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One common practice in drug discovery is to opti-
mize known or suspected ligands in order to
improve binding affinity. In performing these opti-
mizations, it is useful to look at as many known
inhibitors as possible for guidance. Medicinal
chemists often seek to improve potency by alter-
ing certain chemical moieties of known ⁄ endoge-
nous ligands while retaining those critical for
binding. To our knowledge, no automated, ligand-
based algorithm exists for systematically ’swap-
ping’ the chemical moieties of known ligands to
generate novel ligands with potentially improved
potency. To address this need, we have created a
novel algorithm called ’LigMerge’. LigMerge iden-
tifies the maximum (largest) common substructure
of two three-dimensional ligand models, superim-
poses these two substructures, and then systemat-
ically mixes and matches the distinct fragments
attached to the common substructure at each
common atom, thereby generating multiple com-
pound models related to the known inhibitors that
can be evaluated using computer docking prior to
synthesis and experimental testing. To demon-
strate the utility of LigMerge, we identify com-
pounds predicted to inhibit peroxisome
proliferator–activated receptor gamma, HIV
reverse transcriptase, and dihydrofolate reductase
with affinities higher than those of known ligands.
We hope that LigMerge will be a helpful tool for
the drug design community.
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Given the exponential growth of computer speed and power, the role
computers play in modern drug discovery, already important, is likely
to increase in prominence in coming years. Virtual screening is one
application of computer-aided drug design that is already common-
place. Rather than testing millions of compounds in high-throughput
screens, experiments that are costly in both time and treasure, many
researchers first use docking programs to predict small-molecule
binding in silico. Virtual screening approaches enrich a pool of candi-
date ligands for true binders; only a limited number of the best-scor-
ing compounds are then tested experimentally, leading to greater hit
rates and decreased cost (1–3). These methodologies have been
used successfully to identify many experimentally validated ligands,
including inhibitors of Trypanosoma brucei–RNA editing ligase 1
(4,5), T. brucei UDP-galactose 4¢-epimerase (6), T. brucei farnesyl
diphosphate synthase (7), M. tuberculosis dTDP-6-deoxy-L-lyxo-4-
hexulose reductase (8), and H. sapiens stromelysin-1 (9).

Critical to any virtual screening project is the selection of a good
database of small-molecule models whose real-world counterparts
are readily available for experimental validation. These databases
generally consist of compounds carefully designed to represent
diverse scaffolds (i.e., diversity sets), compounds derived from com-
mon reactions (combinatorial libraries), compounds with known
pharmacological properties (e.g., the set of all approved drugs), or
analogs of known ligands.

In part because of the advent of high-throughput screening, many
protein receptors are associated with a plethora of experimentally
validated ligands (10). In designing novel small-molecule databases
for virtual screening, it makes sense to consider the pharmacophoric
features of known ligands. New ligands that combine the observed
features of validated binders are more likely to be potent binders
themselves.

BREED (11), an algorithm developed by Vertex pharmaceuticals, over-
lays known receptor–ligand complexes to generate novel ligands that
bind with improved affinity. BREED is a receptor-based algorithm that
relies on the presence of high-resolution crystal or NMR structures
to overlay known ligands. To our knowledge, there is no stand-alone,
ligand-based tool for recombining the three-dimensional structures of
known ligands into novel potential binders.
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Here, we present a program called LigMerge that provides a fast
and easy way to generate molecular models derived from known
inhibitors without the need for information about the receptor. We
expect the program will be useful for those designing custom vir-
tual screening, small-molecule databases when many ligands,
potent or otherwise, have been identified experimentally or theoret-
ically via virtual screening. LigMerge is implemented in Python and
so is easily editable, customizable, and platform independent. A
copy can be downloaded free of charge from http://www.nbcr.net/
ligmerge/.

Materials and Methods

The LigMerge algorithm
As input, LigMerge accepts two three-dimensional, PDB-formatted
compound models. PDB files are the only supported input format.
SDF or MOL files must be converted to the PDB format before
using LigMerge. These models are processed in three steps. First,
the maximum (largest) common substructure of the two models is
identified (Figure 1A,B). Second, the two models are translated and
rotated, so that these two substructures are superimposed (Fig-
ure 1C). Third, the two models are merged by mixing and matching

the distinct fragments of each model attached at each common,
superimposed atom (Figure 1D).

