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Abstract
Disease states characterized by airway fluid occlusion and pulmonary surfactant insufficiency,
such as respiratory distress syndrome, have a high mortality rate. Understanding the mechanics of
airway reopening, particularly involving surfactant transport, may provide an avenue to increase
patient survival via optimized mechanical ventilation waveforms. We model the occluded airway
as a liquid-filled rigid tube with the fluid phase displaced by a finger of air that propagates with
both mean and sinusoidal velocity components. Finite-time Lyapunov exponent (FTLE) fields are
employed to analyse the convective transport characteristics, taking note of Lagrangian coherent
structures (LCSs) and their effects on transport. The Lagrangian perspective of these techniques
reveals flow characteristics that are not readily apparent by observing Eulerian measures. These
analysis techniques are applied to surfactant-free velocity fields determined computationally, with
the boundary element method, and measured experimentally with micro particle image
velocimetry (μ-PIV). We find that the LCS divides the fluid into two regimes, one advected
upstream (into the thin residual film) and the other downstream ahead of the advancing bubble. At
higher oscillatory frequencies particles originating immediately inside the LCS experience long
residence times at the air–liquid interface, which may be conducive to surfactant transport. At high
frequencies a well-mixed attractor region is identified; this volume of fluid cyclically travels along
the interface and into the bulk fluid. The Lagrangian analysis is applied to velocity data measured
with 0.01 mg ml−1 of the clinical pulmonary surfactant Infasurf in the bulk fluid, demonstrating
flow field modifications with respect to the surfactant-free system that were not visible in the
Eulerian frame.
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1. Introduction
Pulmonary surfactant is a surface-active compound comprising lipids and proteins that is
incorporated in the lining fluid that coats the alveoli and bronchioles in the lower respiratory
tract. Surfactant is produced by the cells lining the alveoli and functions to prevent
atelectasis and atelectrauma by dynamically reducing surface tension in the lungs (Grotberg
2001). Pulmonary surfactant deficiency is a hallmark of respiratory distress syndrome
(RDS) and acute lung injury (ALI), diseases that are further characterized by the closure and
fluid occlusion of pulmonary airways. Mechanical ventilation and treatment strategies such
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as surfactant replacement therapy (SRT) must be administered to restore airway patency.
Unfortunately, these lifesaving treatments carry the risk of ventilator-induced lung injury
(VILI). According to Rubenfeld et al. (2005), 74 500 persons die of acute lung injury in the
USA each year, a figure comparable to the number of adult deaths attributed to breast cancer
or human immunodeficiency virus disease in 1999. At the same time, 57% of patients
survive acute lung injury each year (Zambon & Vincent 2008), many of whom require care
for cognitive abnormalities, weakness, depression, or post-traumatic stress disorder.
Mechanical stresses at the airway wall, due to migrating air–liquid interfaces, play an
important role in airway damage during RDS, ALI, and VILI (Matthay et al. 2002).

The mechanics of single-airway reopening have been modelled by the propagation of a
semi-infinite bubble through a fluid-occluded flexible tube (Gaver, Samsel & Solway 1990)
or channel (Gaver et al. 1996; Jensen et al. 2002; Halpern et al. 2005). However, airway
reopening phenomena may also be explored in rigid geometries (Halpern & Gaver 1994;
Zimmer, Williams & Gaver 2005; Smith & Gaver 2008). The rigid-wall assumption allows
utilization of previous studies of semi-infinite bubble propagation, including Bretherton
(1961) , Shen & Udell (1985), Lu & Chang (1988) and Heil (2001).

In vitro experiments and computations presented in Bilek, Dee & Gaver (2003) and Kay et
al. (2004) demonstrate that the pressure gradient near the bubble tip sweeps across the
epithelial layer and is instrumental to its damage. Bilek et al. (2003) showed that the
exogenously delivered clinical pulmonary surfactant Infasurf (ONY Inc., Amherst NY)
reduces airway epithelial cell damage during steady airway reopening. More advanced
models of airway reopening have explored physicochemical characteristics including the
time-dependent damaging mechanical stresses during pulsatile flow (Smith & Gaver 2008)
or the effects of surfactant on the flow field (Ghadiali, Halpern & Gaver 2001; Ghadiali &
Gaver 2003; Naire & Jensen 2005). These studies show that surfactant uptake at the
migrating air–liquid interface is instrumental in reducing the magnitude of the pressure
gradient that can lead to cell damage in atelectrauma. However, transport limitations in
steady flow can significantly reduce the efficacy of surfactant delivery (Ghadiali & Gaver
2000). Furthermore, delivery of exogenous surfactant to the deep lung is difficult; therefore,
it is advantageous to utilize existing low concentrations of endogenous surfactant through a
novel engineered ventilation waveform.

Surfactant transport is a multi-step process that depends upon convection and diffusion in
the liquid phase, and sorption to and from the air–liquid interface (Stebe & Barthes-Biesel
1995; Yap & Gaver 1998; Ghadiali & Gaver 2003). As discussed in § 7, in airway reopening
the Péclet number describing the relationship between convective and diffusive transport is
extremely large; therefore, convection is the dominant transport process in the bulk fluid.
Unfortunately, the instantaneous Eulerian velocity profiles computed in prior investigations
do not fully clarify the time-dependent convective transport properties of the flow.

The goal of the current study is to develop and use Lagrangian methods to elucidate
convective transport properties that are fundamental to surfactant transport. This will help to
develop insight into the trajectories that surfactant molecules will follow as they migrate to
the air–liquid interface, from which the adsorption process is a critical step. In this
investigation we study pulsatile airway reopening and seek to identify coherent structures
that may be exploited to improve mechanical ventilation strategies. These strategies may
enhance surfactant transport from the bulk to the interface, thereby reducing the damaging
mechanical stresses and stress gradients at the wall. We first consider finite-time Lyapunov
exponent (FTLE) fields and Lagrangian coherent structures (LCSs) computed from
boundary element method (BEM) velocity fields to identify transport processes and validate
our experimental results under surfactant-free conditions. This helps to demonstrate the
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existence of convective flows that can be used to distribute surfactant near a bubble tip.
These Lagrangian techniques are then extended to velocity distributions measured with
micro-particle image velocimetry (μ-PIV) to investigate transport modifications in a
surfactant-doped solution using the clinical pulmonary surfactant Infasurf (ONY Inc.,
Amherst NY) during pulsatile bubble motion. We hypothesize that pulsatile flow conditions
will modify surfactant transport and enhance adsorption to the interface, thereby reducing
damaging stresses on the airway wall.

