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Abstract
In this manuscript, we have reported a novel 2D fingerprint-based artificial neural network QSAR
(FANN-QSAR) method in order to effectively predict biological activities of structurally diverse
chemical ligands. Three different types of fingerprints, namely ECFP6, FP2 and MACCS, were
used in FANN-QSAR algorithm development, and FANN-QSAR models were compared to
known 3D and 2D QSAR methods using five data sets previously reported. In addition, the
derived models were used to predict GPCR cannabinoid ligand binding affinities using our
manually curated cannabinoid ligand database containing 1699 structurally diverse compounds
with reported cannabinoid receptor subtype CB2 activities. To demonstrate its useful applications,
the established FANN-QSAR algorithm was used as a virtual screening tool to search a large NCI
compound database for lead cannabinoid compounds and we have discovered several compounds
with good CB2 binding affinities ranging from 6.70 nM to 3.75 μM. To the best of our knowledge,
this is the first report for a fingerprint-based neural network approach validated with a successful
virtual screening application in identifying lead compounds. The studies proved that the FANN-
QSAR method is a useful approach to predict bioactivities or properties of ligands and to find
novel lead compounds for drug discovery research.
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Introduction
Quantitative structure-activity/property relationship (QSAR/QSPR) studies correlate
chemical or structural features of compounds with their bioactivities or physicochemical
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properties. Molecular descriptors are used to encode such features and a QSAR model
defines mathematical relationships between a set of descriptors and biological endpoints or
other properties of known ligands to predict those of unknown ligands. QSAR studies can
reduce the costly failures of drug candidates by identifying promising lead compounds and
reducing the number of costly experiments. They are regarded as essential tools in
pharmaceutical industries to identify and generate high quality leads in the early stages of
drug discovery.1–3

Several QSAR methodologies have been developed since the concept was first introduced
by Free, Wilson, Hansch and Fujita.4, 5 Traditional 2D-QSAR methods such as Free-Wilson
and Hansch-Fujita models use the presence and absence of molecular fragments or ligands'
physicochemical properties to perform quantitative predictions. Recently, fragment-based
QSAR methods6–8 were introduced to improve and overcome the limitation of traditional
QSAR methods. Such fragment-based methods have attracted interests because using
molecular fragments in predicting bioactivities or physicochemical properties is simple, fast
and robust.1, 6 In addition to 2D QSAR methods, multidimensional (nD) QSAR methods
were developed over the past few decades. The first 3D QSAR method, known as
comparative molecular field analysis or CoMFA, was introduced by Cramer et al.9 to
improve the prediction accuracies of 2D methods. While 3D QSAR methods generally have
better predictive power than 2D QSAR methods, their predictive accuracies depend on
several factors such as the quality of molecular alignments and information on ligand
bioactive conformations. Various methods such as CoMSIA10, SOMFA11, 4D QSAR12, 5D
QSAR13 and 6D QSAR14 have been introduced to overcome 3D QSAR problems but many
of them still require manual intervention and superimpositions,15, 16 which limits in silico
design and virtual screening of large chemical databases.

