-
tions are inconsistent with a policy that
maximizes probability of success.

Temporal discounting of reward
Consider the possibility that the value of
the stimulus is not constant as a func-
tion of time, but is discounted. As a re-
sult, the expected value of the stimulus
at movement completion depends on
two factors (Eq. 4): probability of suc-
cess, and a temporal discount function
F(�) which describes change in stimulus
value during the movement. Let us show
that a policy that maximizes the ex-
pected discounted value of reward reproduces the observed
amplitude-duration relationship.

Suppose that stimulus value is discounted hyperbolically
F(�) � 1/(�� � 1). We set � � 1 s	1 (for reasons we explain
below). Under our assumed noise characteristics, the optimum
duration for a 10° saccade is around 54 ms and for a 40° saccade,
the same parameters produce an optimum saccade duration of
135 ms— both offering a good agreement with observed saccade
durations. Indeed, a single hyperbolic discount function can ac-
curately reproduce saccade durations for the entire range of am-
plitudes of recorded data (Fig. 1C). We also considered an
exponential discount function, which has general form F(�) �
exp(	
�). We set 
 � 1 s	1 so that the hyperbolic and exponen-
tial discount functions would share the same gradient at � � 0 s.
This exponential discount model also produces realistic duration
predictions for the entire range of saccade amplitudes (Fig. 1C).
Therefore, saccade durations are consistent with a policy that
maximizes the expected discounted value of the stimulus (Eq. 4).

The specific value of � � 0.0066 for these simulations was
chosen such that a 30° saccade would have an optimal duration of
105 ms under a hyperbolic discounting of reward model. This
value of � is approximately consistent with the magnitude of
signal-dependent variability reported by van Beers (2007). How-
ever, given the sensitivity of our predicted durations to the details
of our underlying model of saccade generation (plant properties
and selection of motor commands for a given duration), we can-
not be certain about the precise relationship between the dis-
count function and saccade durations. Furthermore, these data
do not allow us to dissociate between hyperbolic and exponential
forms of discounting. We can, however, reject the possibility that
saccade durations are selected to maximize expected undis-
counted reward, since no single value of � could account for
saccade durations across all amplitudes. Therefore, at this point

we can only conclude that temporal discounting of reward plays a
role in determining movement durations. The exact shape of the
discount function remains unclear.

