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Abstract
In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of
melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting
with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase.
Melatonin receptors belonging to the subtypes MT1 and MT2 have been identified in the
mammalian retina. MT1 and MT2 receptors are found in all layers of the neural retina and in the
retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of
many important retinal functions; it can modulate the electroretinogram (ERG), and administration
of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also
have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A
series of studies have implicated melatonin in the pathogenesis of age-related macular
degeneration, and melatonin administration may represent a useful approach to prevent and treat
glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep
performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous
melatonin at night may also be beneficial for ocular health, but additional investigation is needed
to establish its potential.

Introduction
Melatonin is a neurohormone that plays important roles in the temporal regulation of many
aspects of physiology (review in: Wiechmann and Summers, 2008). Accumulating evidence
indicates that melatonin plays important roles in retinal physiology and pathophysiology.
However, the mechanisms by which melatonin can affect the physiology and
pathophysiology of the retina are not well defined. This lack of data is partially due to the
fact that the vast majority of mouse strains are genetically incapable of synthesizing
melatonin (see Goto et al., 1989, Tosini and Menaker, 1998) and therefore this important
animal model has not been used to dissect the action and the mechanisms by which
melatonin can influence retinal functions. Our laboratories have recently developed
transgenic mice on a melatonin-proficient background (C3H-f+/+) in which melatonin
receptors have been genetically removed. These new models are providing important clues
on the mechanisms by which melatonin affects retinal function. The aim of this review is to
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summarize the current literature on the role that melatonin plays in vertebrate retinal
physiology.

Regulation of Melatonin Synthesis and Metabolism
Melatonin is synthesized in the retina of many vertebrate species (from lamprey to
mammals) via a well-defined biosynthetic pathway (Tosini and Meanker, 1996; Menaker et
al., 1997). Melatonin synthesis starts with the uptake of the amino acid tryptophan from the
blood. Tryptophan is converted to melatonin by a series of enzymatic reactions producing
serotonin and N-acetylserotonin as important intermediates (Figure 1). In the retina,
melatonin is almost exclusively produced by the photoreceptors cells (Cahill and Besharse,
1993; Liu et al., 2004) and under some pathological conditions by other retinal cell types
(Sakamoto et al., 2004). In addition, it has been reported that melatonin can also be
produced – in smaller amounts - by ganglion cells in the chicken retina (Garbarino-Pico et
al., 2004). Once produced, melatonin is not stored but freely diffuses out of the cells. The
amount of melatonin produced by the retina is small compared to that in the pineal gland,
the primary source of circulating melatonin, and retinal melatonin is thought to act as a local
neuromodulator within the eye. However, in a few instances (e.g., quails) retinal melatonin
may contribute to the levels of the hormone in the blood (Underwood et al., 1984). In most
vertebrate species, retinal melatonin synthesis and levels are high during the night and low
during the day (reviewed in: Tosini et al., 2008); however, in a few species (i.e., trout and
European sea bass) retinal melatonin levels are high during the daytime (Iigo et al., 1997;
Besseau et al., 2006). In the vast majority of the species investigated thus far melatonin
synthesis in the retina is under control of retinal circadian clocks since the retinae of fish,
amphibians, reptiles, birds and mammals synthesize melatonin in the rhythmic fashion when
they are maintained in vitro under constant darkness (reviewed in: Iuvone et al., 2005). In
many species, the retinal clock that controls melatonin synthesis appears to be in
photoreceptor cells. In Xenopus, chicken and rat, rhythmic melatonin synthesis persists in
retinae in which the inner retina has been destroyed (Cahill and Besharse, 1993; Zawilska
and Iuvone, 1992; Thomas et al., 1993; Sakamoto et al., 2006; Tosini et al., 2007). In
addition, melatonin synthesis and clock gene expression are rhythmic in monolayer cultures
of embryonic chick photoreceptors (Chaurasia et al., 2006a).