Finding the maximum common substructure
(MCS)
Exhaustive lists of atom indices ⁄ element types for all heavy atoms
in the two structures are first generated (Figure 1A). Hydrogen
atoms are not included in this analysis. Stretches of connected
atoms comprised of the same sequence of elements occurring in
both structures are identified and stored, regardless of geometry.
As no structural information beyond connectivity is encoded in
these lists, the criterion for consideration is necessary but not suffi-
cient for identifying a common substructure. Many of the identified
common fragments will eventually be rejected for having distinct
geometries, but all true common substructures are nevertheless
among those enumerated. The shortest stretches considered are
three-atom fragments, as shorter fragments (i.e., single atoms or
mere pairs of bonded atoms) cannot reasonably be considered dis-
tinctive common substructures. Consecutively, larger fragments are
likewise stored. While ideally MCSs of at least ten atoms are pref-
erable to ensure as unique an overlay as possible, we judge three
to be sufficient in extreme cases because, in addition to connectiv-
ity, the algorithm will eventually also account for the three-dimen-
sional structures of these models. While three is set as the
program default, the minimum number of common atoms can also
be specified explicitly by the user.

Having identified candidate common substructures, the next step is
to test for identical geometries (Figure 1B). To facilitate geometric
comparison, a sorted pairwise distance matrix (i.e., a distance 'fin-
gerprint') describing the distance between all atom pairs is calcu-
lated for each fragment. Two fragments are considered
geometrically identical if all pairwise distances are identical within
a specified tolerance. Comparisons between fragments begin with
the largest candidate substructures; subsequently, smaller candi-
dates are considered if larger candidates are found to be geometri-
cally dissimilar. Setting the -output_mcs command-line parameter to
true causes the program to output the maximum common substruc-
ture in addition to merged compound models.

Without further consideration, the above protocol ignores questions
of symmetry. For example, consider two models whose greatest
common substructure is a toluene. Two symmetry-related superim-
positions exist (i.e., two rotations about the axis defined by the
methyl-phenyl bond). The -all_symmetry_relations command-line
parameter can be used to specify whether the algorithm should
consider all symmetry assignments when generating merged com-
pound models or whether it should randomly choose a single
assignment from those identified (Figure 1C). The -all_symme-
try_relations command-line parameter only creates multiple ligands
if the overlay of the determined MCS is ambiguous.

It is important to note that LigMerge ignores ligand flexibility when
performing geometric comparisons. It is therefore prudent to use
ligand models of compounds in docked or crystallographic poses or
to choose ligand models with inflexible segments (e.g., benzene
rings). As the number of publicly available crystal structures is ever
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Figure 1: A schematic representing the LigMerge algorithm. (A)
Stretches of connected atoms consisting of identical elements in
sequence are identified from two distinct compounds. (B) Those
stretches of connected atoms that have identical geometries are
identified as common substructures. The maximum (largest) common
substructure is subsequently identified (highlighted in a separate
box). (C) The two distinct compounds are aligned so that their
greatest common substructures are superimposed. All possible
superimpositions are considered. (D) Novel compounds are gener-
ated by mixing and matching the moieties connected to each of the
superimposed atoms of the maximum common substructure.
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increasing and inflexible segments are common in bioactive mole-
cules, we expect that these two limitations will not be too prob-
lematic.

Superimposition and fragment merging
All possible substructure assignments of maximum length and iden-
tical geometry are subsequently considered. For each, a transforma-
tion matrix is identified that minimizes the RMSD between
substructures. Although only the common substructures are consid-
ered in generating this matrix, entire molecules are subjected to
the transformation, essentially positioning the two models so that
their maximum common substructures are superimposed (Figure 1C).
When identifying the MCS, LigMerge is sensitive to the ligand con-
formation. If the user wishes to consider multiple ligand conforma-
tions, they need only to provide multiple pdb files representing
each conformation.

