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Abstract

Genomes are spatially assembled into chromosome territories (CT) within the nucleus of living cells. Recent evidences have
suggested associations between three-dimensional organization of CTs and the active gene clusters within neighboring
CTs. These gene clusters are part of signaling networks sharing similar transcription factor or other downstream
transcription machineries. Hence, presence of such gene clusters of active signaling networks in a cell type may regulate the
spatial organization of chromosomes in the nucleus. However, given the probabilistic nature of chromosome positions and
complex transcription factor networks (TFNs), quantitative methods to establish their correlation is lacking. In this paper, we
use chromosome positions and gene expression profiles in interphase fibroblasts and describe methods to capture the
correspondence between their spatial position and expression. In addition, numerical simulations designed to incorporate
the interacting TFNs, reveal that the chromosome positions are also optimized for the activity of these networks. These
methods were validated for specific chromosome pairs mapped in two distinct transcriptional states of T-Cells (naı̈ve and
activated). Taken together, our methods highlight the functional coupling between topology of chromosomes and their
respective gene expression patterns.
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Introduction

The genetic material (chromatin) in eukaryotic cells has a multi-

scale three dimensional organization within the nucleus [1]. DNA

is packaged around histone and non-histone proteins to form the

30 nm chromatin fibre [2]. This 30 nm fibre is further hypoth-

esized to be organized into relatively open euchromatin and

condensed heterochromatin structures based on post translational

modifications of histone [3]. Imaging methods using whole

chromosome probes (FISH) reveal the spatial dimension to

genome organization in eukaryotic cells. These methods have

suggested that chromatin is organized into well-defined chromo-

some territories (CT), in a tissue specific non-random manner [4–

7]. These chromosome positions remain largely conserved during

the interphase in proliferating cells [8–10]. In addition, whole

genome chromosome conformation capture assays have shown

intermingling of neighbouring CTs [11] as well as a model of the

yeast genome organization [12]. Further on a smaller scale, these

methods have demonstrated that the genes from neighbouring

CTs loop out and are found to co-cluster with transcription

machinery to form three dimensional interactions called active

transcription hubs [13]. The intermingling of nearby CTs vary in

concert with transcription and cellular differentiation [14,15],

demonstrating the role of chromosome topology in genome

regulation [16]. Individual gene labeling methods suggest that

candidate gene clusters are spatially co-localized [17] and are co-

regulated for their specific transcriptional control [18–24]. Using

2D matrices of chromosome distances at prometaphase stage, the

correspondence between co-regulated genes and chromosome

positioning has been observed during differentiation [19]. How-

ever, methods to describe the correlations between three-

dimensional architecture of chromosome positions [25,26] and

global gene expression as well as TFNs is largely unexplored.

In this paper, we present a quantitative approach to test the

correlation between chromosome organization and transcriptional

output of the cell. Inter-chromosome Physical Distance (IPD)

matrix computed from chromosome centroids in interphase

human male fibroblasts [27] revealed non random chromosome

organization. Inter-chromosome Activity Distance matrix, con-

structed from the microarray data obtained for human fibroblast

[28], suggested that chromosomes with similar gene activity were
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spatially clustered in a tissue specific manner. We formulate an

energy optimization function, ‘H’ to elucidate the correspondence

between the annotated TFNs [29] and spatial positioning of

chromosomes. Numerical simulations of the H function, that

relates the activity of genes of specific networks to their

corresponding chromosomal positions, suggest the sensitivity in

network topology. The prediction from our numerical methods

were experimentally validated by correlating chromosome dis-

tances for specific pairs with their respective activity distances in

two distinct transcriptional states of murine T-Cells (naı̈ve and

activated). Taken together these numerical modeling and exper-

imental methods provide an important platform to probe the

functional coupling between spatial organization of chromosomes

and their epigenetic states.

Results

Methods to probe the correlation between the
organization of chromosomes and their transcriptional
activity

3D Chromosome FISH was used to map chromosome positions

in two cell phases: interphase and prometaphase [27,30]. Based on

these observations we extracted the coordinates of all chromosome

centroids in human fibroblasts measured for 54 nuclei, as reported

by Bolzer et al. [27], which is the only available full map of all

chromosome positions. Inter-chromosome Physical Distance (IPD)

matrices were constructed by the mean distances between centroid

positions of 22 pairs of autosomes (Figure 1A) as:

IPDfib
ij ~S~rri{~rrj

�� ��T~S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi{xj)

2z(yi{yj)
2z(zi{zj)

2
q

T,

where ri = (xi, yi, zi) and rj = (xj, yj, zj) are the coordinates of

chromosome i and chromosome j, respectively and , . denotes

averaging over the 54 nuclei. Figure 1A shows Inter-chromsome

physical distance between ith and jth chromosome in the nucleus,

which represents the (i,j)th element in the IPD matrix. The IPD

matrices were constructed for interphase (IPDfib, Figure 1B),

prometaphase (IPDprometaphase, Figure 1C) and randomized

nucleus (IPDrand, Figure 1D). The values of diagonal elements of

all the matrices, which represent mean distance between

homologues, are kept minimal and are not considered for any

further correlation analysis. Further, regions of low IPD values and

high IPD values are observed in the IPD matrices for interphase

and prometaphase (Figure 1B and 1C), suggesting contribution of

chromosome size (in total number of base pairs) which decreases

from chromosome 1 to 22 (Figure S1A). The volume of a given

chromosome changes dramatically in interphase [31] due to

changes in epigenetic modification and subsequent transcriptional

states. Hence IPD is an average of chromosome centroids in all

such conditions showing spatial clustering of chromosomes. Such

clustering was not observed in the randomized nucleus, where

these matrices were generated by randomly swapping the rows

and columns of IPD matrix multiple times and hence permuting

the identities of the chromosomes in the interphase IPD matrix

(Methods). Pearson Correlation Coefficient (PCC) estimation

between initial IPD and progressive randomization showed

significant decrease in PCC values after 30 such permutations

(Figure S2). Interphase and prometaphase IPDs were found to be

positively correlated (Figure 1E) with PCC of 0.904 (Figure 1G),

whereas IPDfib was uncorrelated with the randomized position

matrix (mean PCC of 0.17 with standard deviation of 0.13,

computed over 10,000 randomized matrices) (Figure 1F - a

representative scatter plot, 1G and Figure S3), confirming the non-

random organization of the chromosomes in interphase cell

nucleus.

