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Abstract

We show that a recently proposed model generates accurate commuting networks on 80 case studies from different
regions of the world (Europe and United-States) at different scales (e.g. municipalities, counties, regions). The model takes as
input the number of commuters coming in and out of each geographic unit and generates the matrix of commuting flows
between the units. The single parameter of the model follows a universal law that depends only on the scale of the
geographic units. We show that our model significantly outperforms two other approaches proposing a universal
commuting model [1,2], particularly when the geographic units are small (e.g. municipalities).

Citation: Lenormand M, Huet S, Gargiulo F, Deffuant G (2012) A Universal Model of Commuting Networks. PLoS ONE 7(10): e45985. doi:10.1371/
journal.pone.0045985

Editor: Renaud Lambiotte, University of Namur, Belgium

Received April 20, 2012; Accepted August 27, 2012; Published October 1, 2012

Copyright: � 2012 Lenormand et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This publication has been funded under the PRIMA (Prototypical Policy Impacts on Multifunctional Activities in Rural Municipalities) collaborative
project, EU 7th Framework Programme (ENV 2007-1), contract no. 212345 (https://prima.cemagref.fr/). The work of the first author has been funded by the
Auvergne region. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: maxime.lenormand@irstea.fr

Introduction

Billions of people move everyday from home to workplace and

generate networks of socio-economic relationships that are the

vector of social and economic dynamics such as epidemic

outbreaks, information flows, city development and traffic [1,3].

Understanding the essential properties of these networks and

reproducing them accurately is therefore a crucial issue for public

health institutions, policy makers, urban development, infrastruc-

ture planners, etc. [4,5]. This challenge is the subject of an

intensive scientific activity (see [6,7] for reviews), in which the

analogy of the gravitational attraction inspires a majority of

approaches [8,9]: the number of commuters between two

geographic units (cities, counties, regions…) is supposed pro-

portional to the product of the "masses" of each geographic unit

(the population for example) and inversely proportional to

a function of the distance between them. Unfortunately, numerous

experiments showed that the optimum function and parameter

values vary a lot with the case studies [4,5,10,11]. This situation is

not satisfactory because when one wants to generate a particular

commuting network without having the total origin destination

matrix of commuting, no practical heuristic is available for

choosing the adequate type of function and parameter values. This

paper addresses this problem.

We consider a recently proposed model [12,13], differentiating

itself from the usual gravity law models in two main features:

N It takes as input the total number of commuters in and out

from each geographic unit. With this starting point, the model

focuses directly on the influence of the distance between

geographic units on the commuting probability. The model is

data demanding, but these data are widely available.

N It builds the network progressively, allocating commuters one

by one in the different flows, according to probabilities that

increase with the number of commuters coming in the

destination and decrease with the distance between the origin

and destination. These probabilities are updated after each

allocation.

Our model is close to the traditional doubly-constrained

gravity model [8,9], but it is more flexible and less data

demanding. Indeed, the doubly constrained model and the

methods used to solve it require a closed network of commuters:

they cannot take into account commuting links outside the

considered geographical units. Our individual based stochastic

approach overcomes this problem and can deal with the usually

available data of total number of commuters in and out of

geographic units.

We test this model on 80 case-studies with geographic units

of different scales. For example in the same case-study the

geographic unit can be either the municipality, the canton or

the department, (see an example on Figure 1). More precisely,

the case studies include: Czech Republic (municipality scale, 1

case-study), France (municipality scale, 34 case-studies), France

(canton scale, 15 case-studies including whole France), France

(département scale one case-study (whole France), Italy (munic-

ipality scale, 10 case-studies), Italy (province scale, 4 case-

studies), USA (county level, 15 case-studies including whole

USA). For a detailed description of the datasets see the

Supporting Information Datasets.

We show that the single parameter of our model follows a simple

universal law that depends only on the average surface of the

considered geographic units. This implies that, given the number

of commuters in and out of each geographic unit and their average

surface, we can derive the whole matrix of flows with a very good

confidence.

Two other approaches [1,2] claim to catch universal properties

of commuting networks. We show that our model yields

significantly more accurate results, especially for case-studies with

small geographic units (e.g. municipalities).
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The Model

We consider the basic double-constrained model setup, without

adding any ingredient about the job market characteristics

(professions, salary range, etc.). Instead of solving analytically the

optimisation problem, we use an individual based procedure that

allocates virtual individuals one by one in the different flows

between geographic units, according to a probability that is

updated after each allocation.