Artificial neural networks (ANN) have been shown to be an effective tool in solving non-
linear problems in several case studies ranging from engineering to biological
applications.17–23 ANN have several unique attributes which make them robust for non
linear generalization problems with multidimensional inputs. For instance, the networks
have adaptive learning behaviors in which they learn from previous examples and adapt to
changes in input parameters. In addition, they possess good generalization and pattern
recognition property for unseen data. Several studies have used ANN to predict
physicochemical and biological properties of chemical analogs. 2D and 3D molecular
descriptors of molecular physical properties were used as neural network inputs to predict
molecular properties or biological endpoints in several case studies such as anti-diabetes,
anti-cancer and anti-HIV research.24–26 However, to the best of our knowledge, there are no
studies which use molecular fingerprints as descriptors in developing ANN-QSAR models
to predict biological activities (such as pIC50 or pKi) of chemical ligands although there are
a few studies reported to predict ligand classes.27, 28 In this work, we used three types of
molecular fingerprints to train ANN-QSAR models, namely fingerprint-based ANN-QSAR
(FANN-QSAR), and the results were compared to known 2D and 3D QSAR methods using
five data sets. As a case study, the FANN-QSAR approach was used to predict cannabinoid
receptor binding activities using a large and structurally diverse cannabinoid ligand data set.
In fact, cannabinoid drug research is experiencing a great challenge as the first CB1
antagonist drug, Rimonabant, launched in 2006 as an anorectic/anti-obesity drug, was
recently withdrawn from the European market due to the complications of suicide and
depression side effects.29 As we know, structure-based design of novel CB2 ligands that do
not confer psychotropic side effects is hindered because of a lack of information about
experimental 3D receptors structures, which is true, in general, for all drug discovery
research involving G-protein coupled receptors (GPCRs). Thus, developing ligand-based
QSAR approaches has its advantage for new CB2 ligand design and discovery. To prove one
of useful applications of the FANN-QSAR model, we have applied it as a virtual screening
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tool to find new cannabinoid ligands from a large NCI database containing over 200,000
compounds, and we found three compounds with good cannabinoid receptor binding
affinities. Our study demonstrated that combination of molecular fingerprints and ANN can
lead to a reliable and robust high-throughput virtual screening method which can be a useful
tool in computational chemogenomics and computer-aided drug discovery research.

Methods
QSAR Data Sets. A total of six data sets were used in this study. Five of them were
compiled by Sutherland et al.30 and were downloaded from their supplemental data. The
sixth data set was curated by our lab. Data sets are: (1) A set of 114 angiotensin-converting
enzymeangiotensis converting enzyme (ACE) inhibitors31 with pIC50 values ranging from
2.1 to 9.9. (2) A set of 111 acetylcholinesterase (AchE) inhibitors32, 33 with pIC50 values
ranging from 4.3 to 9.5. (3) A set of 147 ligands for the benzodiazepine receptor (BZR)34

with pIC50 values ranging from 5.5 to 8.9 after removal of 16 inactive compounds with a
single pIC50 value of 5.0. (4) A total of 282 cyclooxygenase-2 (COX2) inhibitors35–44 with
pIC50 values ranging from 4.1 to 9.0 after removal of 40 inactive COX2 compounds with a
single pIC50 value of 4.0. (5) A total of 361 dihydrofolate reductase inhibitors (DHFR) from
the work of Queener et al.45–49 with pIC50 ranging from 3.3 to 9.8 after removal of 36
ligands with a single pIC50 value of 3.3. Figure 1 contains representative structures from the
above 5 data sets. (6) A set of cannabinoid receptor subtype 2 (CB2) ligands50 with pKi
values ranging from 3.9 to 10.8. For the cannabinoid ligand (CBID) dataset, ligand
structures and their bioactivities (Ki) were curated by our lab. If there were more than one
reported CB2 activity for a ligand, an average activity was used. Figure 2 contains
representative CB2 ligands displaying the structural diversity of the data set. For the ACE,
AchE, BZR, COX2 and DHFR datasets, we used the same training and testing data sets
provided by Sutherland et al. for direct comparisons of FANN-QSAR models to 3D and 2D
QSAR models reported by Sutherland et al. For each dataset, 10% of randomly selected
compounds from the training set were used as a validation set. For the cannabinoid data set,
the training and test sets were randomly divided. The training set contained 80% of
compounds while the test set contains 10%. The other 10% were used as a validation set.
Numbers of compounds found in each training, validation and test sets for each data set are
summarized in Table 1. The training set was used to train the model while the validation set
was used to prevent over-fitting of the model. The test set was used as an external set to
evaluate the generalization ability of the trained FANN-QSAR models. For statistical
modeling, the process was repeated five times resulting in five different pairs of randomly
divided training and test sets.