To probe the possible correlation between the chromosome

positions and their gene activity (Figure 2A), we generated an

Inter-chromosomal Activity Distance (IAD) matrix for fibroblast

from the microarray data (Figure 2B) obtained from Goetze et al

[28]. Figure 1A shows the schematic of gene activities being

classified to ith and jth chromosomes, which is then further used to

compute the (i,j)th value in the IAD matrix. From the microarray

data, genes were grouped into their respective chromosomes and

the mean logarithmic chromosomal activities (Achr) were obtained

(Methods). The density of genes on a chromosome does not

correlate with the length of the chromosomes (Figure S1A). For

instance, chromosome 18 is larger than chromosome 19, but the

former has smaller number of genes as compared to the latter

(Figure S1B). Considering this, chromosomal activity was com-

puted by normalizing total activity of all the genes by the

annotated number of genes and not by the chromosome size.

Interchromosome Activity Distance (IAD) was then computed as:

IADfib
ij ~ Achri{Achrj

�� ��,

Use of logarithmic scale captures expression levels over several

orders of magnitude. Lower IAD values, shown by cooler colors in

the heat map, represent - pairs with similar transcriptional activity,

whereas warmer colors represent higher IAD or dissimilar

chromosomal activities, as seen in Figure 2B. The correlations

between IADfib and IPDfib matrices at interphase (Figure 2C),

revealed a positive slope (1.23) and PCC (0.58, Figure 2E) with a

small false discovery rate (FDR) 0f 0.11 (Figure S4 and Table S1).

To probe the specificity of this correlation, we used the IPD at

prometaphase (IPDprometaphase) as a negative control. Indeed, we

obtained a lower slope (0.44) and PCC (0.27) when IADfib (for

interphase) was correlated with IPDprometaphase (Figure S3 B), with

a larger FDR ,0.29 (Table S1 & Figure S4C) suggesting that IPD

at interphase is more correlated with IAD at interphase.

Correlation with randomized matrix exhibited negative slope

(20.37, Figure 2D) for a typical randomized matrix (Figure 1D)

and even smaller average PCC of 0.12 (Figure 2E & Figure S3D)

further indicating the non-randomness in the correlation. To

probe the effect of chromosome size on the observed correlation

between IPD and IAD, we generated a matrix of chromosome

basepair length differences (Interchromosome Basepair Distance,

IBD) (Methods and Figure S1C). This matrix showed some degree

of similarity to IPD and correlated well with the IPD matrix (PCC

,0.54) (Figure S1D & S1F). But when IBD was correlated with

the IAD matrix, a very weak correlation of PCC ,0.15 was

observed (Figure S1E and S1F). This suggested that though

chromosome size contribute to the observed pattern in IPD, the

correlation between IPD and IBD were not influenced by the

chromosome sizes. The Interchromosomal Activity Distance

matrix used in the correlations was generated by computing the

mean of the genes present in the chromosome. This takes into

account all the genes irrespective of their activity level. To probe

the correlation due to a small subset of genes on the chromosome,

which will correspond to smaller active regions of chromosomes (as

the active genes are not uniformly distributed throughout the

length of chromosome), we selected genes (,25% of the genome)

which are highly expressing in each chromosome by applying a

threshold (more than 40% of the mean chromosome activity) in

the gene expression. We generated the IAD matrix (Figure S5A)

Correlating Chromosome Positions & Transcription
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from these selected genes (IADselect) and calculated the correla-

tions. The correlation obtained after selection of genes was similar

to the correlation when all genes in the chromosome were used

(Figure S5B & S5C), suggesting that the correlation is not due to

whole chromosome averaging. These results suggests that the

mean distances between chromosomes are more correlated with

gene activity distances in fibroblasts at interphase as compared to

prometaphase and are uncorrelated with random organization.

Methods to identify cell-type specific gene expression
profiles and its correlation to chromosome positions

Different cell types in an organism are characterized by their

distinct transcriptomes. Correlation of gene expression to chro-

mosome organization implies that cell types will differ in the

positions of the chromosomes, such that the spatial organization of

a given cell type exhibits larger correlation with its own expression

pattern. In the presence of cell type specific correlation between

IPD and IAD, the correlation should be smaller when IPDfib is

correlated with IAD of other cell types. To further extend our

approach to test such cell type specific correspondence, we

correlated IPDfib of fibroblast (for interphase) and IADs of

fibroblast, lung endothelial cells, oocyte and Human Umbilical

Vascular Endothelial Cells- HUVECs. As the IADfib of fibroblast

at interphase correlated the most with the IPD of fibroblast at

interphase, IPD of fibroblast with interphase was further used for

testing the cell type specific correlation.

From the transcriptome of different cell types, cell type specific

genes were selected by excluding similarly expressing genes in pair

wise comparison with fibroblasts to generate IADs (Figure 3A).

Two activity matrices were generated for each pair of cell type

compared: (a) IADother-fib- computed from the activity of genes in

the other cell type which are differentially expressed in comparison

to fibroblasts (Methods) and (b) IADfib-other- computed from

activity of the same genes selected above, in fibroblast. Such

activity matrices were computed for each of the three pairs,

fibroblast-lung (Figure 3B), fibroblast-oocyte and fibroblast-

HUVEC (Methods, Table S2, and Figure S6A & C). Figure 3C

depicts the difference matrix of IADfib-lung and IADlung-fib for the

differentially expressed genes of fibroblast and lung cells. Figure

S6B & D shows difference matrices for other cell type pairs. The

PCCs were higher when IPDfib was correlated with IADfib-other,

whereas the PCCs were comparatively smaller when IPDfib was

correlated with IADother-fib (Figure 3D, Figure S6, Figure S7,

Table S1).

These observations suggest that the association between the

chromosome topologies and transcription maps is indeed cell type-

Figure 1. Generation of IPD matrices. (A) Schematic description of the procedure for generating the IPDfib matrix from the mean distances
between pairs of chromosome centroids in the nuclei of human fibroblasts, and the IADfib matrix from microarray expression data grouped into
chromosomes. (B) IPDfib matrix for interphase fibroblasts represented in color code: warmer colors represent larger inter-chromosome distances and
cooler colors smaller distances. Rows and columns indicate chromosome number. (C) IPDprometaphase matrix for prometaphase stage of fibroblasts.
Black and violet boxes in (B) and (C) represents clusters of chromosome pairs showing smaller and larger IPD values respectively.(D) IPDrand matrix for
randomized chromosome positions obtained by randomizing IPDfib(Color scale bar-Inter-chromsome distance, in units of fraction of nuclear radius).
(E) Scatter plot between IPDfib and IPDmetaphase. (F) Scatter plot between IPDfib and IPDrand. (G) Pearson correlation coefficients for correlations in (E)
and (F). In case of IPDrand, the PCC was the mean of hundred randomizations.
doi:10.1371/journal.pone.0046628.g001
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specific. Similarly, higher PCC were obtained when IADfib-other

were correlated with IPDfib
min computed from minimum distances

between chromosomes andIPDfib
MDS obtained from the multi-

dimensional scaling (MDS) of chromosome positions provided by

Bolzer et al. as against correlations obtained with IPDother-fib

(Methods and Figure S8).