This individual based approach can deal with less constrained

data than the doubly-constrained gravity model that requires the

total number of commuters in to be equal to the total number of

commuters out. In other words the doubly contrained model can

only deal with the flows between the considered geographic units;

it cannot take into account the commuting links with destinations

outside the case study area. This is a problem when only the

numbers of commuters in and out the geographic units are

available (and not the complete matrix of the commuting flows),

Figure 1. Three scales of geographic units (Auvergne region, France).
doi:10.1371/journal.pone.0045985.g001

Figure 2. Plot of the average CPC (blue circle) and the average NMAE (red triangle) in term of b for 10 replications of the model
for the Auvergne case study (FR1). The error bars represent the minimum value and maximum value obtain over the 10 replications.
doi:10.1371/journal.pone.0045985.g002

A Universal Model of Commuting Networks

PLOS ONE | www.plosone.org 2 October 2012 | Volume 7 | Issue 10 | e45985



because the data do not distinguish between the flows inside and

outside the case study area. It is therefore difficult to estimate the

correct data to take as input to the doubly-constrained model in

this case. Our approach is more flexible and overcomes this

difficulty. It does not require that the total number of commuters

in and out to be equal (for more details see [13]), hence it can

easily use directly the usually available data on the number of

commuters in and out of each geographic unit.

Let souti and sinj be respectively the global number of commuters

starting from unit ui and the global number of commuters arriving

in unit uj . These numbers are initialised from data and then they

are progressively modified by the procedure. More precisely, at

each step we select unit ui such that souti w0 at random, and we

consider a virtual commuter starting from ui. We draw at random

the working place uj� of this individual among all possible

destinations uj according to probabilities Pi?j :

Pi?j~
sinj e

{bDijPN
k~1 s

in
k e

{bDik
ð1Þ

where Dij is the Euclidian distance in meter between units ui and

uj (computable from the Lambert or GIS coordinates). Having

drawn uj� , we decrement of one souti and sinj� . Note that

decrementing sin and sout at each step complicates significantly

the derivation of an analytical expression of the model. We chose

a probability decreasing exponentially with the distance, in

accordance with the investigations carried out in [13] and with

the literature on commuting network models. The importance of

the distance in the commuting choices is embedded in parameter

b: for b?0 the probability tends to be independent from the

distance, while for high values of b, the probability tends to zero

very rapidly when the distance increases, independently from the

number of commuters arriving in the units.

To reduce the border effect (see [13]), we consider the job-

search basin in an extended (EXT) area, composed by the n

residential units and m units surrounding the area. Thus, we have

n units which are commuting origins and N~nzm units that are

commuting destinations. The generated network is saved in matrix
~TT[Mn|N (N) where each entry ~TTij represents the number of

commuters between units ui and uj . The algorithm is summarized

in Algorithm 1.

Algorithm 1 Commuting generation model

Input : D[Mn|N (R), s
in[NN , sout[Nn, b[Rz

Output : ~TT[Mn|N (N)

~TTij/0

while
Pn

k~1 s
out
k w0 do

Pick at random i[D½1,n�D, such that souti =0

Pick at random j from D½1,N�D
with a probability Pi?j

~TTij/~TTijz1

sinj /sinj {1

souti /souti {1

end while

return ~TT

Results

3.1 A Universal Law Ruling Parameter b
The model depends on a single parameter ruling the

importance of the distance in commuting choice. We show that

this parameter can be derived as a function of the scale of the

problem, independently from the socio-geographical location of

the case study area. This opens the possibility to reconstruct the

commuting flows (origin-destination matrix) when they are not

provided.

We calibrated parameter b by maximising the common part of

commuters (CPC), based on the Sørensen index [14].

CPC(T ,~TT)~
2NCC(T ,~TT)

NC(T)zNC(~TT)
ð2Þ

with:

NCC(T ,~TT)~
Xn
i~1

Xn
j~1

min (Tij ,~TTij) NC(T)~
Xn
i~1

Xn
j~1

Tij ð3Þ

where T is the observed origin-destination matrix and ~TT is the

simulated one. This is a similarity measure based on the Sørensen

index in ecology computing which part of the commuting flows is

correctly reproduced, on average, by the simulated network. It

varies between 0, when no agreement is found, and 1, when the

two networks are identical. We priviledged this indicator because

of its direct interpretation. Indeed, when NC(T)^NC(~TT) (it is the
case for our model), the CPC represents the percentage of

commuting connection correctly located (i.e. with the right pair

origin - destination). Moreover, we tested on all case studies that

the results obtained with the MAE, the RMSE or CPC are

equivalent (see the Supporting Information Other indicators for

more details). We have also shown in [12,13] that the value of b
yielding the maximum CPC also yields the maximum similarity

between observed and simulated commuting distance distribu-

tions. As an example on the FR1 case study, Figure 2 shows that

the same b value maximizes the CPC and minimizes the MAE. In

this Figure we can also note that the CPC is very sensitive to b and

that its value does not vary much with the different replicas of the

stochastic solving process.