2. Analytic methods
2.1. Flow field simulation

In this section, we review the model of Smith & Gaver (2008), which computes the fluid
velocity field during pulsatile semi-infinite bubble propagation. These simulations are used
to establish the convective transport behaviour in an idealized system. This provides the
foundation for the subsequent analysis of transport processes observed experimentally with
and without pulmonary surfactant. The boundary velocities and stresses are first computed
with the BEM and a subsequent algorithm is used to determine the Lagrangian particle
trajectories and the FTLE field.

The system is modelled using the BEM coupled to a lubrication theory approximation in the
upstream film region, as shown in figure 1, with the equations formulated in cylindrical
coordinates. The liquid occlusion is assumed to be surfactant-free; the fluid viscosity μ and
surface tension γ are held constant.

We scale the governing equations as in Smith & Gaver (2008) using the following scales:

(2.1)

Using these scales, the dimensionless flow field is governed by the capillary number Ca =
μQ*(t*)/πR2γ, which represents the relationship between viscous and surface-tension-
induced forces and is defined by the dimensional flow rate Q* and tube radius R. Pulsatility
is imposed by the unsteady capillary number

(2.2)

which comprises mean (CaM) and oscillatory (CaΩ) components. The system is further
parametrized by the dimensionless driving frequency Ω = μωR/γ, which represents the
balance between the dimensional frequency ω and the interfacial relaxation time scale, and
the oscillatory amplitude A = 2CaΩ/Ω, which describes the dimensionless oscillatory stroke
length.

The flow field is described by the dimensionless Stokes equations (2.2) and the continuity
(equation 2.3):

(2.3)

(2.4)

for the fluid velocity u(x, t) and the pressure P(x, t). The governing equations and boundary
conditions are posed in the laboratory frame of reference. Since simulation in this frame
would result in an extremely long domain when solved over a long period of time, the
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solution is kinematically translated to the bubble tip frame of reference as described by
Smith & Gaver (2008).

The axisymmetric domain (figure 1) includes the downstream surface where a time-
dependent flow rate is imposed, the tube walls (no-slip and no penetration condition), and
the interfacial surface (stress condition). The air–liquid interface is a free surface; as such
the geometry is computed as part of the solution process. This time-dependent domain is
used as a guide for seeding a uniform grid of particles to compute the FTLE at a given initial
time.

2.2. Convective transport analysis overview
If the mean capillary number dominates (CaM > CaΩ) the system is approximated by steady-
state behaviour, as discussed in the context of the normal stress gradient by Smith & Gaver
(2008). Interesting dynamics occur when CaΩ > CaM, resulting in retrograde bubble motion
(reverse flow). Instantaneous streamlines (figure 2) for the ‘case III’ parameters in table 1
demonstrate converging (+) and diverging (−) stagnation points that move along the air–
liquid interface tip as a function of time.

However, for unsteady flow, frozen snapshots in time are not adequate to fully describe
Lagrangian transport properties (Mancho & Wiggins 2006). The analysis techniques
presented in the current study integrate the effects of the temporally and spatially dependent
velocity field to describe convective transport as the system evolves through time. Time-
periodic velocity fields have traditionally been explored with Poincaré sections (Ottino
1989). This technique provides geometric information about the flow for a given set of
initial conditions, and may also be applied to quasi-periodic and chaotic trajectories.
Poincaré maps also reduce the dimensionality of the system because the time-dependent
velocity field is converted into a map that yields a discrete dynamical system. In other
words, rather than studying a tracer particle trajectory as a curve in space as time progresses,
a periodic particle trajectory may be viewed as a discrete set of points. As such, we use this
approach to analyse the high-frequency behaviour of the computational model in §§ 4.3 and
4.4.

In addition to Poincaré sections, we employ FTLE analysis. This technique has previously
been employed to study periodic, pulsatile blood flow in the carotid artery by Shadden &
Taylor (2008). That study identified Lagrangian coherent structures that characterize
underlying transport structures in turbulent flow, such as vortices that occur in the presence
of an aneurysm. In the current study, identifying an LCS in the bubble tip region allows us
to investigate the Lagrangian transport properties of the fluid and identify flow regimes that
may improve surfactant transport.

2.3. Lagrangian coherent structures
We define a coherent structure as one that is present in flow for long time periods. In steady
flows, this corresponds to stable and unstable manifolds that act as separatrices, or
boundaries, that separate regions of qualitatively different flow. Haller, in a series of papers
(Haller & Poje 1998; Haller 1999, 2001a,b, 2002), investigated the notion of time-
independent and finite-time hyperbolic trajectories, which are individual trajectories to
which other trajectories are either attracted to or repelled from over a prescribed time
interval. In unsteady flows, these are referred to as Lagrangian coherent structures (LCSs).

In the current study we construct FTLE fields from both computed and measured Eulerian
velocity distributions in order to locate Lagrangian coherent structures. Over a prescribed
time interval, the FTLE field gives a scalar measure of the average amount of stretching of
initially nearby trajectories from each initial condition (Shadden, Dabiri & Marsden 2006).
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Shadden, Lekien & Marsden (2005) defines LCSs as manifolds that locally maximize the
scalar field, and they develop a flux estimate showing that LCSs converge to material lines
for long integration times. It is also important to note that finite-time hyperbolicity
properties may change depending on the choice of time interval (Mancho & Wiggins 2006).

2.4. Finite-time Lyapunov exponent fields
Identifying hyperbolic trajectories by computing Lyapunov exponents over a finite-time
interval reveals the time-average maximal and minimum stretching between initially
adjacent fluid markers (‘particles’) over the fixed interval of time. By plotting these
maximal strains as a scalar field, hyperbolic trajectories may be detected.

To compute the FTLE a regular grid of particles is defined at time t = t0 and the Lagrangian
trajectory of each particle from the initial position x0 may be constructed by solving the
initial value problem:

(2.5a)

(2.5b)

This describes the relationship of the Eulerian fluid velocity field u to the flow map

(2.6)

that describes the position of the particle after an integration time TI. As in Shadden et al.
(2005), we define the finite-time version of the right Cauchy–Green deformation tensor

(2.7)

where J is the Jacobian matrix and superscript T indicates the transpose. The FTLE field is
then defined by

(2.8)

where λmax(Δ(x) is the maximum eigenvalue of the symmetric matrix Δ(x), and designates
the maximal divergence of fluid particles near x over the integration time TI. Haber et al.
(2000) present a mathematically similar technique in their investigation of the transport
properties of inhaled particulates, considering Lagrangian stretching as suggested by Ottino
(1989). The rate of strain tensor for the displacement of a single particle over an entire
breathing cycle is analysed, instead of the instantaneous velocity rate of strain.