Numerical simulation to probe the coupling between
chromosome positions and transcription factor networks

Genome-wide chromatin interaction experiments have suggest-

ed preferential association of genes co-regulated by similar

transcription factors [32]. Such cis-(same chromosome) and trans-

(different chromosome) associations have also been shown for co-

regulated genes at post transcriptional level at other nuclear bodies

[33,34], suggesting spatial association of genomic elements to

facilitate function. In order to probe such associations we devised

an energy optimization function and numerical simulation

technique which linked the chromosome positions (IPD) to the

co-regulated TFNs. In particular, we examined to what extent two

chromosomes participate in the same transcription network, tend

to be close by. For this purpose, we constructed a function H,

which measures if nearby chromosomes contain co-regulated

genes which belong to a particular functional transcription factor

network (Figure 4A). This approach eliminates the whole

chromosome averaging that we performed while computing the

correlations between IPD and IAD, and considers the activities of

only genes which are regulated by a particular transcription factor.

However, the position information of genomic elements currently

available are at the resolution of chromosomes, leading to coarse

graining of this energy optimization function at similar length

Figure 2. Generation of IAD matrices and its correlations with
IPD. (A) Schematic representation of the hypothesis that position of
chromosomes is correlated to the activities of the chromosomes. (B)
IADfib matrix for interphase fibroblast, in arbitrary units. Warmer color
shows larger difference in activities and cooler color indicates smaller
differences. (C) Scatter plot between IPDfib and IADfib. (D) Scatter plot
between IPDrand and IADfib. (E) Pearson correlation coefficient for the
correlations in (D) and (E).
doi:10.1371/journal.pone.0046628.g002 Figure 3. Methods to identify cell-type specific gene expres-

sion profiles and its correlation to chromosome positions. (A)
Schematic description of pairwise comparison of fibroblast with each of
the other three human cell types, lung, HUVEC and oocytes. In each
comparison, the IPDfib specific for fibroblast is correlated with
IADfib-other of fibroblast, which sums genes expressed in fibroblasts
and not in the other cell type, and with IADother-fib which includes genes
expressed in the other cell type (lung, oocyte or HUVEC) and not in
fibroblasts. (B) IADfib-lung (in arbitrary units) matrix for genes specifically
expressed in fibroblast when compared with lungs. (C) Difference
matrix (IADfib-lung – IADlung-fib, in arbitrary units) enhances genes
differentially expressing in lungs as compared to fibroblast (D). Pearson
correlation coefficients (PCC) for the correlation between fibroblast
nuclear organization IPDfib and the expression distances IADfib-other and
IADother-fib, for each of the comparisons with the other cell types, lung,
HUVEC or oocyte.
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scales. H takes into account both spatial arrangement of

chromosomes and the activity of the 87 known annotated TFNs

[29], and quantifies how well they correspond to each other. The

spatial part of H is represented in terms of an adjacency matrix

(Figure 4B),

Afib
ij ~ exp {IPDfib

ij = l
� �

The parameter l, is the distance parameter used to scale the

distances to the length scale of chromosomes. The part of H which

involves the contribution from transcription factor networks is

introduced as a network matrix (Figure 4C) which is defined as,

Wcell
if ~ln Icell

if

� �
,

where Icell
if is the integrated microarray intensity of genes present in

the i-th chromosome that participate in network ‘‘f’’ in cell-type

‘‘cell’’ of the four cell types. Similar to definition of the IAD,

logarithmic scale captures the different orders of magnitudes of

gene expression. The TF networks which form the network matrix

vary from very small networks (,10 genes) to large networks

(.300 genes, Figure S9A). To characterize the TF networks for

variability in their sizes, we computed the occupancy of

chromosomes for each TF network (Figure S9B), which is defined

as the fraction of total number chromosomes which have at least

one gene from the TF network. Large TFNs have occupancy ,1

suggesting that the target genes of these TFNs are scattered

throughout the genome, whereas, smaller TFNs (,50 genes) have

occupancy ,0.5, suggesting that their target genes are clustered

on a few chromosomes. But this clustering of genes of a TFN are

not biased by chromosome size, i.e the genes are present on

smaller as well as larger chromosomes (Figure S9A). Further larger

chromosomes and gene rich chromosomes were observed to be

associated with a larger number of TFNs (Figure S10 and Table

S3). The function H, which has contributions from spatial

organization of chromosomes and the activity of transcription

factor networks, is given by,

Hcell~
X

ij

Afib
ij

X
f

Wcell
if -Wcell

jf

� �2

H is obtained by summing over all networks f for all possible

pairs i-j of chromosomes, weighted according to the proximity of

the chromosomes provided by the adjacency matrix, Afib
ij . The

distance parameter l, weights the IPD values, such that smaller

IPD values attain larger adjacency and vice versa. Moreover l
makes a sharp distinction between nearby and distant chromo-

somes. For each pair i-j of chromosomes, we examine the

similarity in the expression levels of genes that belong to a certain

network f, by summing their squared difference Wcell
if -Wcell

jf

� �2

(this

ensures the contribution from each pair is positive) and tends to

zero for similar activity. The matrices are defined such that when

the organization of the chromosomes is correlated with the activity

Figure 4. Numerical simulation to probe coupling between chromosome positions and TFNs. (A) Schematic description of how the
function H is calculated by generating the adjacency matrix, Afib, from the inter-chromosome distances IPDfib of fibroblast nuclei, and the Network
matrices, Wcell

if, from expression of genes controlled by the various transcription factors, f, in cell-type ‘‘cell’’, sorted into chromosomes i. (B) Color
coded representation of the Adjacency matrix Afib

ij = exp (2IPDfib
ij/l), between chromosomes in interphase fibroblasts (logarithmic scale). (C)

Representation of the network matrix Wfib
if for 87 TFNs in fibroblasts (in arbitrary units).

doi:10.1371/journal.pone.0046628.g004

Correlating Chromosome Positions & Transcription

PLOS ONE | www.plosone.org 5 October 2012 | Volume 7 | Issue 10 | e46628



of transcription factor networks, adjacency matrix tends to larger

values, whereas Wcell
if -Wcell

jf

� �2

approaches smaller values. In this

condition H is defined such that it attains a minimum value. Any

deviation from the optimal configuration results in pairing of large

adjacency values with large values of Wcell
if -Wcell

jf

� �2

leading to an

increase in the value of H.

We used numerical simulations to test the above hypothesis.