Moieties from each model, comprised of fragments with atoms
bound to those of the common substructure, are next identified.
The common-substructure atoms to which these moieties are bound
are designated 'handle atoms'. If the command-line parameter -
all_substituent_combinations is set to false, a random fragment is
selected for each handle atom, and a single merged compound is
generated by combining the common substructure and the selected
fragments. Special consideration is given to 'multiple-handle frag-
ments', that is, fragments that externally connect to two or more
handle atoms. If fragments containing more than one handle atom
are selected, these fragments essentially determine the selection at
multiple handle–atom locations. If the command-line parameter -
all_substituent_combinations is set to true, multiple merged struc-
tures with all possible combinations of fragments are generated
and saved to separate PDB files (Figure 1D). If a specific fragment
combination will create a molecule with steric clashes between the
fragments, the merged molecule will not be generated and the
fragment combination will be skipped.

Docking of LigMerge-generated compounds
To demonstrate the utility of the LigMerge algorithm, compounds
generated by applying LigMerge to a variety of known binders were
docked into three receptors: peroxisome proliferator–activated
receptor (PPAR) gamma, HIV reverse transcriptase (RT), and dihy-
drofolate reductase (DHFR).

Receptor preparation
Crystal structures of peroxisome proliferator–activated receptor
(PPAR) gamma in complex with ligand 570 (PDB ID: 1FM9 (12)), HIV
reverse transcriptase in complex with inhibitor 14 (PDB ID: 3C6T
(13)), and DHFR in complex with methotrexate [PDB ID: 3DFR (14)]
were used for the virtual screening studies. All crystallographic
water molecules as well as the ligand molecules themselves were
removed from the PDB files. Hydrogen atoms were added using
PDB2PQR (15). In the case of DHFR, the hydrogen atoms associated
with the NDP cofactor were derived from those present in the DUD
database (10). All PQR files were then converted to the PDBQT for-
mat using MGLTools (16).

Ligand preparation
The BindingDB (17) was used to identify PPAR, RT, and DHFR
ligands. SMILES strings of the thirty unique PPAR, RT, and DHFR
ligands with the lowest IC50 values, respectively, were obtained
from PubChem (18). The LigPrep module of Schrodinger's Maestro
computer program was used to build the molecular models in three
dimensions, to add missing hydrogen atoms, and to generate all
possible protonation states in a pH range of 5.0–9.0. For PPAR, Lig-
Prep generated 30 unique molecular models from the top 15 known
binders and 64 models from the top 30 binders. For RT, LigPrep
generated 37 unique molecular models from the top ten known
binders and 105 models from the top 30 binders. For DHFR, LigPrep
generated 66 unique molecular models from the top 30 binders.

LigMerge compound merging
The 30 models derived from the top fifteen known PPAR inhibitors,
the 37 models derived from the top ten known RT inhibitors, and
the 66 models derived from the top thirty DHFR inhibitors were pro-
cessed using LigMerge with the -all_symmetry_relations and -
all_substituent_combinations flags set to true. The -ligands_dir flag
was used to automatically run LigMerge on all possible pairs of
ligands in the specified directory. Following a second LigPrep run
undertaken to minimize the structures, 896, 3959, and 3974 unique
potential inhibitors were identified for PPAR, RT, and DHFR, respec-
tively.

Docking protocol
For PPAR, AutoDock Vina (19) was used to dock both the 896 Lig-
Merge-generated models and the 64 models of known inhibitors
into the 1FM9 binding site using a box size of
40.9 � · 44.3 � · 46.8 �. For RT, the 3959 LigMerge-generated
models and the 105 models of known inhibitors were docked into
the 3C6T binding site using a box size of
18.0 � · 18.0 � · 18.0 �. For DHFR, the 3974 LigMerge-generated
compounds as well as the 66 models of known inhibitors were like-
wise docked into a crystallographic binding pocket (3DFR), using a
box size of 42.9 � · 44.8 � · 44.0 �.