The computed FTLE value (σ) is referred to as a ‘forward-time’ FTLE if TI > 0 (figure 3a).
Here, the maximal ridges in the FTLE field define the location of the repelling LCSs, which
corresponds to the most rapid deviation of trajectories between particles that were adjacent
at time t0. Therefore, the repelling LCSs represent unstable manifolds and repel trajectories.
Particles cannot cross the repelling LCSs. In steady bubble propagation, the repelling LCS
intersects the air–liquid interface at the diverging stagnation point.

In contrast, the ‘backward-time’ FTLE (figure 3b) is computed using tracer particle
trajectories for negative integration times (TI < 0). This reveals the location at which the
particles must have been previously located in order to convect to the regular grid positions
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defined at time t0. Therefore, the attracting LCSs define attracting manifolds. During steady
propagation the attracting LCS intersects the interface at the converging stagnation point.
The forward- and backward-time FTLEs are overlaid, as shown in figure 3(c), to investigate
the spatial relationship between these two coherent structures.

3. Methodology – simulated flow field
Extending the work of Smith & Gaver (2008) we couple the fluid model with particle
integration techniques in order to compute fluid trajectories; a schematic of the algorithm is
shown in figure 4. We first solve for the boundary velocities u(r, z) and stresses τ(r, z) at
144 time steps in the oscillatory cycle. For each starting time t0 we seed a regular grid of
particles within the domain, removing points that fall in the air phase.

To evaluate the flow map ϕ, which describes the translation of a fluid particle x(t0) at time t0
to its later position x(t0 + TI) at time t0 + TI, we compute the Lagrangian displacement
following (2.4). To advance the particles to the next time step (tn) we first read the boundary
velocities u(r, z, tn) and stresses τ(r, z, tn) from files; this information is used to evaluate the
particle velocity as described in § 3.1. A fourth-order Runge–Kutta (RK4) integrator is used

to advance the positions of the particles  and the FTLE field is computed as
described in § 2.4.

3.1. Computing velocity data
The boundary element method is used to solve the Stokes equations and determine the stress
and velocity distribution at the domain boundaries. The flow is allowed to develop to a
stationary state (Smith & Gaver 2008) and the boundary data for a single oscillation is
stored. This information is then used to compute the velocity for each particle. For a point x0
in the flow domain יה , the internal velocity may be computed exactly by the integral
equation (Pozrikidis 1992):

(3.1)

where f = τ • n is the traction on the boundary, and the tensors S and T are the free-space
fundamental solutions for velocity and stress for Stokes flow, respectively. At the air–liquid
interface f = κγn, with κ describing the interfacial curvature.

The accuracy of the BEM implementation used in the present study is well established. This
includes our studies of the steady propagation of a semi-infinite bubble in a channel, with
direct comparisons to analytical solutions (Park & Homsy 1984) under low-Ca conditions,
and finite difference simulations for larger Ca (Reinelt & Saffman 1985). Unsteady flows
have been validated in Zimmer et al. (2005) and most importantly in Smith & Gaver (2008),
which provides the time-dependent Eulerian velocity fields used for the present study. These
BEM simulations are executed until stationary state occurs, which is established when the
bubble tip curvature, velocity, and pressure drop differ from the previous cycle by < 5 ×
10−8.

We use (3.1) to compute the solution for the velocity at any point in the domain, using the
boundary velocities and stresses computed over one period in our preprocessing. To evaluate
the velocity of our fluid markers, we use Gaussian elimination with an adaptive quadrature,
which we discuss in greater detail below. Singularities exist in the integrands of (3.1) near
the boundaries of the domain; to overcome this difficulty we compute the velocity at a safe
distance (described below) from the boundary and use the known boundary velocity to
interpolate values in the singular region. The distance from the boundary at which
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interpolation is necessary is determined by comparing the computed velocity to the known
downstream velocity, as discussed below.

3.2. Implementation
FTLE simulation requires tracking of the trajectory of many particles (> 50 000) by
integrating the time-dependent particle velocity over 2–20 periods of oscillation, depending
on the time scales of the particular parameters in question. Furthermore, the choice of initial
condition strongly influences the behaviour of the LCSs, necessitating evaluation of many
starting times. Because of this tremendous computational expense we employ an adaptive
quadrature to reduce run-times while increasing the error in the computed particle velocities
by less than 1 × 10−6. The improvement in computational efficiency afforded by this
procedure was substantial; for 56 606 particles running on 160 threads the adaptive
quadrature provides a 69% reduction in the run-time for a single time step, from 26.5 to 8.2
s.

Figure 5 shows a schematic of the adaptive quadrature employed in the BEM velocity
evaluations. Inside the BEM domain and far from the boundaries (d > d10 = 0.1), a 10-point
Gaussian quadrature is sufficient (figure 5, light grey). Closer to the domain boundaries (d10
⩾ d > d100 = 0.0075), a 100-point quadrature is employed, shown in dark grey. Immediately
adjacent to the boundary (d < d100 = 0.0075), where the integrand of (3.1) is singular,
bilinear interpolation is employed to determine the velocity. The locations of the quadrature
transitions (d10, d100) are determined by computing the error in the downstream region,
where the solution is known. These bounds were established at the distance where the error
between the BEM and known values is ε < 1 × 10−6; we refer to this as a ‘safe’ distance
from the boundary.

3.3. Computation of the FTLE field
Following determination of the final positions x(t0 + T) of each particle we compute the

spatial gradient of the flow map  via second-order central differencing. In the
case of particles along the boundaries a one-sided second-order finite difference is used.
This result is used to evaluate the Cauchy–Green deformation tensor from (2.6). Once the
gradient of the flow map is computed, as in Shadden et al. (2005), we obtain the FTLE field
by direct evaluation of (2.7). Here, a two-dimensional formulation is appropriate because the
velocity field is radially symmetric about the tube centreline.

4. Analysis of the simulated flow field surrounding a pulsatile finger of air
We compute the FTLE fields using the algorithm outlined in figure 4, considering the three
computational cases described in table 1. These are as follows.