Fingerprint generation
Three different types of molecular fingerprints, namely FP251, 52, MACCS53 and Extended-
Connectivity Fingerprint (ECFP6)54, were used in this study. FP2 is a path-based fingerprint
which indexes molecular fragments and MACCS is a key-based fingerprint which uses 166
predefined keys whereas ECFP6 is a circular topological fingerprint which is derived using a
variant of the Morgan algorithm.55 FP2 and MACCS fingerprints were generated using the
`babel' command from the OpenBabel program51, 52 while ECFP6 fingerprints were
generated using the `generatemd' command from the ChemAxon program.56 Ligand
chemical structures stored in SDF format were used as inputs to generate fingerprints. For
each ligand, polar hydrogens were added using the OpenBabel program51 before fingerprint
generations. All fingerprints are fixed-length binary representations with 1024 bits for both
ECFP6 and FP2, and 256 bits for MACCS fingerprint. Fingerprints were generated for each
ligand in the datasets and used as inputs to train the FANN-QSAR models.
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Fingerprint-based Artificial Neural Network QSAR (FANN-QSAR)
A feed-forward back-propagation neural network method was implemented using
MATLAB® R2007b Neural Network Toolbox.57 As shown in Figure 3, there are three
layers in the network: an input layer, a hidden layer and an output layer. The number of
input layer neurons is equal to the size of fingerprint. For example, FP2 and ECFP6
fingerprints have 1024 bits and therefore, the number of input neurons is equal to 1024.
Similarly, there are 256 input neurons for MACCS fingerprint. The number of hidden layer
neurons was varied between 100 and 1000. The networks were trained using the gradient
descent with momentum training function (traingdm) to update weights and biases, the
tangent sigmoid transfer function (tansig) for the hidden layer and the linear transfer
function (purelin) for the output layer. 10% randomly selected compounds from the training
data was used as a validation set to decide when to stop training and to control over-fitting
of the model. The model training was stopped after 4000 epochs (iterations) or if the mean-
square-error (MSE) of prediction on the training set had reached the minimum value of 0.1.
In addition, an early stopping was enabled when the prediction error on the validation set
kept increasing for 300 epochs and the weights and biases at the minimum of the validation
error were returned. The optimal number of hidden neurons was selected via cross-
validation experiments in which the model was trained using different number of hidden
neurons and an average of training set and validation set mean squared errors (MSE) was
calculated. The number of hidden neurons which gave the lowest average MSE was used as
the optimal number for subsequent model testing on the test set. The mean square error
(MSE) is defined as:

where T is the total number of training samples; t(i) is the target value of ith sample and p(i)
is the predicted value of ith sample.

Radioligand competition binding assay
In order to evaluate CB2 binding activity of virtually screened ligands, competition binding
assays were performed by displacing radioactive [3H]CP-55940 radioligand. The
experimental protocol has been established based on previously reported procedures58–60

and is described briefly below.

Perkin Elmer 96-well TopCounter is used in our laboratory to measure the CB receptor
binding affinity (Ki) of the in-silico screened ligands by displacing [3H]CP-55940. In
competition binding experiments, ligands were diluted in dilution buffer (50 mM Tris, 5 mM
MgCl2, 2.5 mM EGTA) containing 0.1% (w/v) fatty acid free bovine serum albumin (BSA),
10% dimethyl sulfoxide and 0.4% methyl cellulose). Various concentrations of ligands/
samples are added in the same volume to 2.5 nM [3H]CP-55940. Incubation buffer (50 mM
Tris, 2.5 mM EGTA, 5 mM MgCl2, 0.1% (w/v) fatty acid free BSA) and cell membrane
preparations from CHO cells that expressing CB2 receptors (5 μg per well) are added to a
final volume of 200 μL. For the saturation binding experiments, varying concentrations of
[3H]CP-55940 (0.05–4 nM) with or without 5 μM of an unlabeled known ligand
(CP-55940) are incubated with the receptor membrane preparations to determine Kd and
nonspecific binding. After the binding suspensions are incubated at 30 °C for 1 hr, the
reaction is terminated by rapid filtration through microfiltration plates (Unifilter GF/B
filterplate, Perkin Elmer) followed by 5 washes with ice cold TME buffer containing 0.1%
BSA on a Packard Filtermate Harvester (Perkin Elmer). The plates are then dried overnight
and 30 μl MicroScint 0 scintillation liquid are added to each well of the dried filter plates.
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Then the bound radioactivity is counted using a Perkin Elmer 96 well TopCounter. The Ki is
calculated by using nonlinear regression analysis (Prism 5; GraphPad Software Inc., La
Jolla, CA), with the Kd values for [3H]CP-55940 determined from saturation binding
experiments. This assay is used for determining binding affinity parameters (Ki) of ligand
receptor interactions between the CB2 receptor and ligands.