Temporal discounting as reward rate optimization
The results that we have presented thus far are similar to those
that we saw in an earlier set of simulations (Shadmehr et al.,
2010). In that work we assumed a cost in which movement end-
point errors were penalized with a quadratic function and move-
ment duration was penalized through an added hyperbolic time
cost. Here, we instead adopt a more natural framework in which
successful movements (endpoint falling within a specified goal
region) earn a positive reward and unsuccessful movements earn
zero reward, regardless of the magnitude of the error. The value
of reward associated with a successful movement is then dis-
counted multiplicatively as a function of time. In addition,
whereas our previous work assumed an oculomotor plant with
only signal-dependent noise, we now consider a more accurate
model of the oculomotor plant with both signal-dependent and
signal-independent noise sources. One may argue over the rela-
tive merits of each model, but the fact is that both the current and
the previous work suffer from two fundamental concerns: (1) We
have merely shown that observed data on saccade durations are
consistent with our temporal discounting framework. However,
there may be many kinds of costs that are also consistent with
these data. (2) In decision making, reward is temporally devalued
over timescales of minutes, days, or years. In our model of sac-
cades, reward is discounted over a timescale of milliseconds. It
seems improbable that a few milliseconds should produce any
meaningful change in the perceived value of reward. To address
these concerns, we must first understand the deeper question of
why the brain should discount reward at all.
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Figure 1. Relationship between saccade duration, endpoint accuracy, and expected value of reward. A, Top, We computed
probability of success (probability that the motor commands will place the target on the fovea) for a 10° saccade as a function of
movement duration. Signal-dependent noise magnitude was set to � � 0.0066. Movement duration that maximizes probability
of success is indicated by the vertical line. Bottom, Expected discounted value of the reward attained at the completion of the
saccade (blue line) under the assumption that reward is discounted hyperbolically in time (red line). The temporal discount
function is F(�) � 1/(1 ��). For a 10° saccade, the movement duration that maximizes the probability of success is similar to that
which maximizes the expected value of reward. B, Same as A but for a 40° saccade. For this saccade amplitude, the movement
duration that maximizes the expected value of reward is much shorter than one that maximizes the probability of success. C,
Relationship between saccade amplitude and saccade duration predicted by maximum probability of success hypothesis (green),
and maximum expected value of reward hypothesis (red and blue). For the expected value of reward hypothesis, durations that
maximize hyperbolically discounted expected rewards are shown in red, and durations that maximize exponentially discounted
expected rewards are shown in blue. For hyperbolic discounting, F(�)�1/(1��). For exponential discounting, F(�)�exp(	�).
Also plotted are experimental data from Collewijn et al. (1988) (filled circles; vertical bars indicate �1 SD). The dashed green line
indicates predictions of the maximum probability of success model under a noise model fitted to generate accurate predictions for
a 40° saccade (� � 0.0055).
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A common interpretation of temporal discounting is that the
risk of not getting a predicted reward increases with delay. If
reward remains available for a duration that follows an exponen-
tial distribution (and reward disappearance behaves like a Pois-
son process), then exponential discounting maximizes the total
expected reward. Such a framework can also account for hyper-
bolic discounting if the exponential distribution is replaced with
a mixture of exponential distributions with different time con-
stants (Daw, 2003). An alternative interpretation is that temporal
discounting reflects a desire to maximize the rate of reward ac-
quisition, rather than the absolute value of each acquired reward
(Kacelnik, 1997; Daw, 2003; Niv et al., 2007). To explain this,
consider a choice between an immediate reward with magnitude
�1, and a larger reward �2 at some time in the future �. If we
assume that the next such decision will not occur immediately
after we receive the reward, but after some average period of time
� (due to reaction time, intertrial interval, etc.), then the reward
rates associated with each choice are

R1 �
�1

�
R2 �

�2

� � �
. (11)

Suppose we vary �2 and find the value for which we select the
immediate but smaller reward �1 at 50% probability. According
to the rate of reward theory, this indifference between the imme-
diate but smaller reward and the delayed but larger reward is
occurring because R1 � R2. This condition occurs when

�1 �
�2

1 � �	1�
. (12)

We see that if we make choices in such a way as to maximize the
rate of reward, then effectively we discount the value of the de-
layed reward �2 hyperbolically with a rate that depends on the
average duration � between opportunities to earn reward. The
key new idea that emerges is that hyperbolic temporal discount-
ing arises because the underlying objective of the brain is to op-
timize the rate of reward R (i.e., reward per unit of time):

E�R� � aP�success���
1

� � �
, (13)

where � is the inter-movement interval, and � is movement du-
ration. This is proportional to the expected hyperbolically dis-
counted reward (Eqs. 3 and 4) when � � �	1. In the simulations
presented in Figure 1, we deliberately set � equal to 1 s	1, corre-
sponding to an inter-movement interval of 1 s, roughly consis-
tent with the experimental paradigm for the study (Collewijn et
al., 1988) that collected the data in Figure 1C (although exact ITI
data were not reported in that paper). That is, the specific hyper-
bolic temporal discount used to produce the simulations in Fig-
ure 1C is equivalent to Equation 13 in which ITI is around 1 s.
This establishes the plausibility that the rate of reward hypothesis
could in principle account for vigor of saccades.