Case I: low A, high Ω. Particles are initialized on a 700 × 100 grid on (z, r) ∈ [−2, 5] ×
[0, 1], with approximately 53 000 particles in the domain.

Case II: high A, low Ω. Particles are initialized on a 1400 × 100 grid on (z, r) ∈ [−5, 9]
× [0, 1] with approximately 97 000 total markers.

Case III: high A, high Ω. Particles are initially seeded on a 1000 × 100 grid on (z. r) ∈
[−5, 5] × [0, 1] with approximately 60 000 particles.

In all three cases the spatial mesh size is h = 0.01 and the time step Δt is 1/72 period. The
BEM domain for all runs consists of 211 total boundary points: 15 downstream, 60 on the
upper wall, 6 on the upstream BEM/LUBE boundary, and 130 on the air–liquid interface.
The lubrication (LUBE) region contains 100 points.
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The integration times TI vary depending on the oscillation frequency of each case; therefore,
TI is chosen to coincide with the time scales of the problem. We select TI to be sufficiently
large to allow the tracer particles advect far into the upstream (thin film) or downstream
regions of the domain. In cases I and III (Ω = 0.04) the integration time TI = 20T (20
periods), because the flow patterns in these cases require a greater number of oscillations to
advect the tracer particles away from the bubble tip region where the FTLE is computed.
However, at low frequency (Ω = 0.01), the particles are swept quickly from the tip region
and the integration time is only TI = 3T (3 periods). The experimental data are recorded at
extremely low frequencies (Ω < 1.5 × 10−4); in these cases (IV–V) we use TI = 2T. This
provides an adequate integration duration to visualize the convective transport properties of
the field.

For all of our FTLE computations we investigate a range of starting times t0. Since the
unsteady capillary number Ca(t) = CaM + CaΩ sin(Ωt) is sinusoidal, we study initial starting
times with respect to different portions of the pulsatile cycle. The unsteady capillary
numbers for the computational cases are illustrated in figure 6 with letters A–L demarcating
initial times t0 that are explored in more detail below.

4.1. Case I: low amplitude, high frequency (CaΩ = 0.02, A = 1, Ω = 0.04)
In figure 7(a) we provide a four-panel description of the FTLE field and LCS for the low-
amplitude case I (A = 1, Ω = 0.04), with particle positions and pathlines in the
neighbourhood of the LCS. The LCS extends from the interface into the bulk fluid, which is
visible as a red (high-value) codimension-one manifold (line) denoting the boundary
between two regions of qualitatively different flow. In steady flows the location of the LCS
would be identical to that of the stagnation streamline, and would terminate at the diverging
stagnation point. However, in unsteady flows the LCS may not correspond to the average
stagnation streamline due to temporal effects. Because we focus on the behaviour of the
maximal-value region that defines the LCS, all FTLE fields presented herein are scaled on a
range 0 to 1 to facilitate comparison between cases.

We track the motion of virtual fluid markers (particles) in order to elucidate the Lagrangian
motion of fluid in the vicinity of the LCS. We refer to particles positioned at a greater radius
than the LCS as ‘outside’, and those closer to the tube centreline as ‘inside’ (figure 7a,i). To
simplify the presentation, we exploit symmetry to demonstrate the particles inside the LCS
on the top half (black particles, white pathlines), and particles initialized outside the LCS are
shown in the lower half (white particles, black pathlines).

Figure 7(a,ii–iv) clearly demonstrates the importance of the LCS and shows the extreme
sensitivity of the particle trajectories to the initial seeding positions. As such, the LCS
divides the flow field into distinctly separate regions, with the fluid outside the LCS
advecting into the residual film and fluid inside the LCS advecting downstream into the bulk
fluid. In this low-A case, the intersection point of the LCS at the air–liquid interface remains
relatively constant. As such, particles that advect downstream do not enter the thin-film
region upstream of the bubble tip and are exposed to only a short section of air–liquid
interface between the LCS and the tube centreline.

4.2. Case II: high amplitude, low frequency (CaΩ = 0.025, A = 5, Ω = 0.01)
In contrast to the low-A scenario, the high-amplitude cases (II and III) exhibit a region
where fluid particles are periodically advected between the thin-film region and the bulk
fluid ahead of the advancing interface. For this reason, particles in this region are exposed to
a significant portion of air–liquid interface between the LCS and the tube centreline. To
elucidate the dynamics responsible for this oscillatory trajectory for case II, we choose our
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initial seeding at time F (figure 6) and initialize particles in the ‘hook’-shaped region of the
LCS, as shown in the black box in figure 7(b,i). Tracer locations and pathlines following a
half-period of convection (TI = 0.5) are illustrated in figure 7(b,ii), showing the white
recirculatory particle path upstream along the bubble interface that subsequently returns to
locations near the starting position. These particles are next advected downstream as
demonstrated in figure 7(b,iii), which shows the pathlines from 0.5T < t ⩽ 1.0T. This
simulation shows that these particles spend approximately one full period immediately
adjacent to the interface before they are ejected ahead of the advancing bubble. This
extended exposure to the free surface could enhance pulmonary surfactant transport along
the interface in comparison to steady flow with the same mean velocity.

4.3. Case III: high amplitude, high frequency (CaΩ = 0.1, A = 5, Ω = 0.04)
As the frequency is increased (Ω = 0.04) we observe an increase in the complexity of the
flow field. For example, an increase in Ω increases the magnitude of the hook-shaped region
of the LCS that was shown in figure 7(b,i). This structure now extends much further into the
thin-film region. Figure 8(a) shows that the particles oscillate in the vicinity of the bubble tip
for seven cycles, yielding surprising Lagrangian convection patterns that are revealed
through Poincaré sections. Below we demonstrate that the dynamic flow field results in a
time-periodic expulsion of groups of fluid particles from the interfacial region into the bulk,
hereafter referred to as an ‘ejection loop’, as shown in figure 8, and related to the
downstream pathlines shown in figure 7(b,iii). In addition the periodic particle trajectories
shown in figure 10 demonstrate time-dependent attractor regions that collect and dispense
particles according to the phase of the flow.