Moreover, in order to have an idea of the improvement of the

model compared with complete randomness, we have computed

the CPC of a random model where the probabilities presented in

Equation (1) are uniform (Pi?j~
1
n
, where n is the number of

units). As shown on the Figure 3 we obtained an average CPC

around 0.1. For our model, the CPC is always higher than 0.7 with

an average around 0.8, which can be interpreted as 70 to 80% of

correctly predicted commuting connections.

Our goal is to derive the value of b from some easily available

global characteristics of the case-study, giving the possibility to

reconstruct the commuting flows when they are not available.

Figure 4 gives strong evidence of such a universal relation.

The x-axis represents the average surface of the geographic

units of the case-study (SST in logarithm scale) and the y-axis the
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Figure 3. Common part of commuters (CPC) for the 80 case-studies. The red squares represent the CPC obtained with the value of b
optimised from data on the case-study network. Black plain triangles represent the average CPC obtained with b values estimated with the rule
linking b and the average surface of the units obtain with the cross-validation; Dark bars represent the minimum and the maximum CPC obtained
with the estimated b but in most cases they are too close to the average to be seen. The green circles represent the CPC obtained with the random
model. The blue triangles represent the CPC obtained with the radiation model. The purple crosses represent the CPC obtained with the modified
version of the radiation model.
doi:10.1371/journal.pone.0045985.g003
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optimal b value (in logarithm scale). The linear regression in the

log-log plane shows a simple relation:

b~aSST{n ð4Þ

with a~3:15:10{4 and n~0:177. a corresponds to the b value for

the unitary surface 1 km2. The high value of the adjusted

R2~0:92 confirms the quality of the linear model. We observe

that b decreases with the average surface of the units SST,
meaning that, when SST is small (e.g. for municipalities in France)

the distance is more important in the commuting choice than

when SST is large (e.g. for regions or counties).

We now evaluate the robustness of our estimation of a and n
using a common statistical procedure: the cross-validation. The

cross-validation aims at evaluating the potential error of using the

b value derived from the regression model intsead of deriving this

value by optimisation for a new case study. This procedure repeats

a large number of times the following steps: define a sub-sample of

the total sample of case studies, derive a regression model of b
from this sub-sample, for each case study that do not belong to the

sub-sample, derive b from this regression model and compare the

corresponding CPC with the value of b directly calibrated on the

complete origin - destination data. The dataset (including 80 case-

studies) is randomly cut into two sets, called the training set

(comprising 53 case-studies) and the test set (composed of 27 case-

studies). We build a regression model on the training set, providing

a and n, from which we derive estimates of b for each of the 27

case-studies of the testing set. We have 27 estimations of b using

the relation 4 where a and n are obtained from the random sub-

sample of 53 case-studies. We repeat this process 10,000 times

obtaining 270,000 estimations of b (uniformly distributed over the

80 case-studies) corresponding to about 270,000
80

~3,375 estimations

of b for each case study. Then we calculate the average, minimum

and maximum CPC for each of these values of b, and we compare

them with the CPC obtained with value of b directly calibrated on

the data.

Figure 3 shows, for each case-study, the CPC associated with

the calibrated b, the average CPC obtained with the b values

estimated from the cross-validation and the confidence interval

defined by the minimum and the maximum values (but it is too

small to be seen in most cases). The CPC obtained with the

calibrated b value (black triangle) is almost the same as the average

CPC obtained with the estimated b in most cases (red square).

Globally, we can conclude that the b estimated with the log-linear

model and the calibrated b lead to very similar CPCs and also very

similar MAE and the RMSE as shown in the appendix Other
indicator. The method appears therefore fairly robust and this

gives confidence for using it with the value of b derived from our

loglog regression in new cases studies.

3.2 Comparaison with Other Universal Derivations of
Commuting Networks
Two other different approaches, [1] and [2], claim also to

provide a universal derivation of commuting networks. The

objective of [1] is to generate a worldwide commuting network,

and the model must deal with the wide variety of populations and

surfaces of geographic units for which the data are available. To

solve this difficulty, the authors project these data on ad-hoc units

defined with a Voronoi diagram. They define their basic unit as

a cell approximately equivalent to a rectangle of 25625 kilometers

along the Equator. This allows them to calibrate their model

because a unit is the same object whatever the country. This is an

interesting solution for generating a world-wide commuting

network but it leads to an average commuting distance of

250 km which is much larger than the average distance of daily

commuting. For example for the USA case study the average

distance of daily commuting is about 68 km for the observed

network and about 64 km for the simulated network obtained with

our algorithm. For the Auvergne (France) case study at munic-

Figure 4. Log-log scatter plot of the calibrated b values in terms of average surface of the geographic units for 80 case-studies; the
line represents the regression line predicting b. The surface is made non–dimensional by the unitary surface 1 km2 .
doi:10.1371/journal.pone.0045985.g004
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ipality scale the average distance of daily commuting is about

12 km for the observed network and about 11 km for the

simulated one.