Before performing the actual simulations, we estimated the

optimal value of the distance parameter, l to be ,7% of the

nuclear radius, and it provided the largest increase in the value of

H (Figure S11A). We used this distance parameter for all the

numerical solutions. To probe the optimality of the value of H, we

simulated different configurations of chromosome organization by

randomizing the adjacency matrix. The randomization was

performed by progressively randomizing the position of pairs of

chromosomes by swapping the rows and the columns of the

adjacency matrix. Hcell was computed after each step of

randomization, for 104 iterations. Hcell increases upon randomi-

zation mostly during the first 200 steps (Figure 5A). Histogram of

the 104 recorded Hcell values, normalized to its mean Hcell
av and

standard deviation s showed a similar range of H values for all the

cell types with H0 differing with cell type. (Figure 5B and Figure

S11B). A common measure of optimality is the deviation of initial,

actual value Hcell
0 below the average random value,Hcell

av , taken in

units of s, DHcell~ Hcell
av -Hcell

0

� �
=s. Large deviations indicate that

the actual configuration is optimal.

Following this procedure, we find that DHfib (DHcell for

fibroblast) for fibroblast is 1.97, implying a p-value of 0.05

(Figure 5B, inset). This indicates a rather small probability of

obtaining a superior configuration through random reorganization

of chromosomes in fibroblasts. The network matrix of a given cell

type represents its characteristic transcriptional program and the

resulting transcriptome. One therefore expects that the coupling

between the physical organization and transcription networks will

be cell type-specific. Since the spatial part of H is taken from

fibroblasts, namely the adjacencyAfib
ij , it should exhibit better fit to

fibroblast network activity,Wfib
if , than to the activity of the other cell

types. In accord, the deviations for the other three cell types were

lower than that of fibroblasts, the values being DHlung = 0.92,

DHHUVEC = 1.02 and DHoocyte = 0.71. These correspond to p-

values of 0.35, 0.31 and 0.48, respectively, indicating that H values

obtained for different cell types are not significantly different from

the values obtained for a random configuration of chromosomes.

Further, the obtained p- values were independent of the mode of

simulation; exclusion of homologues from the simulation and non

cumulative randomization resulted in similar p values (Figure S12

and Methods). These results suggest that IPDfib of fibroblast fits

better to its own transcriptomes than to those of other cell types.

To analyze the sensitivity of individual TFNs, H values were

computed by randomization of the adjacency matrix for the

chosen network. The evolution of the H value for the first 200

iterations was plotted for each network. ,70% of networks

showed an increase in the H value (Figure 5C) whereas remaining

30% showed a small decrease (Figure 5D). This indicates the

differential contribution of the networks towards optimization of

the coupling between TFNs and chromosomal organization.

Larger increase in H value for 70% of the networks is in

accordance with increase in the value of H when all networks are

considered. Figure 5E shows a list of networks that exhibited

maximal changes in H values, indicating its sensitivity to

perturbations in chromosomal positions. To probe the contribu-

tion of TF networks towards differential increase in the value of H,

we correlated the change in H value, DH/H0 with the number of

genes in the TF network considered for simulation (Figure S13A).

It was observed that DH/H0 and the number of target genes of a

TF network were inversely correlated with decreasing degree of

correlation with increase in the distance parameter l (Figure

S13B). As previously observed, the occupancy of the chromosomes

has an exponential dependence on the number of target genes of a

TF network. This indicates that a large increase in H results from

small TFNs, with target genes clustered over a small number of

chromosomes. These results indicate that large TFNs which have

genes present on all the chromosomes probably regulate house-

keeping genes and hence do not contribute strongly towards cell

type specific responses.

Experimental validation
Our numerical approaches suggested that spatial arrangements

of chromosomes in a given cell type (human fibroblasts) is

optimized to its expression pattern better than it fits to the

expression patterns in other cell types. To further validate the

results from proposed numerical approaches, we experimentally

tested the correlation between chromosome positioning and gene

expression in another cell type of a different mammal, murine T

cells, in two distinct transcription states of naı̈ve and in vitro

activated T cells, where the global mRNA levels increase by ,5

fold [35]. We generated IAD for both the naı̈ve and activated T

cells (IADNaive and IADActivated) from genome-wide microarray

data (GEO accession number GSE30196) obtained from our

experiments (Figure 6A & B). The microarray was done in

duplicates. IPD was estimated for candidate pairs of chromosomes

1–3, 1–4, 1–6, 3–17, 4–17 and 13–17 (which harbor 30% of the

differentially expressed genes identified in the microarray) by 3D

FISH performed in naı̈ve and activated T cells (IPDNaive and

IPDActivated) (Figure 6D). The cells used for estimation of IPD were

obtained from different batches of cell purification, using similar

methods as for IAD estimation. The homogeneity between the

cells isolated from two different mice was quantified by comparing

differences in number of differentially regulated genes at similar

conditions from two biological replicates. Figure S14 shows that

the number of differentially regulated genes are more than ten

folds higher in between different states of T Cell (e.g. naı̈ve NC1

and activated NC2) isolated in same batch when compared to the

number of differentially regulated genes, between biological

replicates of same cell type (e.g. naı̈ve NC1 and naı̈ve NC2).

IAD matrices computed from the biological replicates also showed

very small variations (measured as matrix of standard deviation

between IAD values generated from two replicates) indicating that

different batches of cells does not significantly alter the IAD matrix

(Fig S15). The IPD which we used in earlier correlations, was

generated from the centroid positions of the chromosomes

obtained from 3D chromosome FISH (Fig 6D and Fig S16).

Inter-centroid distances are biased by the size of the chromosomes.

Two large chromosomes will tend to have their centroids farther

apart as compared to small chromosomes, even though the

distance between the chromosome surfaces may be same. To

overcome this drawback, we generated the IPDs for specific pairs

of T Cells by measuring the distance between the chromosome

surfaces. The IPDs were generated using minimum interface

distance among all the four possible interface distances between

the pair. (Figure 6E) The IPD of Naı̈ve and Activated T cells were

correlated with their respective IADs and IADMuscle of murine

muscle cells (Figure 6C). The obtained PCC values using IPD and

IAD (Table S4) of both naı̈ve (0.28) and activated states (0.46) were

higher in contrast to PCC computed between IADMuscle and IPD

of T cells (0.002- IPDNaı̈ve, 0.27-IPDActivated). Interestingly, the

Correlating Chromosome Positions & Transcription
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differences in the correlation coefficients are similar

(0.2820.002 = 0.278 and 0.4620.27 = 0.19) for both naı̈ve and

activated T cells when compared to muscle cells. These results

indicate that correlation between chromosome organization and

their transcriptional output is a general phenomenon which can be

observed in multiple cell types.