4.3.1. Ejection loop—As described above, as Ω is increased the oscillatory trajectory
behaviour of particles near the interface becomes more prominent. The hook region of the
LCS encompassing these points, shown for case II in figure 7(b,i), expands upstream into
the thin-film region for case III as shown in red in figure 8(b) at time E. To explore this
phenomenon we consider Poincaré sections for a single particle as depicted in figure 8(a),
which overlays the backward-time FTLE field. In each panel of figure 8(a) the backward-
time FTLE field is computed at a starting time t0 associated with the time A (top) or G
(bottom) and the integration time TI = −20T. The tracer particle originates at TI = 0
immediately inside the repelling LCS. The subsequent position of the particle over 12
periods is tracked. Near the onset of retrograde bubble motion (figure 8a, time G) a volume
of fluid containing the particle is drawn into the thin-film region. As the bubble resumes
forward motion, the particle convects into the bulk fluid downstream of the tip (figure 8a,
time A). This behaviour occurs for 7 oscillations, and for clarity the particle is shown in
magenta during this stage.

We observe a notable Lagrangian characteristic through this analysis. Once per cycle a
volume of fluid is ‘pinched off’ and expelled ahead of the bubble tip, never to return to the
air–liquid interface. This portion of fluid is surrounded by an attracting manifold (the
attracting LCS, determined from the backward-time FTLE), and is labelled as the ‘ejection
loop’ in figure 8(a), time A.

To further explore particle ejection from the bubble tip we overlay the forward- and
backward-time FTLE fields as well as the positions of 4 tracer particles, initialized at time
A. These particles are followed as they advect forward in time (figure 8b). In each panel of
figure 8(b) the FTLE integration starting time t0 is associated with the time A–K and the
integration time TI = 20T (forward-time FTLE) and TI = −20T (backward-time FTLE). The
repelling LCS (determined from the forward-time FTLE) is represented in red while the
reverse-time LCS (attracting manifold) is shown in dark green. Forward, backward, and
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overlaid FTLE fields for time A are shown in figure 9, figure 8(a), and figure 8(b)
respectively. At time A one ejection loop contains a black square tracer that will separate
from the interface in subsequent time steps. As the oscillation continues to the maximum
velocity (time D), a second ejection loop (red circular tracer) forms at the bubble tip when
the attracting LCS and an attractor move to intersect the interface. This protruding attracting
LCS, which terminates in the attractor region, is termed the ‘ejection proboscis’ (figure 8b,
times D and K). At the maximum reverse velocity (time J) the attractor region and the
attached attracting LCS and migrate away from the bubble tip to form a new ejection
proboscis. This structure then expands into the fluid as the bubble once again resumes
forward motion (times K–C), only to pinch back to the interface to create another ejection
loop that is subsequently expelled downstream. The volume of the ejection loop is a measure
of volume of material that is temporarily cycled along the air–liquid interface during
pulsatile bubble propagation.

Large values of the backward-time FTLE field, which define the attracting LCSs, occur
because particles must be originally located much further apart than the initial grid spacing
and then advect forward in time to the location where the FTLE is computed. This behaviour
is demonstrated in figure 9, which shows the backward-time FTLE field at time A and the
trajectories of two particles (red and white) that are initially seeded far apart in the
downstream region. As the particles are advected forward in time the red particle with the
blue pathline travels into the thin-film region before it is ejected from the bubble tip; this
behaviour corresponds to figure 8(a). In contrast, the white particle with a black pathline
does not enter the thin-film region. Because of the difference in trajectories, these two
particles that are initially seeded far apart in the downstream are brought close together. It is
this behaviour that is responsible for the maximal ridge in the FTLE field (LCS) denoted a
in figure 9.

4.4. Attractor region
For case III (high A and high Ω) the backward-time FTLE fields (figure 10, time D) indicate
an attractor region that develops inside the LCS that is not present in case II. The particle
behaviour in this area is similar to that in the hook region of case II, wherein the tracers
migrate along the interface in the thin film and are then swept downstream of the bubble tip.
However, in this high-Ω scenario an attractor region exists where particles enter and remain
trapped near the interface for the duration of the simulation (20 periods).

In order to investigate particle trapping we compute the Poincaré maps for different phases
in the pulsatile period. For three times A, D and G we plot the positions of two particles at
each period for 20 periods in figure 10. The particles are initialized at the locations
demarcated by the larger symbols at time A and are then advected for 20 periods. At time A
the particles are located downstream of the bubble and inside the repelling LCS (black line).
At the maximum of the sinusoidal velocity curve (time D), the tracers gather in the attractor
region near the interface. At time G the points are then pushed upstream along the interface
and into the thin-film region. This demonstrates cyclic behaviour of tracers in a region that
translates with the migrating bubble tip. From this analysis it is observed that these particles
are repetitively drawn into the attractor region shown in figure 10 at time D. Further
inspection of the Poincaré sections shows apparently chaotic behaviour in this region – a
tracer will return to different locations within the attractor at time D in subsequent cycles.
This indicates that we have identified a fluid mixing region near the bubble interface.

5. Methods – experimental data
We next consider the FTLE computed from velocity data measured experimentally with
micro-particle image velocimetry (μ-PIV). This permits the validation of methods described
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above and provides an avenue to explore the effect of pulmonary surfactant physicochemical
interactions.

Particle image velocimetry (PIV) is a well-established technique for investigating the
hydrodynamic properties of macro- and micro-scale flows (Adrian 2005). This technique
uses a precisely timed pulsed light source to illuminate and record the position of fluorescent
particles in two separate images at known times. The particle displacement is then estimated
statistically by correlating the particle pairs (Adrian 1991). In μ-PIV volumetric laser
illumination is used: the shallow focal depth of the microscope objective lens yields a
pseudo-two-dimensional plane of focused particles for correlation (Santiago et al. 1998).
The pulsatile bubble propagation velocity fields analysed herein are measured with the μ-
PIV techniques described extensively in Yamaguchi, Smith & Gaver (2009), and post-
processed as described in Smith, Yamaguchi & Gaver (2010).

Because of experimental considerations, the data are available on a 73 × 47 grid over (z, r) ∈
[−284 µm, 568 µm] × [−272 µm, 272 µm] for case IV (pure water) and a 58 × 37 grid over
(z, r) ∈ [−281 µm, 562 µm] × [−266 µm, 266 µm] for case V (0.01 mg ml−1 Infasurf). There
are fewer interrogated vectors in the Infasurf measurements (case V) because the increased
opacity of the solution necessitates a decreased particle concentration. This, in turn, yields
fewer vectors in the interrogation. Nevertheless, the Infasurf measurements provide a
detailed description of the flow field that allows for Lagrangian analysis.