Results and Discussions
The FANN-QSAR models were first compared to known QSAR methods and then it was
used to predict cannabinoid receptor binding activity on structurally diverse data set.
Moreover, the generalization ability of the FANN-QSAR model was also examined by
predicting activities of newly reported cannabinoid ligands. In addition, it was used as a
virtual screening tool to screen large NCI compound database for potential cannabinoid lead
ligands and virtual hits were also validated by radioligand competition binding assays.

Comparisons with other 3D and 2D QSAR methods
The performances of the derived FANN-QSAR models were evaluated and compared to the
reported 3D and 2D QSAR methods, including CoMFA,9 CoMSIA,10 Hologram QSAR
(HQSAR),7, 61 QSAR by eigenvalue analysis (EVA),62 back-propagation feed-forward
neural network implemented in Cerius2 using 2.5D descriptors (NN 2.5D) and ensemble
neural network63 (NN-ens) using 2.5D descriptors which were implemented and tested by
Sutherland et al.30 For an objective comparison, we trained and tested the FANN-QSAR
models on the same training and test data sets provided by Sutherland et al. Three different
fingerprints were used as inputs for FANN-QSAR models and each model was trained
separately for each fingerprint type. During each training process, a cross-validation
experiment (see Method section) was performed to decide the optimal number of hidden
neurons which was used subsequently on the test set prediction. Cross-validation results can
be found in the supplemental information (Figures SF1–SF5).

Final correlation coefficient (r2 train and r2 test) values of each dataset are listed in Table 2.
Comparisons of r2 (test) values across all data sets show that ECFP6 fingerprint-based
ANN-QSAR model (ECFP6-ANN-QSAR) performed better than FP2 and MACCS
fingerprint-based models for all data sets. For ACE, AchE and COX2 data sets, the CoMFA
model performed better than ECFP6-ANN-QSAR model but by a small margin. The
ECFP6-ANN-QSAR model performed better for the DHFR and BZR datasets. The CoMSIA
model performed similarly as the ECFP6-ANN-QSAR model. It is important to note that
CoMFA and CoMSIA are field-based 3D QSAR methods which require similar scaffolds
and high quality molecular alignments to make effective predictions.64 On the other hand,
ECFP6-ANN-QSAR is a fingerprint-based method which works on structurally diverse data
sets and requires no alignment during the model training process which makes it more
robust in terms of computations required and high-throughput in virtual screening. However,
different fingerprints can produce different results and, in our work, ECFP6 produced an
overall better result across different data sets compared to FP2 and MACCS fingerprints. In
addition to 3D QSAR methods, we also compared ANN-QSAR to another 2D QSAR
method known as Hologram QSAR (HQSAR) which is based on molecular holograms
containing counts of molecular fragments similar to fingerprints. It can be observed that
ECFP6-ANN-QSAR performed consistently better than HQSAR in all datasets except for
DHFR dataset resulting in the same r2 test value (0.63). Moreover, we compared our FANN-
QSAR approach to other neural network approaches which used 2.5D descriptors as
reported by Sutherland et al. ECFP6-ANN-QSAR model performed better than NN (2.5D)
method in 3 out of 5 datasets and an ensemble of 10 neural networks (NN-ens) approach
using 2.5D descriptors performed slightly better than ECFP6-ANN-QSAR model in 3 out of
5 data sets. It is important to note that all QSAR models failed for COX2 and BZR data sets
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(r2 test < 0.34) and had moderate performances (r2 test < 0.64) for the other three datasets.
Such performances can be explained by the presence of outlier compounds in each test set as
reported by Sutherland et al.30 For example, in our ECFP6-ANN-QSAR model we also
found two outliers for BZR data set and the r2 test improved to 0.49 after removal of such
outliers. Overall, ECFP6-ANN-QSAR model performed consistently across all datasets and
its performance was comparable to other 3D, 2D, and neural networks QSAR methods
previously reported.