Predictions of the rate of reward theory
While the above findings establish the plausibility of the rate of
reward hypothesis, a far stronger prediction of this theory is that
if we change the intersaccade interval �, the brain will change the
vigor of saccades. In a typical experiment one gives a sequence of
targets, and the subject makes a sequence of movements to these
targets. Equation 13 predicts that the expected reward rate will
depend on the average duration of each movement � plus the
average inter-movement interval �. If we change �, for example

by increasing the time between the end of one movement and
presentation of the target for the next movement, then the vigor
with which that movement is performed should change. Here is
the critical prediction of Equation 13: an increase in inter-
movement intervals should reduce movement vigor (produce
slower movements), whereas a decrease in inter-movement in-
tervals should increase movement vigor (see also Results, Sensi-
tivity to characteristics of the discount function).

To illustrate the predictions of Equation 13, we performed a
simulation to determine how much saccade peak velocities and
durations should change as we alter the ITI. We found that with
respect to ITI of 1 s, reducing the ITI predicted increased peak
velocities and increasing the ITI predicted decreased peak veloc-
ities (Fig. 2A). Importantly, the effect was asymmetric: a 0.5 s
decrease in ITI predicted a much greater change in peak velocities
than a 0.5 s increase in ITI. Furthermore, the effect of ITI on peak
velocities grew with saccade amplitude, but tended to saturate at
around 40°. Similarly, reducing the ITI predicted decreased sac-
cade durations and increasing ITI predicted increased saccade
durations (Fig. 2B). Put simply, if the brain is producing motor
commands to maximize rate of reward (Eq. 13), then reducing
the inter-movement intervals should increase movement vigor.

Change in ITI alters saccade vigor
We performed an experiment to test the prediction that changes
in ITI should produce changes in saccade vigor. Subjects made
alternate leftward and rightward saccades of 40° amplitude (Fig.
3A). We employed three block types, each consisting of 80 trials
in which ITI increased, decreased, or remained constant (Fig.
3B). Each block began and ended with 10 trials having an ITI of
1 s. Figure 3, C and E, shows our theoretical predictions regarding
saccadic vigor. As ITI is reduced from 1 s to 0.4 s, peak velocities
(for a 40° saccade) should increase by approximately 10%. As ITI
is increased from 1 s to 1.6 s, peak velocities should decrease by
approximately 5%. The experimental results are shown in Figure
3, D and F. Over the first 10 saccades, the ITI was the same (1 s) in
all block types, and the saccade peak velocities did not differ
significantly across blocks. For the constant ITI block (black line)
there was no clear change in peak velocity other than a trend for
the peak velocity to decrease - a ‘fatigue-like’ effect thought to be
associated with stimulus devaluation due to repetition of the
stimulus (Chen-Harris et al., 2008). For the increasing ITI block
(blue line), the abrupt decrease in ITI from 1 to 0.4 s on trial 10
(bin 5) was accompanied by a sharp increase in peak velocity.
Over the next 60 trials the ITI was varied linearly from 0.4 s up to
1.6 s. This was associated with a steady decrease in peak velocity.

0.5 1 1.5 2

0.9

1.0

1.1

Inter saccade interval (sec)

R
el

at
iv

e 
pe

ak
 v

el
oc

ity 40°

10°

20°
30°

1.2A

0.5 1 1.5 2

0.8

0.9

1.0

Inter saccade interval (sec)

R
el

at
iv

e 
du

ra
tio

n

40°

10°
20°
30°

1.1B
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predicted by a rate of reward cost function (Eq. 13). A, Changes in peak velocity. For each ITI, and
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Changes in saccade duration as a function of changes in ITI.
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In the last 10 trials of the block, after the
ITI was decreased abruptly from 1.6 s back
to 1 s, the peak velocity began to increase
again, becoming similar to the constant
ITI block. Saccade peak velocities in the
decreasing ITI block (red line) showed the
opposite trend.