5.1. Pre-processing
To compute the FTLE field we must numerically determine a flow map from the measured
data (§ 2.4) by integrating particle positions through time, a summary of the algorithm is
depicted in figure 11. The ensemble-averaged velocity (μ-PIV) and bubble shape
(shadowgraphy) are measured at 24 points in the oscillatory cycle; further temporal
refinement is not experimentally tractable. To decrease the integration time steps we
interpolate with quintic smoothing splines to create a total of 96 time-points, making use of
the temporal periodicity to interpolate points at the beginning and end of the cycle. This
yields an integration time step of 1/48 of the period with fourth-order Runge–Kutta.

The MATLAB smoothing spline spaps (MathWorks) is used to calculate the smoothest
function f that lies within a tolerance Emax of the data points (Reinsch 1967). The distance of
the spline from the unsmoothed data is defined by

(5.1)

where t is time, y is the measured velocity (in the r or z direction), and w(j) is the weight of a
specific data point. Smoothness is enforced by minimizing the roughness measure,

(5.2)

with D3f representing the third derivative of the interpolating function f. The spline f is the
unique minimizer of ρE(f ) + F(D3f ), with ρ chosen so that E(f ) = Emax. In the current
study, we employ Emax = 0.5 to interpolate the velocities and bubble shapes. To account for
grid points that are temporarily located in the air-phase for a portion of the cycle, we set the
weight w(j) = 0 when the point is in the air phase and w(j) = 1 when the point resides in the
fluid domain, effectively ignoring time-points in the air phase. The smoothing properties of
the spline serve to reduce the effects of noise in the experimental data without requiring
knowledge of the form of the velocity–time relationship.

Smith et al. Page 11

J Fluid Mech. Author manuscript; available in PMC 2012 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5.2. Flow map
As with the BEM analysis, we compute the flow map by integrating with a fourth order
Runge–Kutta method. Tracer particles are initialized on a 500 × 250 grid on (z/R, r/R) ∈
[−2, 2] × [−1, 1], with approximately 65 000 particles in the domain fluid domain and a grid
spacing h/R = 0.008, compared with h/R = 0.01 for the BEM. However, since the
experimental data do not provide an avenue to evaluate the velocities directly at all locations
in space, it is necessary to spatially interpolate the discrete velocity data at each time-point.
Although the μ-PIV velocities are interrogated on a regular grid, our current experimental
configuration does not measure velocities in the air phase. Therefore, interpolation
techniques that necessitate a regular grid provide erroneous results near the air–liquid
interface as information in this region is unavailable. To overcome this difficulty, we
compute the Delaunay triangulation of the points in the liquid phase and employ linear
interpolation to determine the velocity using the MATLAB intrinsic function
TriScatteredInterp.

6. Analysis of experimental data
Figure 12 compares the predictions of Lagrangian transport properties from computational
simulations (figure 12a,b) and estimates that are based upon experimental velocity field
measurements in surfactant-free (figure 12c,d) and surfactant-doped (figure 12e,f)
conditions. Table 1 gives the values of the relevant non-dimensional parameters. For the
experimental data (cases IV–V) we use an integration time span of TI = 2T, and for the
computational data (case II) we use an integration time span of TI = 3T, making note of the
faster time scales in the experimental cases. The qualitative differences of the centreline
FTLE field between theory and experiments are due to velocity field noise in our
experimental data. This results from the fact that measurements from this region must be
taken through a larger volume of fluid in the cylindrical tube geometry. In addition, errors
exist in the interpolation of velocities immediately adjacent to the bubble tip because we
cannot precisely measure the interfacial velocity.

6.1. Surfactant-free behaviour
Comparing figure 12(a,b) (computational data) with figure 12(c,d) (experimental data)
demonstrates the excellent agreement between the forward-time FTLE fields in the
surfactant-free experimental (μ-PIV) and computational (BEM) cases. Note that because the
experiments are conducted at significantly lower Ca than the BEM computations, and
therefore deposit less residual fluid following bubble passage, the experimentally
determined LCS intersects the bubble tip closer to the tube wall (figure 12c). Nevertheless,
in both cases the LCS denotes the boundary separating regions where particles are advected
either upstream (into the thin film), or downstream from the bubble tip. This behaviour is
demonstrated by the BEM particle trajectories in figure 12(a). The red particle (lower half of
domain) is initially seeded inside the LCS and oscillates near the interface during the reverse
flow phase before advecting into the downstream bulk fluid. In contrast the yellow particle
trajectory (top half of domain) is seeded outside the LCS and oscillates in the thin-film
region during retrograde bubble motion (time-points 2–6) and then remains in the residual
film following bubble passage (time 7). Similar behaviour occurs in the experimental
analysis.

Likewise, at time H in the reverse-flow regime, we again find good agreement between the
Lagrangian characteristics of the BEM computations and μ-PIV experiments conducted in
pure water. The BEM analysis (figure 12b) shows the LCS deforming towards the bubble
tip, labelled ‘Thin-film lobe’. As before, the LCS defines the boundary between particles
destined to travel upstream or downstream of the bubble tip. A particle seeded outside this
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region of the LCS (yellow particle in top half of domain) will initially travel ahead of the
bubble tip during the retrograde motion phase of the driving flow, and as forward bubble
motion resumes the particle advects into the thin film. In this figure the particle pathline
appears to cross through the air phase. However, this is an artefact that occurs because the
bubble geometry is represented during the initial seeding time of the particle. As the
simulation progresses, the film thickens during the forward phase and the particle resides
immediately inside the air–liquid interface. The low-Ca experimental measurements in water
(figure 12d) demonstrate a qualitatively similar LCS, with a clearly defined thin-film lobe.
Again, a particle initialized outside the LCS (yellow particle in top half of domain) in the
thin-film lobe advects to the wall and is subsequently deposited in the residual film. A
particle on the inside of the LCS (red particle in bottom half of domain) eventually convects
downstream.

6.2. Behaviour of surfactant-doped solutions
The presence of 0.01 mg ml−1 of Infasurf in the bulk fluid (case V) yields significant
modification of the flow field, as shown in figure 12(e). The FTLE during the forward phase
(time E) presents an LCS that exists near the outer wall and curves inward toward the tube
centreline, demarcated as ‘Thin-film lobe’. Fluid particles within this structure travel along
the wall and then towards the centreline adjacent to the air–liquid interface, as demonstrated
by the yellow particle-trace (top half of figure 12e). Reverse flow then sweeps the fluid back
towards the wall to be advected into the thin film in the subsequent forward stroke. In
contrast, a particle originating at a similar position in pure water (figure 12c, yellow
pathline) oscillates once near the bubble tip before travelling into the downstream region.
From this comparison, it is clear that surfactant has moved the LCS inward, and thus
surfactant dramatically affects the trajectories of Lagrangian fluid markers in this vicinity.
Furthermore, the particle trajectories represented in red in figures 12c and 12e are both
seeded inside the LCS and eventually migrate downstream. The overall trajectories are
similar in this region of the flow. The local variation in the pathlines results from the
blunting of the air–liquid interface during retrograde motion in the presence of surfactant.