Discussion

Random loop polymer models have been extensively used to

understand the internal architecture of chromosomes. These

studies suggest a gene expression based looping probability of the

chromatin fibre which leads to formation of functional DNA

domains and confinement of chromatin to chromosome [36–38].

Transcriptional activity based chromosome intermingling has also

been used to explain the frequent juxtaposition of certain pairs of

chromosomes and the resulting chromosomal translocation [14].

But very few methods are present to quantitatively measure the

correlation between the physical proximity of chromosomes and

transcriptional activity [16]. In this work we propose methods to

probe the correspondence between the chromosome positions and

global gene expression program. While chromosomes have been

found to be radially distributed from the nuclear centroid

according to their gene density [39–41], our methods were able

to assess a further layer of three dimensional organization, in

which the relative chromosome positions correlated with gene

expression. Previous studies suggest both random[42,43] and non

random [27,44,45] chromosome positions, whereas our results and

analysis revealed the non-random organization within the

Figure 5. Computation of function H to measure the correlation between physical organization (IPD) and network activity (W). (A)
Evolution of H value when the adjacency matrix Afib

ij is randomized. (B) The normalized histogram represents the distribution of the H-Values for all
four cell types. Inset shows deviations DHcell of Hcell

0 from average random Hcell
av measured in units of standard deviation s (C, D) Differential

changes in the evolution of H value for individual TFNs (c-increase, d-decrease). (E) Selected TFNs which show large increase and decrease in H-value.
Error bars indicate S.E.M over 20 simulations.
doi:10.1371/journal.pone.0046628.g005
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fibroblast nucleus [27]. The IADs computed from the microarray

data showed correlation between relative chromosome activities

and their respective positions. These correlations support the co-

clustering of genes for transcriptional control [21] by a fewer

number of observed transcription factories [13,15]. The observed

correlations may also have contribution from noise due to coarse

graining and population averaging of the chromosome positions

and their activities. Further, noise in chromosome activity

measurements could also be contributed by the matured mRNA

which does not exactly represent the stochastic nature of short

lived nascent mRNA transcripts produced at the sites of

transcription at single cell level [46,47]. The correlations can be

improved by extending the methodology described here to build a

more detailed IPD for smaller continuous regions of the

chromosome and their corresponding IADs. Our evaluation

methods in different cell types suggested that arrangement of co-

clustered [48] genes must be cell type specific as we find a lack of

correlation between chromosome positions of one cell type with

the gene expression program of another cell type . The cell type

specific transcriptional programs are usually turned on by cell type

specific TF networks [49], suggesting their involvement in

modulating inter-chromosome interactions. Previous simulation

and modeling work on the role of transcription factors in

organization of genome in E. coli suggested formation of DNA

regulatory domains of co-regulated TF target genes [50]. Similarly

in yeast, target genes of TFs were shown to be preferentially co-

clustered on the same chromosome [51]. In this work we have

taken this idea further to suggest role of TF networks in elucidating

Figure 6. Experimental validation of the coupling between spatial organization and activity in Mouse T cells. (A) IADNaive matrix for
murine naı̈ve T cells. (B) IADActivated for activated T cells. (C) IADMuscle for muscle cells. (D) Representative images of different pairs of chromosomes
(red and green) in naı̈ve (upper panel) and activated T-Cells (lower panel) with DNA in blue, scale bar ,5 mm. The chromosome pairs are arranged in
increasing order of mean IPD values. (E) Schematic depiction of estimating the mean IPD from the four minimum distances between the interfaces of
the four homologues of a pair of chromosomes. (F) Pearson correlation coefficients (PCC) computed for IAD of T cells or muscle cells with IPD of T
cells.
doi:10.1371/journal.pone.0046628.g006
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relative chromosome proximities in nucleus. Numerical simula-

tions shown here suggest that the activity of TFNs was correlated

with relative positions of chromosomes. An optimality measure H

was devised to quantitatively understand the coupling between 3D

chromosome positions and TFNs. Our predictions of the

correspondence between chromosome positions and global gene

expression were experimentally validated in naı̈ve and activated

states of mouse T-cells. These results evidenced correlations

between the IPD and IAD of T cells whereas smaller correlations

were observed between IPD of T cells and IAD of muscle cells.

Taken together, our methodologies were able to quantify

correspondence between global gene expression program and

three-dimensional architecture of chromosome positions. While

co-clustered genes have been shown to be co-regulated [21,52,53],

methods proposed here take these findings to the large-scale

organization of the nucleus where transcription dependent

intermingling of proximal chromosome territories may become

feasible. Interestingly, these correlations are found both at the

scale of transcriptome and at the scale of separate transcriptional

networks [54]. Our findings suggest that the observed correlations

between relative chromosome positions and transcriptional output

are specific to a given cell type. The measured correlations are at

steady state and with time averaged expression profiles, which

smears the time resolved correspondence between chromosome

positions and transcriptional activity. However, mechanistic

insights into the origin of such correlations could be gained if

such correlations are observed during the process of differentia-

tion. Such refinements in IPD and IAD at single cell resolutions

can in future yield better insight about contribution of transcrip-

tion in relative chromosome organization. In addition, the

chromosome position in the nucleus is a result of integration of

many functional and spatial organizational cues like epigenetic

modifications [55], transcription machinery density, post tran-

scriptional or replication requirements. The methodology present-

ed here can be easily adapted to further investigate the

contribution of these factors by quantifying them at similar

resolution as IPD for chromosomes. The general mechanisms of

chromosome topology [11] and their functional links will become

apparent as one simultaneously probes the temporal evolution of

these correlations through the process of cellular differentiation

and its maintenance through cell cycle.

Current methods to evaluate chromosome positions and its

impact on gene expression have remained empirical. The

introduction of 2D matrix for chromosome positions enabled an

analysis of transcriptional changes through cellular differentiation

[16]. Our methods further establish the coupling between

chromosome positions optimized for a given cell type on a

quantitative framework. By implementing comparative analysis

methods between chromosome position matrix and activity matrix

we were able to evaluate the coupling between TFNs and

chromosome organization. Our proposal of a phenomenological

analytical function (H), allow a systematic numerical simulation of

correlations relating the TFNs and chromosome topology. The

function H could be modified to include epigenetic modifications

or active RNA polymerase interactions to construct an activity

distance matrix of these parameters. This method could be

adapted to chromosome sub-domains by painting smaller regions

of chromosomes or using contact probabilities from chromosome

capture assay [11] and correlating them with the corresponding

activity distance matrix of these parameters. These matrices may

further provide correlations at a finer resolution of gene clusters

and their correspondence with transcription. We suggest that our

methods describing interfaces of CTs in conjunction with

chromosome capture assays may also facilitate identifying cell

type specific functional gene clusters. The methods described in

this work could also be useful in establishing correlations between

three dimensional organizations of chromosome positions with

other functional networks like signaling networks and chromatin

remodeling networks.