Analysis of covariance on each block
confirmed that the changes in peak velocity
followed significantly different trends across
block types (ANCOVA, BLOCK 
 TRIAL
interaction, F(2,1074) � 296.6, p � 10	10).
Similarly, we saw a significant effect of ITI
on movement duration (BLOCK 
 TRIAL
interaction F(2,1074) �111.2, p�10	10; Fig.
3F). Post hoc comparisons of the saccades
following the initial abrupt ITI change
and control block showed that the effects
were significant (paired t test, velocity: ITI
increase vs control, p � 0.005; ITI decrease
vs control, p � 0.01; duration: ITI increase
vs control, p � 0.007, ITI decrease vs con-
trol, p � 0.018). However, manipulation of
ITI did not affect saccade amplitude
(BLOCK 
 TRIAL interaction F(2,1074) �
2.71, p 
 0.05), as shown in Figure 3G. In
addition, we observed significant changes in
reaction time (BLOCK 
 TRIAL interaction
F(2,1074) � 50.9, p � 10	10), with reaction
times becoming shorter as ITI decreased (Fig.
3H). Therefore, reductions in ITI generally
produced saccades with faster velocities, shorter reaction times,
and shorter durations.

Increases in the value of a visual stimulus results in saccades
with shorter reaction time in both monkeys (Watanabe and
Hikosaka, 2005; Bendiksby and Platt, 2006) and humans (Mil-
stein and Dorris, 2007). We noted that whereas reaction time
generally followed the same trends as velocity and duration, in
one instance these measures could be dissociated. At the onset of
the 11th trial (and the 71st trial) the ITI sharply changed, either
increasing or decreasing. We observed an increase in velocity for
ITI decrease, and a decrease in velocity for ITI increase (Fig.
3D,F). In contrast, both the sudden increase and the sudden
decrease in ITI produced an increased reaction time. If we view
reaction time as a period in which the upcoming movement is
planned, this result suggests that the sudden change in ITI re-
sulted in significantly longer time to plan the upcoming move-
ment. Following this increased planning period, there was either
a sharp decline (in case of increased ITI) or a sharp increase (in
case of reduce ITI) in the vigor of the upcoming saccade. This
dissociation allows us to rule out the possibility that changes in
movement vigor were directly caused by changes to the reaction
time that affected the process of movement planning.

It is noteworthy that for the block type with an initial decrease
in ITI, saccadic vigor sharply changed within two trials of this
decrease (e.g., maximum saccade velocity was reached within two
trials). However, the rate of change in saccade vigor following an
increase in ITI was much less, with subjects reaching minimum
velocity after 7– 8 trials. If we view changes in ITI as change in
reward rate, then an unexpected change in ITI is equivalent to a
reward rate prediction error. The fact that it takes longer for vigor
to decrease than increase may be attributable to differences in
learning from positive and negative reward rate prediction errors,

suggesting that in this task the brain learns more from positive
prediction errors than negative prediction errors.

Control experiment
An alternate interpretation of our experimental results is that
when we reduced ITI, we are reducing the time that we are allow-
ing the subject to view the target (in the experimental setup of Fig.
3A, the current target disappears when the new target is shown).
Perhaps this reduced viewing time is influencing vigor by encour-
aging the subject to get to the new target earlier so that they can
view it for a longer period of time before it disappears. To test for
this, we performed a new experiment (Fig. 4A). In this version of
the task the target that the subject was viewing did not disappear
when a new target was presented. Rather, the subject could
choose to continue viewing the current target for as long as they
wanted. In this way, the viewing time of the current target was
chosen by the subject, and not by the experimenter. Remarkably,
we still observed that changing ITI produced robust changes in
saccade vigor (Fig. 4B,C). The patterns of change in velocities
and durations were essentially identical to that which we had
recorded in the main experiment (velocity, ANCOVA, BLOCK 

TRIAL interaction, F(2,874) � 301.1, p � 10	10; duration,
BLOCK 
 TRIAL interaction, F(2,874) � 106.7, p � 10	10). We
did also observe a significant effect of amplitude (BLOCK 

TRIAL interaction, F(2,894) � 19.9, p � 10	8). However the
changes in amplitude were of the order of 1% and are not suffi-
cient to account for the changes in peak velocity and duration we
observe, which were an order of magnitude larger than would be
predicted on the basis of observed changes in amplitude alone.