In the radiation model, proposed in [2], the commuting flow

between two geographic units is a function of the cumulated

population in a circle at the distance between the two units. The

model has an elegant analytical solution and the average flow Tij

from unit ui to unit uj can be approximated by

STijT~ mi
Pc

P

� �
minj

mizsij
� �

miznjzsij
� � ð5Þ

where mi and nj are respectively the population of units ui and uj ,

Pc is the total number of commuters and P is the total population

in the case-study region, and sij the total population in the circle of

radius rij centred at ui (excluding the source and destination

population).

We implemented their analytical approximation and repro-

duced the graphs presented in their paper. Figure 5 shows the

comparison between the radiation model and ours in the US for

inter-county commuting and in the French Auvergne region for

inter-municipality commuting (see the Supporting Information for

more examples). We observe that in both cases our approach

yields significantly better results. Moreover, as shown on Figure 3,

the average CPC for the radiation model on all the case studies is

around 0.4, and lower for all case studies than the one obtained

with our approach.

However, it should be reminded that our model uses more

specific data (total number of commuters in and out of each

geographic unit) than the radiation model, hence one could expect

our results to be more accurate. Therefore, to be fair with the

radiation model we implemented a modified version of this model

using the number of out and in commuters of each units. This new

approximation is presented in Equation 6 where sij the total

number of in-commuters in the circle of radius rij centred at ui
(excluding the source and destination).

Figure 5. Comparing the predictions of the radiation model with ours for two case studies, the first row ((a)–(c)) for USA0 (USA at
county scale) and the second row ((d)–(f)) for FR1 (Auvergne region, France at municipality scale). Plots (a), (b), (d) and (e):
Comparison between the observed (Census) and the simulated (model) non-zero flows. Grey points are the scatter plot for each pair of units. The
boxplots (D1, Q1, Q2, Q3 and D9) represent the distribution of the number of simulated travelers in different bins of number of observed travelers.
The blue circles represent the average number of simulated travelers in the different bins. Plots (c) and (f): Commuting distance distributions (km) (i.e.
Probability for a commuters of the region to commut at a distance d). The blue line represents the observed data, the red one the results of our
model and the green one the results of the radiation model.
doi:10.1371/journal.pone.0045985.g005
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STijT~souti

souti sinj

souti zsij
� �

souti zsinj zsij

� � ð6Þ

As shown on Figure 3, this new model reaches an average CPC

around 0.5 which is higher than the original radiation model but

still significantly lower than the results obtained with our model.

Using the MAE and the RMSE leads to the same conclusions (see

the appendix Other indicator for more details).

Discussion

The power law of our model’s single parameter b with the

average area of the case study geographic units, is surprising to us

because of the high variety in our case studies in terms of scale,

number of units, number of commuters and surface areas. For

instance the Auvergne region in France is rural with a population

density of about 50 hab./km2 whereas the New York City region is

very urban with a population density of about 6500 hab./km2. As

far as we know, this is the first time that a single model is shown to

fit such diverse group of datasets.

We show that our approach outperforms the radiation model

and that the difference of input data plays a minor role in this

superiority. This superiority is not due to our particular treatment

of the border effects either. Indeed, we could check our approach

outperforms the radiation model also on particular case studies

(e.g. on islands such as Corsica) where this border effect does not

play. We can conclude that the accuracy of our model comes from

a proper use of the number of commuters in and out of each

geographic unit and an adequate choice of the function of the

distance.

The results of the cross validation procedure give a good

confidence in the robustness of this law. However, we have to

admit that, despite their diversity, our 80 case studies come all

from western industrialised countries. Therefore it will be

important to check the validity of our law on case studies coming

from other continents and less industrialised countries. Moreover,

we use a very rough approximation of the distance between the

geographic units with the Euclidian distance between the unit

centroids. More accurate approximations of this distance would

certainly improve the results. Finally, we also intend to apply our

approach to commuting networks inside urban areas because

many cities of the world show an impressive growth and an

increasing part of commuting takes place within them [15]. An

important issue in our perspective is to check if our law holds at

this scale.
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