Prediction of Cannabinoid (CB2) receptor binding activity using FANN-QSAR method
A total of 1699 structurally diverse cannabinoid ligands with reported CB2 binding affinities
were used. The ligands were randomly divided into training and test sets. FANN-QSAR
models using different fingerprints were trained on training sets and the optimal numbers of
hidden neurons were selected via cross-validation. Figure 4 contains a summary of cross-
validation results for all three FANN-QSAR models. It can be observed that different
training and test sets as well as different types of fingerprints resulted in different optimal
number of hidden neuron which suggested that cross-validation experiments are necessary to
train neural networks for the best results.

After such training and parameters tuning, the predictive accuracy of the final model on the
test set was evaluated. The process was repeated 5 times and a summary of r2 values from
each round of experiment can be seen in Table 3. Within each round, the same training and
test compounds were used across all three FANN-QSAR models. As shown in the table,
ECFP6-ANN-QSAR model consistently outperformed FP2- and MACCS-ANN-QSAR
models in all five rounds of experiments. The ECFP6-ANN-QSAR model achieved an
average r2 test value of 0.56 (r = 0.75) across all repeat experiments while 0.48 (r = 0.69)
and 0.45 (r = 0.67) for FP2- and MACCS-ANN-QSAR models respectively. Results showed
that ECFP6 fingerprint was better than FP2 and MACCS fingerprints for the cannabinoid
data set as well as other five data sets. In fact, it has been also reported that circular
fingerprints such as ECFP6 fingerprints are found to be more useful in virtual screening and
ADMET properties prediction studies.65, 66 Our results suggested that ECFP6 fingerprint-
based ANN-QSAR model can be used in virtual screening of chemical ligands in high
throughput manner since it only requires 2D fingerprints as inputs instead of 3D molecular
alignments and bioactive conformations as in other 3D QSAR methods.

Generalization ability of FANN-QSAR method on newly reported cannabinoid ligands
To test the predictive ability of FANN-QSAR method on new cannabinoid compounds
which are not in our cannabinoid ligand training data set, we downloaded the most recently
reported cannabinoid ligands and associated CB2 binding affinity data from ChEMBL
database.67 These compounds were not found in our training (CBID) data set and were
collected to be used as a new test set in order to evaluate the FANN-QSAR performance.
The new test data set consists of 295 compounds with reported CB2 Ki values which were
then converted to pKi values. 41.55% of new CB2 ligands were less than 80% similar (2D
Tanimoto similarity) and 25.34% were less than 70% similar to the training compounds.
This similarity analysis indicated that the newly reported CB2 compounds contained a good
mixture of similar and dissimilar compounds to the training database. As discussed in the
Method section, an ECFP6-ANN-QSAR model was trained accordingly using the 1699 CB2
ligand (CBID) data set. 20 independent rounds of training and testing were performed. For
each round, randomly selected 90% of the database was used for training and 10% was used
for validation. During this exercise, we applied more training rounds, compared to 5 rounds
in the previous section, in order to have a better coverage on the diversity of training
molecules since the models would be tested on molecules which were not found in our
training CBID data set. A summary of training and cross-validation results can be seen in
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the supplemental table (Table ST1). After 20 rounds of predictions, an average predicted
value for each test compound was calculated. Probability density function and cumulative
distribution function plots of residual values of test compounds can be seen in Figure 5
indicating the values fall under the Gaussian distribution with the average residual value of
0.046 and standard deviation of 1.03. 17 outlier compounds with residuals more than 2
standard deviations away from the average residual were removed. Figure 6 shows a scatter
plot of experimental and predicted pKi values of 278 test compounds after such outlier
removal. The linear regression of these 278 data points provided an r of 0.75, slope of 0.686,
and Y intercept of 2.249. A plot of these data shown in Figure 7 indicated that there was a
good correlation between experimental and predicted values given the fact that many of
these test compounds have novel structures and were not included in the model training and
validation process. The result suggested that the FANN-QSAR possessed good
generalization ability for newly reported cannabinoid ligands.