Custom decoy libraries
For each of the LigMerge-generated ligand sets corresponding to
the three receptors, the molecular weight (MW), logP, and polar sur-
face area (PSA) were calculated using obprop (20). The set of 896
LigMerge compounds generated from known PPAR inhibitors had an
average molecular weight of 611 € 166 Da, an average logP of
7.1 € 0.7, and an average PSA of 106 € 38 �2. The set of 3959 Lig-
Merge compounds generated from known RT inhibitors had an aver-
age molecular weight of 493 € 139 Da, an average logP of
4.6 € 1.2, and an average PSA of 107 € 40 �2. Finally, the set of
3974 LigMerge compounds generated from known DHFR inhibitors
had an average molecular weight of 478 € 140 Da, an average logP
of 3.6 € 1.3, and an average PSA of 178 € 73 �2.

For each of the LigMerge-generated compound sets, an in-house
script was used to generate a decoy set equal in size and chemical
properties. MW, logP, and PSA statistics were calculated for each
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of the approximately 11 000 000 compounds of the ZINC 'All Clean'
data set (21) using obprop (20). Subsets of the 'All Clean' database
were then identified with chemical properties similar to those of
each of the LigMerge-generated sets in terms of both averages and
standard deviations. In this way, decoy libraries were generated for
PPAR (896 compounds), RT (3959 compounds), and DHFR (3974 com-
pounds) that had average MW, logP, and PSA values within 1% of
the values derived for the corresponding reference LigMerge data
sets of same size. PPAR was the only exception; the average
molecular weight of the PPAR decoy library was within 13%
(MW = 532 Da) of the reference LigMerge-generated set because
there was an insufficient number of high-molecular-weight com-
pounds in the ZINC 'All Clean' data set. Additionally, it was ensured
that standard deviations for these quantities did not exceed values
in the corresponding LigMerge-generated sets. The decoy libraries
were docked into their respective receptors with the same parame-
ters used to dock the LigMerge-generated compound sets.

Results and Discussion

LigMerge is an open-source, easy-to-use tool for generating novel
compounds with structural features similar to those of known
ligands. Compounds derived from known ligands are more likely to
be true binders themselves. Once generated, LigMerge-derived com-
pounds can be docked into receptor structures to identify likely
inhibitors for subsequent synthesis and experimental validation.

To demonstrate the utility of the LigMerge algorithm, three protein
drug targets with many known inhibitors were chosen as test sys-
tems: peroxisome proliferator–activated receptor (PPAR) gamma, HIV
reverse transcriptase (RT), and dihydrofolate reductase (DHFR). For
each of these systems, novel compounds were generated using Lig-
Merge by combining features of known inhibitors. Predicted binding
affinities were then assessed by computer docking. To demonstrate
that LigMerge can generate a set of compounds enriched for high-
affinity binders above and beyond screens of chemically similar mole-
cules chosen at random, we also dock appropriate decoy databases
into each of the three receptors studied to facilitate comparison.

Peroxisome proliferator–activated Receptor
A total of 896 LigMerge-generated compounds were derived from the
top fifteen experimentally verified PPAR binders listed in the Binding-
DB database (17) as of October 2011. These compounds, together
with the top thirty experimentally known inhibitors, were docked into
an PPAR crystal structure using AutoDock Vina (19). The best-scoring
LigMerge molecule (compound 1, Figure 2A) and known inhibitor (Fig-
ure 3A) had estimated binding affinities of )13.2 and )11.1 kcal ⁄ -
mol, respectively. In fact, there were 109 LigMerge-generated models
that scored better than the best-known inhibitor.

The best-scoring binding pose of the top-ranked LigMerge molecule
(compound 1) is shown in Figure 3A, together with the crystallo-
graphic pose of a known inhibitor (in yellow, taken from PDB ID:
2HFP (22)). The similarities between the poses of these two com-
pounds are noteworthy. The predicted pose of compound 1 posi-
tions benzene and anisole substructures coincident with those of
the known inhibitor. Additionally, the trifluoromethyl group of com-

pound 1 is predicted to be proximal to a sulfonamide group of the
known compound, and the trifluoromethyl group of the known inhib-
itor is positioned proximal to the predicted location of a compound-
1 carboxylate group. Others have suggested that fluorinated methyl
groups might be bioisosteres of the carboxylate group (compare
PDB structures 3AEB and 3AE6) and the sulfonamide group (com-
pare PDB structures 2XBV and 2XBX (23)). The similarities of these
binding modes are not likely the result of mere chance; they give
credence to the hypothesis that the LigMerge-generated compounds
have improved docking scores specifically because they are based
on known inhibitors and therefore build on pharmacophores known
to be relevant to the receptor of interest.