Interestingly, reaction time in this task was markedly higher than
in our main experiment (mean reaction time � 213 ms for the con-
trol experiment versus 158 ms for the main experiment). Despite this
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Figure 3. Experimental protocol, model predictions, and results. A, Experimental protocol. Subjects were asked to make alter-
nate leftward and rightward saccades to one of two possible targets. B, The duration between the end of one saccade and
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amplitudes. H, Changes in reaction times. Error bars indicate SEM.
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marked difference in mean reaction time, the patterns of change
(Fig. 4D) due to changes in ITI were qualitatively similar to the main
experiment: the sudden change in ITI on the 11th trial produced an
increase in reaction time, regardless of whether ITI was decreased or
increased. Following sudden change, gradually reducing the ITI pro-
duced longer reaction times and increasing the ITI produced shorter
reactiontimes.AlthoughtherewasnostatisticallysignificanteffectofITI
on reaction time (BLOCK 
 TRIAL interaction, F(2,874) � 1.24, p �
0.3), this was largely caused by a single trial early in the block when an
abrupt change in ITI caused unusually high reaction times. Overall,
these observations are very similar to those in our main experiment.
Therefore,thechangesinvigorwereunlikelytobeduetosubjectsfeeling
rushed by the increased pace of the experiment.

Characteristics of the temporal discount function
We noted earlier that durations of saccades of different ampli-
tudes could be accounted for by both hyperbolic and exponential
temporal discount functions (Fig. 1C). However, we found that
saccade durations not only depend on saccade amplitude, but
also on the time since the last saccade, i.e., ITI (Fig. 3F). This
experimental result confirms a prediction that we derived based
on the premise of rate of reward, providing a rationale for hyper-

bolic temporal discounting (as in Eq. 13). However, let us now
ask a more general question: in principle, what kinds of temporal
discount functions could account for the data in Figure 3? For
example, could exponential discounting account for these data?

In general we can imagine discount functions in which ITI
combines additively with movement duration:

E�reward��,�� � aP�success���F�� � ��. (14)

Figure 5 illustrates the influence of ITI on movement duration under
a variety of temporal discount functions. Suppose that for some class
of movements the probability of success increases with movement
duration (i.e., the slower the movement, the more accurate), as dis-
played in Figure 5A. If the objective is to maximize rate of reward,
then time carries a specific cost in which the probability of success is
multiplicatively penalized by a hyperbolic temporal discount func-

tion: F�� � �� �
1

� � �
. Increasing the inter-movement interval �

shifts the temporal discount function to the left, altering its slope and
shifting the peak of the discounted reward function to long duration
movements. As a result, for hyperbolic discounting, an increase in
ITI reduces the vigor of movements.

Now instead consider exponential discounting: F(� � �) �
exp(	k(� � �)). If reward is discounted exponentially, changing � has
no effect on the optimal duration because it simply leads to an overall
scaling of the expected discounted reward (Fig. 5B). Therefore, the fact
that we observed changes in saccadic vigor due to changes in ITI rejects
the hypothesis that reward is discounted exponentially.

There are of course other plausible forms of temporal dis-
counting, such as exponentials with squared exponents F(� �
�) � exp(	k(� � �) 2). These forms imply that the cost of time is
fairly constant for short durations, but durations that are longer
carry increasingly greater cost. Such forms can also be dissociated
from hyperbolic discounting, as they predict a sensitivity to ITI
opposite that of hyperbolic discounting. In this case, an increase
in ITI leads to an increase in movement vigor (Fig. 5C), which is
inconsistent with our experimental results.