Methods

Ethics Statement
All experiments involving animals were performed with the

approval of the Institutional Animal Ethics Committee at National

Centre for Biological Sciences, Bangalore headed by Prof. Mathew

with committee members Professors Upinder Bhalla, Sumantra

Chatterjee, MM Panicker and R. Sowdhamini. Approval ID for

the project is AS-5/1/2008.

Inter-chromosome distance (IPD)
The Inter-chromosomal Physical Distance (IPDfib) for fibroblast

was obtained from the chromosomal distances as:

IPD
fib
ij ~S~rri{~rrj

�� ��T~S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi{xj)

2z(yi{yj)
2z(zi{zj)

2
q

T

Where ri and rj are the chromosomal distances from the nuclear

centroid (in units of nuclear radius) in case of interphase and from

centre of the prometaphase ring in case of the prometaphase

chromosomes, obtained from Bolzer et al.[27]. Each element in the

matrix is calculated from the mean of four possible distances

between two pairs of homologous chromosomes (as the current

experiments cannot distinguish between two different homologues

of same chromosome), and further averaged over the 54 nuclei.

Similar IPD matrices were constructed using the MDS distances

(IPDMDS) and minimum distances between the four possible values

between two pairs of homologous chromosomes (IPDMin).

IPD Randomization procedure
The interchromosomal physical distance, IPDrand for a random

configuration of the nucleus was obtained from iterative swapping

of the chromosomes in the fibroblast nucleus, by shuffling the rows

and columns of the IPDfib matrix for 200 iterations (Figure S1),

which was sufficient for complete randomization, i.e. loss of

chromosome position information from the initial configuration.

The randomization process was designed to obey the triangle

inequality, a basic property of Cartesian metric space, as no new

spatial coordinates are created other than the actual ri already

present. Rather, the rows and columns of the IPD matrix were

interchanged in a cumulative fashion, with each shuffling

performed on the previously shuffled matrix.

Inter-chromosome Basepair length Differences (IBD)
Matrix

Differences in chromosome basepair length size was represented

as Inter-chromosome Basepair length difference (IBD) matrix

defined as

IBD i,jð Þ~ Chrbp ið Þ{Chrbp(j)j j

Where Chrbp(j) and Chrbp(j) are the basepair lengths of

chromosome i and j respectively.
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Inter-chromosome Activity (IAD) Matrices
The Inter-chromosome Activity Distance (IAD) was created

from the microarray data of fibroblast, obtained from Goetze et

al.[28] (GEO accession no.-GSM157869). In the microarray there

are multiple probes for a single gene. The activity of a gene in

arbitrary units was obtained by calculating the mean intensity of

the multiple probes for a given gene. The genes were further

grouped into individual chromosomes and the activities were

integrated over the whole chromosome. The total number of genes

in each chromosome was obtained (http://vega.sanger.ac.uk/

Homo_sapiens/index.html, as on Nov 11, 2008) and used to

estimate the mean chromosome activity as:

AChr
fib
i ~ln

P
k

xik

N

0
@

1
A

Where xik denotes the activity of kth gene in the microarray for

chromosome i and N is the total number of annotated genes in a

chromosome with summation done over all genes in the

microarray for a particular chromosome. Logarithmic activities

were obtained for each chromosome to account for the large

dynamic range of the gene expression data. The IAD matrix was

generated from the logarithmic chromosome activity as:

IAD
fib
ij ~ AChr

fib
i {AChr

fib
j

���
���

To generate the IAD matrices for additional cell types the

microarray data for lung, oocytes and HUVEC were obtained

from Gene Expression Omnibus website (http://www.ncbi.nlm.

nih.gov/geo). The accession number for the datasets are

GSM101102 (lungs cells) [56], GSM288812 (oocytes) [57] and

GSM215557 (HUVECs) [58]. The chosen microarray data was

performed on Affymetrix GeneChip and MAS5 algorithm was

used to calculate probe intensity, identical to that of fibroblast

microarray data. In order to normalize the intensity variation

between different cell types the microarray data was normalized to

the mean of the probes in the array.

(x norm)i~
xi

�xx

where (x_norm)i is the normalized activity of the probe and �xx is the

average activity of the probes in the array. The activity of a gene

was calculated by taking the mean of the normalized probe

intensities. To evaluate cell-type specific activities, cell types were

considered as pairs (fibroblast-lung, fibroblast-HUVEC and

fibroblast-oocyte). For example, if fibroblast and lung is considered

as a pair, the differentially expressed genes between the two cell

types were selected based on the expression level differences of

corresponding genes in the two cell types. Genes with expression

level difference of more than 1FWHM (Full Width at Half

Maxima, calculated from the difference histogram) were selected.

Hence, the activities of same genes from both cell types were

compared. Further, these genes were partitioned into their

respective chromosomes and the IAD matrix for each cell type

was computed with their respective logarithmic activities (similar

to IADfib). The two resulting matrices were named as IADfib-lung, if

activity is computed from fibroblast microarray data and IADlung-

fib, if the activity is computed from microarray of lung cells. This

ensures that the number of genes selected for a given chromosome

is same in both the cell types

Adjacency and network matrix
The physical space of chromosomes was represented by the

IPDfib matrix. To enhance the sensitivity of the chromosome

positions, an adjacency matrix was generated with weights for

each inter-chromosome distance as:

A
fib
ij ~e

{
IPD

fib
ij

l

Where, the l in the exponential is the distance parameter which

was varied from 2–80% of typical nuclear radius, to find the

optimum l. Upon variation of l, the increase in H-value was

computed (Figure S7) and the l which showed maximum increase

was selected as the optimal l for the simulation. This functional

form of adjacency matrix with a steep slope is sensitive to change

in chromosome positions. The exponential form was used to detect

small deviations in chromosome organization from the optimum

configuration. The network space was represented by a network

matrix Wcell
if

� �
, consisting of 87 annotated transcription factor (TF)

networks obtained from Transcription Regulatory Element

Database database (TRED), Jiang et al [56]. The genes in the

TF network were identified in the microarray data for human

fibroblast, lung, oocyte and HUVEC cell types and grouped into

chromosomes. Chromosomal activity of genes involved in a

particular TF network was obtained by calculating the natural

logarithm of the integrated activities of all the identified genes in a

chromosome. The chromosomes in which no genes were

identified, a value of zero was assigned for that chromosome in

the network matrix. A column vector was created for individual

networks,

Wcell
i ~ln(Icell

i )

where column f represents single TF network. The 87 column

vectors were aligned to obtain the network matrix for the TF

network,

Wcell
if ~ln(Icell

if )

where f is a network and i a chromosome.