Figure 4A shows a normalized histogram of the Vina scores associ-
ated with the LigMerge-generated and top 30 ⁄ known inhibitor com-
pounds. The docking score distribution of the LigMerge-generated
compounds is markedly broader than that of the known inhibitors. As
expected, LigMerge generated a number of compounds that scored
worse than the known inhibitors; as compound models are generated
through an exhaustive combinatorial process, it is unsurprising that
some LigMerge compounds had reduced predicted binding affinities.
However, the docking score distribution of the LigMerge-generated
compounds also extends further toward high affinities than that of
the known inhibitors. About 5% of the known inhibitors had docking
scores better than )11.0 kcal ⁄ mol, suggesting tight binding. In con-
trast, more than 15% of the docked LigMerge compounds scored in
that range, suggesting a genuine enrichment for strong binders.

Reverse transcriptase
A total of 3959 LigMerge-generated compounds were derived from
the top ten experimentally verified RT binders listed in the Binding-
DB database (17) as of October 2011. These compounds, together
with the top thirty experimentally known inhibitors, were docked
into an RT crystal structure using AutoDock Vina (19). The best-scor-
ing LigMerge molecule (compound 2, Figure 2B) and known inhibitor
(Figure 3B) had estimated binding affinities of )11.4 and
)10.5 kcal ⁄ mol, respectively. In fact, there were 132 LigMerge-gen-
erated models that scored better than the best-known inhibitor.

The best-scoring binding pose of the top-ranked LigMerge molecule
(compound 2) is shown in Figure 3B, together with the crystallo-
graphic pose of a known inhibitor (in yellow, taken from PDB ID:
3C6T (13)). The similarities between the poses of these two com-
pounds are noteworthy. Aside from the fact that they are predicted
to occupy the same general space in the binding pocket, the 3-flu-
orobenzonitrile moiety of compound 2 docked at the same location
as the analogous 3-chlorobenzonitrile moiety of the co-crystallized
inhibitor. Additionally, the aromatic imidazo[1,5-b]pyridazine moiety
of compound 2 docks at the same location, and in the same plane,
as a crystallographic benzene moiety of the known inhibitor. Again,
the similarities of these binding modes are not likely the result of
mere chance; LigMerge-generated compounds likely have improved
docking scores because they are based on known inhibitors rather
than chosen at random.

Figure 4B shows a normalized histogram of the Vina scores associ-
ated with the models of both the top 30 known inhibitors and the
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LigMerge-generated compounds. While some LigMerge-generated
compounds again performed a good deal worse than known inhibi-
tors, as expected, LigMerge did generate a number of compounds
with higher-scoring predicted affinities; over 4% of the LigMerge
compounds scored better than )10.0 kcal ⁄ mol, compared to fewer
than 2% of the known inhibitors.

Dihydrofolate reductase
A total of 3974 LigMerge-generated compounds were derived from
the top thirty experimentally verified DHFR binders listed in the Bind-
ingDB database (17) as of October 2011. These compounds, together
with the thirty experimentally known inhibitors themselves, were
docked into a DHFR crystal structure. The best-scoring LigMerge mol-
ecule and known inhibitor (Figure 3C) had estimated binding affinities
of )13.3 and )10.4 kcal ⁄ mol, respectively. LigMerge generated 608
models that scored better than the best-known inhibitor.

An analysis of the predicted binding pose of the top-scoring Lig-
Merge-generated compound, compound 3 (Figure 2C), suggests that,
as before, the enhanced predicted affinity over known inhibitors
has not arisen by chance alone. The top predicted ligand was
derived from the two best-scoring known inhibitors (Figure 2C):

CHEBI232247 (24) and piritrexim analog 10 (25), with IC50 values of
0.75 and 0.057 nM, respectively. Additionally, the top Vina pose of
compound 3 places the moiety analogous to the pteridine-2,4-diamine
of methotrexate, a known inhibitor (in yellow, taken from PDB ID:
3DFR (14)), deep within the same folate-binding pocket. The novel
ligand binds in ways that are similar to known inhibitors, as expected
given that pharmacophoric information from known ligands has
essentially been leveraged in the design of these novel compounds.