Therefore, the fact that we observed reduced saccadic vigor
with increased ITI implies that temporal discounting has a spe-
cific shape. What is the class of functions that in principle could
account for our data? The objective function to be maximized is

J��� � P�success���F�� � ��. (15)

Suppose that, for a given value of �, the optimal movement du-
ration is �1. This implies that the gradient of J at �1 is zero, i.e.,

�J

��
�

�1,�
� J� � P�F � PF� � 0. (16)

Suppose we now increase � to some new value. The resulting change
in the gradient J� at �1 reveals how the optimal duration will change.
If the gradient becomes positive, this means that the peak of J must
have shifted to a larger value of �. Likewise, a negative gradient im-
plies a decrease in the optimal duration. In other words, the opti-
mum movement duration will increase with inter-movement
interval if the gradient of J� with respect to � is positive:

�J�

��
� P�F� � PF�� � 0. (17)

We arrived at Equation 17 by noting that
�2F

����
�

�2F

��2 because �

and � appear additively in F, and that
�P

��
� 0 (because the

Figure 4. Control experiment. A, Experimental protocol. This experiment was similar to that shown in
Figure 3A, except that the previous target (current point of fixation) was not extinguished until after the
saccade to the next target had begun. In this way, subjects could linger on the current target as long as they
wanted.B,Changesinpeakvelocitywithrespecttothefirst10saccadesforeachITIblocktype(asinFig.3B).
C,Changesinsaccadeduration. D,Changesinreactiontime.ErrorbarsareSEM.
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probability of success for a given move-
ment duration is independent of the in-
tertrial interval). We can eliminate P from
Equation 17 by dividing through by P,
which is strictly positive, and substituting
P�

P
� �

F�

F
(which follows from Eq. 16).

If we further multiply through by F
(which is also strictly positive), we obtain
the following condition:

FF�� � �F��2. (18)

Importantly, this condition on the dis-
count function is independent of the
probability of success P and thus indepen-
dent of the particular plant model and
control policy we assume (since these will
affect P but not F). Any temporal discount
function F that satisfies Equation 18 will
lead to the prediction that movement du-
ration will increase (i.e., movement vigor
will decrease) as inter-movement interval
increases. For example, hyperbolic tem-
poral discount functions (Eq. 13) have the
property of Equation 18, as do sums of
exponentials. For exponential discount-
ing with linear exponents (Eq. 2) the left
and right hand sides of Equation 18 are
equal. For exponential discounting with
quadratic exponents (Fig. 5C), the in-
equality is reversed.

In summary, our experimental observations imply that con-
trol of saccades relies on a temporal discount function that satis-
fies Equation 18. The dependence of saccade vigor on intertrial
interval emerges naturally in this mathematical framework and is
unexplained by any previous model that we are aware of.

Discussion
We have proposed a new framework for control of movements.
Our theory is founded on the principle of rate of reward—an idea
that was previously invoked to explain aspects of decision-
making in primates (Gold and Shadlen, 2002) and response in-
tensities of rodents in free-operant tasks (Niv et al., 2007). We
have shown that a rate of reward principle not only provides an
explanation for vigor of saccades of varying amplitudes but also
generates the novel prediction that vigor should be modulated by
changes in ITI. This is in contrast to previous models which as-
sume that motor commands that guide a movement are indepen-
dent of movements that occurred previously. Our experiments
confirm our predictions with remarkable precision: as the ITI
changed, so did saccadic vigor. For example, we observed an
increase in saccade peak velocity of 9.0 � 0.9% (mean � SD),
compared with our theoretical prediction of 10%, and a decrease
of 	7.9 � 1.1%, compared with our theoretical prediction of
	5%. Changes in durations were in the predicted direction but
somewhat smaller in magnitude, particularly for decreases in ITI.
We are unaware of any previous motor control model that can
explain such changes.

Our idea that time carries a cost in control of movements may
explain a number of curious findings: (1) When a stimulus moves
toward the fovea, saccades take longer to initiate than when the
stimulus is moving away from the fovea (Segraves et al., 1987).