The FTLE from the reverse-flow phase (time H) demonstrates significant modifications due
to surfactant effects (figure 12f). The thin-film lobes that are visible in the BEM
computations (case II) and water experiments (case IV) extend much farther downstream in
the presence of surfactant. Fluid in the thin-film lobe region, characterized by the yellow
particle trace in the top half of figure 12(e,f ), travels towards the wall during the retrograde
motion portion of the pulsatile cycle and is then advected into the thin film as forward
bubble motion resumes. These particles migrate along the air–liquid interface in the bubble
cap region to a much greater extent than in the surfactant-free case shown in figure 12(d).
The increased size of the thin-film lobe in the presence of surfactant implies an increased net
convective transport of surfactant to the thin-film region due to pulsatility.

The changes observed in FTLE fields computed from water and water/Infasurf
measurements are due solely to the physicochemical behaviour of the air–liquid interface.
The driving flow and other fluid properties, such as viscosity, are held constant between
experiments. Furthermore, the modifications in the flow field due to Infasurf discussed
above, such as the thin-film lobe, were not observed in measurements conducted in the
presence of sodium dodecyl sulphate (SDS), an anionic surfactant. The physicochemical
hydrodynamics of pulmonary surfactant, specifically Infasurf, dynamically alter the
interfacial tension to yield changes in the bubble shape and flow field that are not present
with SDS or pure water.

Dynamic changes in the surface concentration of Infasurf Γ alter the flow field by changing
the stress condition at the air–liquid interface. In a surfactant-free solution, the surface
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tension γ is constant and the interfacial stress is defined by the Young–Laplace equation. In
the presence of surfactant, the surface tension γ(s) is a function of the local surfactant
concentration Γ(s) and varies in both space and time, where s is the arclength coordinate.
These changes in stress at the interface alter the bubble shape and flow field which, in turn,
affect surfactant transport and the mechanical stresses at the wall. Additionally, tangential
(Marangoni) stresses at the air–liquid boundary occur due to the non-equilibrium surface
tensions, rigidifying the interface and further modifying flow and transport. These changes
in bubble geometry, interfacial stress, and fluid velocity – due solely to the presence of
Infasurf – account for the significant modification of the FTLE field, particularly during
retrograde bubble motion.

7. Assumptions and limitations
In this study we have investigated the convective transport properties of fluid markers
through an investigation of Lagrangian trajectories. We have conducted this investigation to
elucidate the bulk transport processes with the assumption that convection dominates
diffusion during airway reopening. This representation is most accurate if the Péclet number
(Pe = UR/D), representing the ratio of convection to diffusion, is much greater than unity.
Here U is the magnitude of the velocity, R is the tube radius, and D is the molecular
diffusivity. Experiments were designed to replicate the reopening of a bronchial airway, so
U ~ 1 cm s−1 and R ~ 0.025 cm. The diffusivity of surfactant is assumed to be in the range
of 10−8 cm2 s−1 < D < 10−6 cm2 s−1, with D = 10−7 cm2 s−1 providing an estimate for the
diffusivity of the primary surface-active molecule dipalmitoylphosphatidylcholine (DPPC)
(Launois-Surpas et al. 1992), and smaller diffusivities for liposomes and larger values of D
for components with smaller molecular weights. Therefore, 104 < Pe < 106 and convection
clearly dominates diffusion for the transport of surfactant in the bulk phase.

Although convection dominates diffusion, it is possible that lateral diffusion of particles
crossing streamlines could affect the trajectories demonstrated by our Lagrangian
simulations. To estimate the magnitude of this effect we approximate the diffusion distance

during one oscillatory period as , where T = 1 s is the period of oscillation. For the

surface-active component DPPC , or . Therefore, we would
expect that a molecule of DPPC would be displaced by approximately 1% of the tube radius
during an oscillation. While this could smear the trajectories from the idealized
representation provided by our Lagrangian analysis, the overall trends should not be greatly
affected. On the other hand, the Lagrangian description cannot model the adsorption of
surfactant to the air–liquid interface, which is the critical step in the transport of surface-
active substances. Nevertheless, our Lagrangian calculations can demonstrate the increased
time that surfactant molecules can remain in the proximity of the bubble tip during
pulsatility, which may enhance surfactant sorption.

The present study has not used simulation of the surfactant-doped system to predict the
Lagrangian trajectories of fluid particles. Unfortunately, the computational exploration of
surfactant physicochemical interactions during pulsatile flow is beyond the scope of the
present study. However, we have validated our ability to use μ-PIV data to accurately
predict Lagrangian trajectories in surfactant-free situations (by comparison to BEM).
Therefore, by incorporating surfactant into our experimental systems and calculating the
modification of the Lagrangian trajectories, the present study can accurately demonstrate the
modification of the FTLE description and location of the LCSs that occur with the
incorporation of surfactant, which is likely to influence transport processes. Nevertheless,
the detailed correlation between Lagrangian motion and surfactant physicochemical
hydrodynamics during pulsatile flow must await high-resolution computational simulation.
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8. Conclusions
We compute FTLE fields describing pulsatile air-finger propagation using velocity data
computed with the BEM and measured with μ-PIV. The maximal ridges of the FTLE field
represent boundaries between regions of qualitatively different flow. We have found that
these LCSs describe the boundary between fluid advected downstream into the bulk and
fluid advected upstream into the thin residual film. However, depending on values of the
non-dimensional parameters, different flow regimes are observed. Increasing the oscillatory
stroke length A yields fluid regions that oscillate upstream and then downstream along the
bubble interface. As the frequency Ω is increased a subset of particles remains in residence
near the interface for an increasing number of pulsatile cycles before ejection from the
bubble tip region.