All abbreviations used are listed in Table S5.

Mouse T-cell Microarray and Analysis
For T-cell experiments, cells were isolated from spleens of C57/

Bl6 mice. All animals were bred and maintained in the NCBS

animal house facility. Experiments were performed with the

approval of the Institutional Animal Ethics Committee at NCBS,

Bangalore, India. CD4+ naı̈ve T-cells were isolated from spleen of

8–10 week old mice using MagCellect isolation kit (R&D Systems,

MN, USA) activated for 36 hours using aCD3-aCD28 coated

beads (Invitrogen, CA, USA). This method consistently produces

90–98% pure populations of T cells (according to manufacturer’s

protocol). Microarray experiments on cells, purified in our

laboratory at NCBS, Bangalore, were carried out at Genotypic

(Bangalore, India). Duplicate experiments were done for both

naı̈ve and activated T cells. RNA extraction was done using

RNeasy Minikit (Qiagen, UK), concentration and purity were

determined using NanodropH ND-1000 spectrophotometer (Na-
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noDrop Technologies, Wilmington, DE, USA). The integrity of

RNA was verified on an Agilent 2100 Bioanalyzer using the RNA

6000 Nano LabChip (Agilent Technologies, CA, USA). Equal

amounts of RNA was labeled using Agilent dye Cy3 CTP and

hybridized to Mus musculus GeneExpression Array 4X44K

(AMADID -014868). The slides were scanned using Agilent

Microarray Scanner G2505 version C at 2 mm resolution, and

data was extracted using Feature Extraction software v 9.5 of

Agilent. Though the microarray was performed on two batches of

T cells obtained from two different mice, the gene expression

across replicates was very similar as compared to the gene

expression between naı̈ve and activated T Cells, and hence it does

not introduce significant noise in the analysis.To further minimize

the noise in estimation of genome wide expression profile, mean of

probe intensity for two duplicates was computed. Mean of

intensities of probes for the same gene was calculated to obtain

the activity per gene. Further, genes were grouped into

chromosomes and IAD matrix was computed as explained earlier.

The microarray data is MIAME compliant and accessible on

GEO website (http://www.ncbi.nlm.nih.gov/geo/; accession

number GSE30196).Microarray data of murine muscle cells was

obtained from Gene Expression Omnibus (GEO accession

number GSM247205) and used as a negative control.

Chromosome painting and image analysis
For chromosome painting experiments, cells were stuck on PDL

coated slides followed by fixation in 4% PFA for 10 minutes. PFA

was neutralized with 0.1M Tris-HCl and then the cells were

washed and permeabilized with 0.5% Triton X-100 for 8 minutes.

This was followed by incubation in 20% glycerol for 1 hour and

then 5 or 6 freeze-thaw cycles in liquid nitrogen. After this, cells

were treated with 0.1N HCl for 10 minutes, washed and

equilibrated in 50% Formamide/2X SSC overnight at 4uC.

Hybridization was set up the following day. Cells were denatured

in 70% formamide/2X SSC at 85uC for 2 minutes and then

incubated with the fluorescently labeled mouse whole chromo-

some FISH probes (Cambio, Cambridge, UK) for 2–3 days in a

moist chamber at 37uC with shaking. At the end of the incubation

period, slides were washed thrice each in 50% Formamide/2X

SSC at 45uC and 0.1X SSC at 60uC. Cells were counterstained

with Hoechst 33342 (Sigma, USA) and then mounted with

Vectashield (Vector Laboratories, CA, USA), sealed with coverslip

and imaged on a Zeiss 510-Meta confocal microscope.

Inter-chromosome interface distances were computed using a

custom written program in LabVIEW (National Instruments, TX,

USA). Confocal Z sections for each chromosome were thresholded

using (mean+standard deviation) of the fluorescence intensity of

the Z-stack. Edge detection algorithm was used on each

thresholded confocal section to obtain coordinates of chromosom-

al edge at each z plane. The three dimensional distance between

the edges of two chromosomes were computed. The interface

distance between two chromosomes was estimated by calculating

the minimum distance, out of all the distances computed between

the edge coordinates of the two chromosomes. Since two pairs of

chromosomes are labeled in each nucleus, four interface distances

were obtained. Average of the four interface distances for a given

pair of chromosomes was then used as IPDmean for the given pair

of chromosomes.

Statistical analysis
False discovery rate (FDR) was employed as a statistical measure

to test the significance of the correlations obtained (Figures S3 &

S5 and Table S2). The actual pearson correlation (PCC) value in

each case was denoted as PCC0. To compute the FDR, 105

randomized matrices (from either IPDfib or IPDprometaphase) were

generated (each randomized matrix was computed by permuting

its rows and columns) and each randomized matrix was correlated

with matrix under consideration. A histogram of all the PCC value

for the correlation between the matrices was generated and the

instances with PCC.PCC0. FDR was estimated as the fraction of

instances with PCC.PCC0

FDR~
Number of PCC valueswPCC0

Total number of PCC values

Supporting Information

Figure S1 Correlation of IPD and IAD with chromo-
some size differences. (A) Correlation between Gene number

and Chromosome size in base pairs. (B) Bar graph representing the

gene number and chromosome size plotted for gene poor

‘‘chromosome 18’’ and gene rich ‘‘chromosome 19’’. (C)

Interchromosome Basepair length Difference (IBD) matrix for

human fibroblasts. (D) Correlation between IPDfib and IBD of

fibroblast. (E) Correlation between IBD and IAD of fibroblast. (F)

Pearson Correlation Coefficients for IPD-IBD and IBD-IAD

correlation.

(TIF)

Figure S2 Scheme of randomization. (A) Sequence of color

coded matrices representing the difference between IPD0
fib -

before randomization and IPDfib - after every step of randomi-

zation. The colors represent the difference between randomized

IPD and first IPD0
fib matrix in units of nuclear radius. Before

randomization the values were all zero indicating unrandomized

matrix, whereas after several randomizations the matrix becomes

randomized. (B) Pearson correlation between IPD0
fib before

randomization and IPD after stepwise randomization (C) PCC

between IAD and IPD during stepwise randomization. Error bars

indicate S.E.M.

(TIF)

Figure S3 Correlation between IPD at different cell
cycle stages and IAD. Representative scatter plot and

corresponding fit between (A) IPDprometaphase and IPDrand and

(B) IPDprometaphase and IADfib for Human fibroblast. PCC

histogram for (C) IPDfib and IPDrand correlation and (D) IADfib

and IPDrand correlation s for 104 different randomized IPDrand

matrices

(TIF)

Figure S4 False Discovery rate estimation. (A) Histogram

of PCC values for correlation between IPDfib and IPDprometaphase

for 105 different randomized IPDrand matrices. Gray bars indicate

PCC values less than the PCC value of unrandomized matrix

(PCC0) and red indicates the values greater than PCC0. False

discovery rate (FDR) is computed as the fraction of PCC values

above PCC0. Histogram similar to (A) are shown for correlation

between IPDfib and IADfib (B) and for correlation between

IPDprometaphase and IADfib (C).