Thus, subjects are not willing to wait for the stimulus to reach the
fovea, highlight the idea that waiting even a few hundred milli-
seconds carries a cost. (2) An effective way to train monkeys to
slow down their reaching movements is to impose a time penalty
for overly fast movements (Churchland et al., 2006). The effec-
tiveness of such a training protocol clearly illustrates the impor-
tance of the cost of time and is easily explained through a rate of
reward framework, but is difficult to reconcile with models in
which only the duration of the current movement is important.
(3) The idea that changes in the available rate of reward can affect
movement vigor is supported by a study by Ljungberg et al.
(1992) who reported that in non-human primates, reaching
movements made to collect a food reward were significantly
slower when such rewards were available infrequently compared
with when they were available frequently. This result could be
considered analogous to our finding that increasing ITI decreases
the vigor of saccades.

A fundamental question in neuroscience is why movements
have characteristic kinematics. Why not move faster or slower?
To approach this problem, previous works have sought to mini-
mize weighted sums of rather ad hoc penalties for accuracy (qua-
dratic distance to target) or time (linear or hyperbolic). We have
suggested a different approach here: the decision regarding vigor
of a movement depends on the probability of success of that
movement multiplied by a function that represents temporal dis-
counting of the value of the reward associated with that move-
ment. These two approaches can in fact be related by applying a
logarithmic transformation to the discounted reward (Eq. 14).
This gives rise to an additive cost function that closely resembles
those used in previous theories (Shadmehr et al., 2010), but with
the quadratic accuracy term replaced by 	log(P[success��]) and
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� � �
. � is movement

duration, and � is inter-movement interval (here assumed to be 0.5 s). The blue line is the multiplication of probability of reward
with the temporal discount function (Eq. 1). The movement duration that maximizes the discounted reward is noted by the dashed
line. In this case, the discounted reward corresponds to reward rate. B, C, Top, Corresponding plots for an exponential discount
function with linear exponents exp(	k(� � �)), and an exponential discount function with squared exponents exp(	k(� �
�) 2). All discount functions are scaled to be equal 1 at 0.5 s and parameters for the exponential discount functions were adjusted
to predict the same optimal movement duration as rate of reward for � � 0.5 s. Bottom, The effect of increasing the inter-
movement interval � to 1 s. For hyperbolic discounting, as this delay is increased the optimum movement duration becomes
longer, i.e., the movement vigor decreases. For an exponential temporal discount function with linear exponents there is no change
in the optimum movement duration as inter-movement intervals are changed. For an exponential discount function with qua-
dratic exponents, movement duration decreases as the inter-movement interval increases.
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the time penalty term replaced by the logarithm of the discount
function. Notably, if the discount function is exponential, the
logarithmic transformation gives rise to a linear time cost. Thus
we can interpret previous models that have employed linear time
costs (Harris and Wolpert, 2006) as tacitly assuming an exponen-
tial discounting of reward.

One aspect of the data which we could not explain through
our model in its present form is the fact that saccade vigor tends
to decline over the course of a block, even if the intertrial interval
remains constant. This decline in vigor is not due to muscular
fatigue (Prsa et al., 2010), but instead is likely due to the fact that
repetition devalues the stimulus (Xu-Wilson et al., 2009). In
monkeys, saccades to targets that predict a juice reward are sig-
nificantly more vigorous than unrewarded targets (Takikawa et
al., 2002). Saccades that accompany reaching to a stimulus are
also more vigorous than saccades without the reach (Snyder et al.,
2002; van Donkelaar et al., 2004). An increased probability of
reward also increases the vigor of wrist movements made by
monkeys to acquire reward (Opris et al., 2011). Our previous
formulation (Shadmehr et al., 2010) was able to explain this de-
pendence of movement vigor on reward value by including an
effort penalty that was independent of reward value and a time
penalty that scaled with reward value. In our present formulation,
we did not include such an effort cost as we found that it was not
necessary to generate strong predictions about behavior in the
tasks we considered. Expanding our framework to include an
effort penalty in the net reward, before applying the temporal
discount factor, could enable us to explain these aspects of behav-
ior through the rate of reward framework.