The dynamic behaviour of this fluid region has potentially important surfactant transport
implications in pulmonary airway reopening. In steady-velocity reopening non-equilibrium
pulmonary surfactant distribution along the air–liquid interface causes the surface tension to
vary along the length of the free surface. This, in turn, yields Marangoni stresses that
rigidify the interface and increase the driving pressure necessary to restore patency in the
airway. FTLE analysis indicates that pulsatile flows have the potential to redistribute
surfactant along the length of the interface to yield a reduced surface tension, driving
pressure, and Marangoni stresses. Furthermore, the high-A, high-Ω simulations (case III)
demonstrate a well-mixed reservoir region that sweeps along the interface once per period,
periodically returning to an attractor region. As the accumulated fluid is spread along the
interface, surfactant may adsorb, lowering surface tension and reducing airway damage.
These results are consistent with the macroscale measurements by Pillert & Gaver (2009)
and the observed protection of epithelial cells from the temporary reverse flow (Glindmeyer,
Smith & Gaver 2011).

We compare the FTLE fields computed from BEM simulations to those computed from
experimentally measured (μ-PIV) velocities in pure water and water doped with 0.01 mg
ml−1 of Infasurf, a clinical pulmonary surfactant. Excellent agreement is found between the
forward-time FTLEs calculated from the BEM computations (case II) and μ-PIV
measurements in pure water. FTLEs computed from measurements in the presence and
absence of Infasurf show that the pulmonary surfactant significantly expands the thin-film
lobe of the LCS that projects ahead of the bubble cap during retrograde motion. This region
draws fluid from near the tube wall towards the centreline adjacent to the interface and is
directly attributed to the physicochemical hydrodynamics of Infasurf.

In summary, the Lagrangian analysis provides an excellent technique for elucidating
convective transport properties in time-dependent free-surface flows such as that occurring
during pulsatile bubble propagation. In particular, this technique identifies parameter spaces
in which regions of the flow can be modified to enhance surfactant delivery.

We offer this paper as a contribution to the Festschrift in honour of T. Pedley in light of his
extraordinary contributions to our understanding of biofluid mechanics and, in particular, the
relationship between transport processes and biological function in the pulmonary (Pedley &
Kamm 1988) and circulatory systems (Pedley 1980), and aquatic motion (Lewis & Pedley
2000; Drescher et al. 2009). We look forward to many more years of contributions from this
friend and colleague. Computational resources were provided by the Tulane Center for
Computational Science and the Louisiana Optical Network Infrastructure. We appreciate the
insight provided by Professor L. Fauci.
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Figure 1.
Computational domain from Smith & Gaver (2008). The model is divided into two regions
described by the boundary element region (BEM) and lubrication theory (LUBE). In the
BEM region, bounding surfaces are described by 3-node quadratic elements.
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Figure 2.
Streamlines computed at the (a) maximum and (b) minimum velocities during pulsatile
bubble propagation for the ‘case III’ parameters in table 1. Dashed lines indicate stagnation
streamlines, (+) and (−) denote the locations of converging and diverging stagnation points,
respectively.
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Figure 3.
(a) Forward-time (TI = 20 periods), (b) backward-time (TI = −20 periods), and (c) overlaid
forward- and backward-time FTLE fields for case III (high A, high Ω computations: see
table 1) at time D (figure 6). The repelling LCS is shown in red in (a) (forward-time FTLE)
and (c) (overlaid forward- and backward-time FTLEs). The attracting LCS is determined
from the backward-time FTLE in (b) and is also shown in (c). The colour bar (d)
corresponds to (a) and (b).
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Figure 4.
Steps to compute the FTLE field from BEM velocity results. Shaded boxes indicate the start
of an iterative (for) loop.
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Figure 5.
The adaptive quadrature employed to increase computational efficiency. A 10-point
Gaussian quadrature is used far from the edges of the BEM domain, the quadrature is
increased to 100 points near the boundaries. Immediately adjacent to the edges, interpolation
is used to determine the velocity.
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Figure 6.
Time-dependent capillary number Ca(t) for the three BEM cases (I–III), showing the time-
points A–L at which particles are initially seeded (t0).
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Figure 7.
FTLE field and particle pathlines for (a) A = 1 case: (i) initial seeding and (ii–iv) the time
course of the particle pathlines. Particles inside the LCS (top plane) are demarcated by black
symbols with white pathlines, particles outside the LCS (bottom plane) are shown with
white particles and black pathlines. (b) A = 5,= 0.025 case with (i) particles initialized inside
the ‘hook’ region and (ii) subsequently swept upstream into the thin film and then (iii)
downstream ahead of the bubble tip. In this and all subsequent figures the FTLE field is
scaled on a range zero to one; the corresponding colour scale is shown in (c).
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Figure 8.
(a) Backward-time (TI = −20T) FTLE fields for case III (A = 5, CaΩ = 0.1), demonstrating
cyclic LCS formation and shedding at the tip. Poincaré sections for a single particle located
in a backward-time FTLE ‘loop’ downstream of the bubble tip are shown in the upper half
of the domain for four time-points in the pulsatile cycle. The particle originates at a location
(T0) at time A and convects forward in time for 20 periods (T19). (b) Overlay of the forward-
time (TI = 20T) and backward-time (TI = −20T) FTLE fields for case III (A = 5, CaΩ = 0.1).
Particle positions at several points over a single cycle show the downstream ejection of a
particle (red circle) that has spent 7 periods traversing the thin-film region. The particle
denoted by the red square leaves the fields of view (in the upstream direction) for times G–J.
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Figure 9.
Backward FTLE field (time A) and forward particle trajectories (6 periods) for case III (A =
5, CaΩ = 0.1). The particles are initialized downstream so that convection carries one inside
the ejection loop (red particle, blue pathline) and one immediately outside the same ejection
loop (white particle, black pathline).
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Figure 10.
The backward-time FTLE field (TI = 20T) for case III (high A, high Ω) at times A, D and G
shown in figure 6. Poincaré sections for three points over 20 periods are shown in the upper
half of each domain, demonstrating particle trapping in the attractor region visible at time D.
Large symbols indicate the starting position of the tracer particles at time A, numbers
indicate the time course of the Poincaré sections. The repelling LCS is shown as a black
line.
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Figure 11.
Program steps to compute the FTLE field from μ-PIV data.
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Figure 12.
Forward FTLE fields comparing computational results to experimental measurements in
pure water and water with 0.01 mg ml−1 of the pulmonary surfactant Infasurf. TI = 2T for
the experimental data and TI = 3T for the computational simulations. Numbers indicate the
time course of the particle trajectories. (a) BEM, time E; (b) BEM, time H; (c) water, time E;
(d) water, time H; (e) Infasurf, time E; (f) Infasurf, time H.
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