An application of FANN-QSAR: virtual screening of NCI compound database for CB2
ligands

To further illustrate a possible application of FANN-QSAR in drug discovery research, we
performed a virtual screening experiment on NCI compound database68 to search for CB2
lead ligands. For consistency, we used the same 20 trained models in the previous section.
As a test set, compounds from NCI database was used for each round of prediction. Before
testing, the database was filtered to remove duplicate compounds, isotopes, metals and
mixtures using the Tripos Selector program.61 The NCI database contained 329,089
compounds and after such filtrations it was reduced to 211,782 compounds. For each
compound, the ECFP6 fingerprint was generated and used as network inputs to predict the
CB2 activity (pKi). After 20 rounds of predictions, an average predicted value for each
compound was calculated. The distribution of such predicted values and that of training
compounds' activity values were provided in the supplemental data (Figure SF6). Top
ranked 50 compounds were selected, but only 10 compounds were available from NCI via
material transfer agreement (MTA) and tested for CB2 activities using [3H]CP-55940
competition binding assay experiments as a validation of the method.

Among 10 tested NCI compounds, four compounds (NSC49888, NSC174122, NSC369049
and NSC76301) had CB2 Ki between 6.70 nM (pKi = 8.17) and 3.80 mM (pKi = 5.42). One
compound, which has a similar chemical scaffold as the well-known cannabinoid ligand,
delta-9-tetrahydrocannabinol, is found to be a high affinity compound with an average CB2
Ki value of 6.70 nM (pKi = 8.17). These four compounds and other similar compounds
(70% 2D Tanimoto similarity threshold was used)69 were not found in the training database
which was used to train the model. Among top 50 ligands, there was one NCI compound
(NSC768843) which was more than 90% similar (Tanimoto coefficient ≥ 0.9 using FP2
fingerprint) to a known classical cannabinoid ligand (CAS ID: 112830-95-2 or HU210), an
analog of delta-9-tetrahydrocannabinol, reported in the literature.70 These findings proved
that FANN-QSAR method can find not only novel compounds with good CB2 binding
affinities but also compounds similar to known ligands from a testing database containing
thousands of compounds with diverse scaffolds. Hit ligands with novel scaffolds can be used
as lead compounds for further medicinal chemistry optimization and SAR studies while hits
similar to known ligands provide additional information for scaffold hopping and R-group
variations which may be useful for medicinal chemists. Table 4 contains molecular
structures of NCI hit compounds and their experimental pKi as well as predicted values.
Except for one compound (NSC746843) that was not available from NCI, the other four
compounds were experimentally tested in our lab and competition binding curves are shown
in Figure 8.