In addition to changes in movement speed, we also observed
changes in reaction time. Although a low reaction time can be
associated with a general increase in vigor, a quantitative predic-
tion of this effect is beyond the scope of our model. One way in
which we might be able to account for such an effect would be to
view reaction time as a period in which a decision must be made
about the goal of the upcoming saccade. Computational models
have described such decision-making in terms of a stochastic
accumulation of evidence until a pre-determined threshold is
reached, at which point the decision is made and an action trig-
gered. Modulation of reaction time could therefore be inter-
preted as a change in the height of this threshold. It has been
suggested that the level of the threshold might itself be set based
on a rate of reward principle (Gold and Shadlen, 2002). Indeed,
experiments directly analogous to our own that vary ITI during
perceptual discrimination tasks find that decreases in ITI lead to
faster, less accurate decisions (Cisek et al., 2009; Simen et al.,
2009). Similarly, decreasing ITI causes monkeys to adopt a more
risky policy when gambling for a juice reward (Hayden and Platt,
2007).

In reinforcement learning, future rewards are typically dis-
counted exponentially, largely due to mathematical convenience.
Infinite horizon control problems, however, are commonly for-
mulated in terms of minimizing the average-cost per stage, ex-
actly analogous to the rate of reward cost function we proposed
here. The average cost per stage framework has been invoked to
model behavior when animals face a sequence of choices between
discrete actions (Daw, 2003). This idea has even been extended to
include a basic notion of movement vigor, thereby offering an
explanation for differences in the intensity of a rat’s free-operant
responses (such as lever press frequency) across different moti-
vational states (Niv et al., 2007). That work posited a conceptual
link between dopamine, rate of reward, and response vigor
through the idea that tonic activity of dopamine neurons encodes

the background average rate of reward. When rewards are plen-
tiful, it is worthwhile choosing the more costly (either energeti-
cally or in terms of risk) policy and acting more vigorously. In
Parkinson’s disease, reduced tonic dopamine leads to less vigor-
ous actions (Mazzoni et al., 2007), consistent with the idea that
tonic dopamine encodes a rate of reward. Phasic activity of do-
pamine neurons may also be linked to rate of reward. Stimuli that
predict reward at various delays elicit phasic responses in dopa-
mine neurons that decline hyperbolically with the delay duration
(Kobayashi and Schultz, 2008). Phasic dopamine activity may
thus reflect a reward rate prediction error, rather than an error in
total predicted reward.

If we view ITI as a factor that alters rate of reward, then a
sudden change in ITI introduces a reward rate prediction error.
When ITI is reduced, the prediction error is positive, implying
that the brain is receiving a greater amount of reward than antic-
ipated. Similarly, when ITI is increased, the prediction error is
negative. We consistently observed that the change in vigor was
faster when the prediction error was positive compared with neg-
ative. This implies that there may be a differential sensitivity to
positive and negative reward prediction errors in the population
we sampled—an idea that is consistent with basal ganglia neuro-
physiology (Maia and Frank, 2011). Viewed in this way, our ex-
periment may provide a way to assess reward-dependent
learning—namely, monitoring changes in behavior in response
to altered rate of reward.

The fact that a single optimization principle seems to be
shared by such a broad variety of tasks suggests that it may offer a
unifying normative view of temporal discounting in decision-
making and motor control. In effect, the long term behavioral
goal of reward rate optimization is achieved through the short-
term mechanism of temporal discounting. Hyperbolic discount-
ing of reward may therefore be an obligatory phenomenon that
has evolved because it tends to optimize reward rate in most
ecologically relevant scenarios.
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