Histograms showing the Vina score distributions of the 30 known
DHFR inhibitors, as well as the LigMerge-derived compound models,
are shown in Figure 4C. The distribution of the Vina scores associ-
ated with the LigMerge-generated compounds was again generally
wider than that of the known inhibitors. As before, some of the Lig-
Merge compounds were certainly incompatible with potent binding,
but 15.5% of the compound models were predicted to bind more
potently than any known inhibitor.

Decoy library docking
We propose that the LigMerge-generated compound set included
compounds with improved predicted affinities over those of known
inhibitors because LigMerge generates novel compounds from

A

B

C

Figure 2: The top LigMerge-generated compounds and the known inhibitors from which they are derived. The maximum common substruc-
tures are highlighted in red. (A) Peroxisome proliferator–activated receptor gamma. (B) Reverse transcriptase. (C) Dihydrofolate reductase.
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known inhibitors in an intelligent and systematic way. However, it
could be that these improved compounds were identified simply
because the set of LigMerge-generated compounds was much lar-
ger than the set of known inhibitors, making it statistically more
likely that a high-affinity predicted ligand would be found. To rule
out this possibility, we compared the docking performance of the

three LigMerge-generated compound sets to that of decoy libraries
similar in size and average chemical properties.

Figure 5 shows normalized histograms of the Vina score distributions
for LigMerge and decoy docking into PPAR (Figure 5A), RT (Figure 5B),
and DHFR (Figure 5C). For PPAR and DHFR, the LigMerge distributions

A B C

Figure 3: The predicted binding poses of the top LigMerge-generated compounds docked into their respective receptors. In all panels,
some portions of the protein have been removed to facilitate visualization. Docked LigMerge-generated compounds are colored by element,
and known co-crystallized compounds are colored yellow. The following are the standard representations of the co-crystallized ligands: (A)
compound 1, docked into PPAR. The crystallographic ligand (in yellow) is compound 2a, a known binder. (B) Compound 2, docked into HIV
reverse transcriptase. The crystallographic ligand (in yellow) is inhibitor 14, a known binder. (C) Compound 3, docked into dihydrofolate reduc-
tase. The crystallographic ligand (in yellow) is methotrexate, a known binder.

A B

C

Figure 4: Vina score Histograms:
LigMerge-generated Compounds ver-
sus Known Inhibitors. The LigMerge-
generated compounds are shown in
gray, and the known inhibitors are
shown in black. (A) The histograms
for PPAR gamma. (B) The histograms
for HIV RT. (C) The histograms for
DHFR.
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are clearly shifted toward higher binding affinities, suggesting legiti-
mate enhancement beyond what would be expected by docking com-
pounds chosen at random. In contrast, the LigMerge score distribution
associated with RT is similar to that of the decoy library. This may well
be a consequence of Vina's inability to discriminate between native-
like and non-native-like ligands for the HIV RT test system. These
results demonstrate that for two of three systems, LigMerge provided
a useful enrichment for high-affinity predicted binders.

Conclusion

We here present an algorithm called LigMerge that considers two
three-dimensional models of known or suspected small-molecule
inhibitors and forms derivative models with similar chemical fea-
tures. In the process of merging models, LigMerge first identifies
the maximum common substructure (MCS). The MCS, which can be
saved for later examination, may itself be a valuable tool for ligand
evaluation. Next, the program aligns the two molecules by their
mutual MCS, so that they are partially superimposed. Finally, the
chemical moieties attached to each superimposed atom of the max-
imum common substructure are recombined, producing composite
molecules similar to known or suspected inhibitors, but with poten-
tially higher affinities. LigMerge is freely available through the
National Biomedical Computation Resource (NBCR) and can be
downloaded at http://www.nbcr.net/ligmerge/.
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