(TIF)

Figure S5 Correlation between IPD of fibroblast and
IAD of fibroblast from selected genes. (A) IADselect of

fibroblast generated from stringently selected genes with expres-

sion higher than 0.4 times the mean expression of the genes in a

chromosome. (B) Correlation between IPDfib and IADselect. (C)
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Distribution of PCC for correlation between 30,000 different

randomized IPD matrices and IADselect. The grey bars indicate

PCC,PCC0 and red bars represent false discovery with

PCC.PCC0

(TIF)

Figure S6 Matrices and scatter plot for comparison of
fibroblast with other cell types. (A) IADfib-oocyte matrix is

generated from the activity in fibroblast for differentially

expressing gene between fibroblast and oocyte. (B) Difference

between IADfib-oocyte and IADoocyte-fib, where IADoocyte-fib is the

matrix generated from activity in oocyte for differentially

expressing gene between fibroblast and oocyte. (C) and (D) are

computed similarly as matrices in (A) and (B) respectively for

IADfib-HUVEC. (E-G) Scatter plot and corresponding fits between

IPDfib and IADfib-other or IADother-fib where in (E) other = lung, (F)

other = oocyte and (G) other = HUVEC.

(TIF)

Figure S7 Estimation of false discovery rates for IPD
and IAD correlations for different cell types. (A–F) Grey

lines indicate PCC values less than the PCC value of the

unrandomized matrix (PCC0), whereas red lines indicate PCC

values greater than PCC0. FDR is computed as a fraction of the

PCC values above PCC0. PCC for correlation between IPDfib and

IADfib-other has a significantly smaller false discovery rates (FDR)

as compared to the PCC value for correlation between IPDfib and

IADother-fib.

(TIF)

Figure S8 Pearson correlation and slope for the corre-
lation between IPDfib and IADfib-other or IADother-fib

generated from (A) minimum distances (IPDmin) and (B) MDS

distances (IPDMDS) provided in Bolzer et al.

(TIF)

Figure S9 Characterization of TF networks. (A) Distribu-

tion of genes of a TF network (with,50 genes) over different

chromosomes. The distribution of genes are not biased by size of

the chromosome. (B) Occupancy of chromosomes for different TF

networks. Occupancy is defined as the fraction of chromosomes

having at least one gene from a TF network.

(TIF)

Figure S10 Dependance of Chromosomal association of
TFs on chromosome length and number of genes. (A)

Correlation between numbers of TFNs associated with a

chromosome and the length of chromosome in base pairs, with

a PCC of 0.53. (B) Correlation between number of TFNs

associated with a chromosome and the number of annotated

genes on that chromosome (PCC = 0.58).

(TIF)

Figure S11 Dependence of H-values on the distance
parameter. The variation of (H2H0)/s with variation in the

value of l (in units of % nuclear radius), shows a maximum value

at l= 7% of nuclear radius for all the different cell types. (B)

Histogram of H values for 10,000 iterations of randomization,

computed for four different cell types.

(TIF)

Figure S12 Different modes of simulation yield similar
p values for different cell types. (A) p values obtained for

estimation of H values without considering the adjacency matrix

values for homologues. (B) p values obtained for estimation of H

values without cumulative randomization of the adjacency matrix.

H values in this case are computed after 100 steps of

randomization of the adjacency matrix, for 10,000 iterations.

(TIF)

Figure S13 Dependance of Change in H value upon the
number of genes in a TF network. (A) Correlation between

DH/H0 and number of genes in a TF network. (B) Pearson

correlation coefficient of the correlation between DH/H0 and

number of TF network depends on the distance parameter (l).

(TIF)

Figure S14 Similarity in gene expression across batches
of T- cells. (A) scatter plot between log2 ratios of NC1 (Naı̈ve T

Cell, replicate 1) & NC2 (Naı̈ve T cell, replicate 2) , and log2

intensity of NC1 and NC2, showing that there are very few

differentially expressing genes across two different batches of

Naı̈ve T cells. (B) Scatter plot similar to (A) between AC1(Acti-

vated T cell, replicate 1) and AC2 (Activated T cell, replicate 2).

(C) Scatter plot between log2 ratios of NC1 and AC1, and log2

intensities of NC1 and AC1, showing large number of diiferen-

tially expressing genes, when Naı̈ve and Activated T cells of the

same batch are considered. (D) Scatter plot similar to (C) between

NC2 and AC2. (E) Number of differentially expressing genes when

either naı̈ve or activated T cells of different batches are considered

(NC1 vs NC2 and AC1 vs AC2), or when naı̈ve and activated T

cells of the same batch are compared (Nc1 vs AC1 and NC2 vs

AC2).

(TIF)

Figure S15 Variability in IAD matrix across batches of
cells. (A) Mean IADNaive matrix averaged over two replicates of

microarray from two batches of cells. (B) Matrix showing the

standard deviation in the value of IADNaive matrix. (C) Mean

IADActivated matrix. (D) Standard deviation in estimation of

IADActivated.

(TIF)

Figure S16 3D Chromosome FISH in Naı̈ve and Activat-
ed T-Cells. (A) Images of nuclei showing 6 different chromosome

pairs labeled in mouse naı̈ve and activated T-cells. White outline

indicates the boundary of the nucleus. (B) Interchromosomal

Interface distances in Naı̈ve and activated T cells. (B) Coefficient of

variation (s/m) computed for the interchromosome interface

distances for naı̈ve and activated T cells. Scale bar, 5 mm.

(TIF)

Table S1 Pearson Correlation and FDR Table. The table

shows the Pearson correlation and the corresponding false

discovery rates when Matrix 1 is correlated with Matrix 2

(TIF)

Table S2 Table of Differentially expressed genes within
cell types. The table represents the total number of annotated

genes and the number of genes selected for differential expression

between fibroblast and other cell types.

(TIF)

Table S3 Transcription Factor Network Association
with chromosomes. This table provides the number of

Transcription Factor networks associated with different chromo-

somes.

(TIF)

Table S4 T-Cell IPD and IAD table. The table shows the

IPD for naı̈ve and activated T-Cell for selected pairs of

chromosomes and IAD for Naı̈ve, Activated and Muscle cells for

the same pair of chromosomes.

(TIF)
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Table S5 Table of Abbreviations. This table provides the

meaning of the abbreviations and notations used in the

manuscript.

(TIF)
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