Myint et al. Page 7

Mol Pharm. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



It should be noted that predicted pKi correlated well with experimental pKi for two of five
hit ligands but not for the other three ligands. It could be attributed to the experimental
variability of the reported CB2 binding activities of training compounds among different
research labs or a possible limitation of 2D fingerprint descriptors which considers
individual fragment contributions but sometimes may not be as effective as other 3D
descriptors when considering an overall structure of a ligand. However, fingerprints such as
ECFP6 have been found to be useful in this study as well as other several cheminformatic
studies,65, 66 and they are known to be robust and time efficient for high throughput virtual
screening applications. Nevertheless, it is often true that ANN models are harder to interpret
compared to other 3D-QSAR models and our ANN model is no exception; however, the
strength of our novel approach of combining molecular fingerprints and ANN modeling is
that the model can handle hundreds of thousands of ligands with different molecular
structures and can perform virtual screening of large databases in less computational time
compared to other more computationally intensive 3D-QSAR methods which often are not
suitable for virtual screening of large databases since they often require similar scaffolds and
molecular alignments for robust predictions. To conclude, results from the virtual screening
exercise which was validated experimentally demonstrated that the derived FANN-QSAR
model is capable of successfully identifying lead CB2 compounds with good CB2 binding
affinities as well as compounds similar to known cannabinoid ligands, and providing
additional insights for R-group and scaffold hopping of known ligands.

Conclusions
In this work, we introduced a novel molecular fingerprint-based QSAR algorithm using
artificial neural networks approach. Five data sets were used in our studies to compare our
developed FANN-QSAR approach to known 3D and 2D QSAR models. The results
obtained by FANN-QSAR are comparable to both 3D CoMFA and CoMSIA, and better
than HQSAR method for all five data sets. It should be noted that 3D CoMFA and CoMSIA
requires knowledge of ligand bioactive conformations and high quality molecule alignments
for predictive models whereas the FANN-QSAR model requires only two-dimensional
structures for molecular fingerprint generations. The model performance was comparable to
other reported QSAR methods such as EVA and neural network approaches using 2.5D
descriptors. In addition, we applied the FANN-QSAR model to a large structurally diverse
cannabinoid ligand data set to predict CB2 binding activities and achieved an average r (test)
value of 0.75. To further evaluate the generalization ability of FANN-QSAR method on
unseen cannabinoid ligands, it was tested on a set of 278 newly reported cannabinoid ligands
not presented in the training data set and achieved good prediction accuracy. Moreover, to
show a useful application of the FANN-QSAR method, it was used to virtually screen NCI
compound database and top hits were experimentally validated. We found 4 out of 10
available compounds with good CB2 binding affinities. The lead compounds are currently
subjected for further lead chemistry optimization and SAR studies. To conclude, the FANN-
QSAR method can be a useful application in computer-aided drug discovery research to
predict biological activities or properties of unknown ligands and screen large structurally
diverse databases for novel lead discovery.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Representative compounds from five QSAR data sets: (A) enalaprat (ACE); (B) E2020
(AchE); (C) Ro14-5974 (BZR); (D) celecoxib (COX2); (E) methotrexate (DHFR).
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Figure 2.
Representative CB2 compounds from CBID data set, reflecting the structural diversity of the
data set.
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Figure 3.
The architecture of fingerprint-based ANN-QSAR (FANN-QSAR) model.
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Figure 4.
Cross-validation results of each FANN-QSAR method on CB2 ligand data set.
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Figure 5.
Probability density function (left) and cumulative distribution function (right) plots of
residual values of 295 newly reported cannabinoid compounds.
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Figure 6.
Scatter plot between experimental pKi and predicted pKi values of 278 test cannabinoid
ligands after the removal of 17 outliers.
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Figure 7.
Experimental and predicted pKi values of 278 test cannabinoid ligands.
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Figure 8.
CB2 receptor binding affinity Ki values of four NCI hit compounds measured by
[3H]CP-55940 radioligand competition binding assay using human CB2 receptors harvested
from transfected CHO-CB2 cells.
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Table 3

A summary of the performance of each FANN-QSAR model on CB2 ligand data set.

Round r2 training r2 test

ECFP6-ANN-QSAR

1 0.86 0.55

2 0.81 0.63

3 0.87 0.53

4 0.84 0.56

5 0.89 0.54

FP2-ANN-QSAR

1 0.78 0.55

2 0.74 0.60

3 0.74 0.38

4 0.77 0.46

5 0.79 0.40

MACCS-ANN-QSAR

1 0.74 0.48

2 0.72 0.53

3 0.74 0.37

4 0.74 0.47

5 0.75 0.41
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