The key regulatory step in melatonin synthesis is catalyzed by arylalkylamine N-
acetyltransferase (AANAT), which converts serotonin to N-acetylserotonin. AANAT is
subject to both transcriptional and posttranslational regulation (Iuvone et al., 2005, Figure
2). The control of the transcription of the Aanat gene in photoreceptors is under direct
control of the circadian clock (Chen and Baler, 2000) and is independent from
suprachiasmatic nuclei (SCN) of the hypothalamus, the master circadian clock. Aanat
mRNA rhythmicity in retinal photoreceptors persists after the SCN has been lesioned
(Sakamoto et al., 2000) and in cultured photoreceptor cells (Chaurasia et al., 2006a). The
chicken and rat Aanat genes contain circadian E-box enhancer elements in their promoters
that are directly activated by the Bmal1/Clock and Bmal1/NPAS2 heterodimers (Chen and
Baler, 2000; Chong et al., 2000; Haque et al., 2010). Thus, Aanat is considered to be a
clock-controlled gene. The Aanat promoter also contains cyclic AMP-response elements that
contribute to the circadian expression of the gene (Baler et al., 1997; Baler et al., 1999;
Haque et al., 2011)

AANAT is also subject to posttranslational regulation (Fig. 2). Retinal AANAT is
phosphorylated at night (Pozdeyev et al., 2006). Phosphorylation of AANAT promotes its
binding to 14:3:3 proteins, which stabilizes and activates the enzyme (Ganguly et al., 2001;
Obsil et al., 2001; Pozdeyev et al., 2006). This process is regulated by the retinal circadian
clock by controlling the circadian expression of Adcy1, which encodes the type 1 Ca2+/
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calmodulin-stimulated adenylyl cyclase (AC1) (Fukuhara et al., 2004; Chaurasia et al.,
2006b). The rhythm in AC1 in turn generates circadian rhythms of cyclic AMP and PKA-
dependent phosphorylation of AANAT (Ivanova and Iuvone, 2003; Fukuhara et al., 2004;
Chaurasia et al., 2006b).

Post-translational mechanisms ensure that melatonin levels are maintained at extremely low
levels in presence of light. For example, AANAT activity is abolished in animals maintained
in constant light (Nowak et al., 1989) and light exposure in the middle of the night induces a
very rapid decrease in AANAT activity in the pineal gland and retina (Klein et al., 1997;
Hamm et al., 1983). Light exposure rapidly decreases cAMP levels in photoreceptor cells
(Orr et al., 1976; DeVries et al., 1978; Nir et al., 2002; Ivanova and Iuvone, 2003) and
promotes the dephosphorylation of AANAT, its dissociation from 14–3–3, and its
degradation by proteasomal proteolysis (Fukuhara et al., 2001; Iuvone et al., 2002;
Pozdeyev et al., 2006). This effect of light appears to be partially a direct effect on
photoreceptor cells, combined with an effect of dopamine. Dopamine is released from
amacrine and interplexi form cells in response to light and acts on dopamine D4 receptors on
the photoreceptor cells to further suppress cyclic AMP synthesis and Ca2+ levels and to
inhibit melatonin biosynthesis (Cohen et al., 1992; Zawilska et al., 1994; Tosini and Dirden,
2000; Nir et al., 2002; Ivanova et al., 2008). Such tight control of retinal melatonin levels
suggests that high melatonin levels during the light-phase may be deleterious for the
photoreceptor cells (Wiechmann and O’Steen, 1992; Sugarawa et al., 1998).

Melatonin biosynthesis is also regulated by circadian control of tryptophan hydroxylase,
which converts tryptophan to 5-hydroxytrptophan (5HTP). Tph mRNA, the transcript that
encodes tryptophan hydroxylase, is expressed in a circadian fashion in the retinas of many
species, including Xenopus laevis, chicken, and rat (Green et al., 1994, 1995; Chong et al.,
1998; Liang et al., 2004), and tryptphan hydroxylase activity and AANAT activity show
similar daily rhythms (Thomas and Iuvone, 1991; Valenciano et al., 1999; Iuvone et al.,
1999). Tryptophan hydroxylase activity may be rate limiting for melatonin biosynthesis at
night in darkness, as exogenous 5HTP enhances melatonin synthesis in Xenopus and
chicken retinas (Cahill and Besharse, 1990; Iuvone et al., 1999). In contrast to AAANAT,
tryptophan hydroxylase is much less sensitive to acute light exposure and AANAT appears
to be rate limiting under these conditions (Iuvone et al., 1999).

Another interesting aspect of retinal melatonin regulation is its metabolism. In non-
mammalian vertebrates, retinal melatonin is metabolized within the eye (Grace et al., 1991;
Cahill and Besharse, 1989; Li et al., 1997) via a well-defined pathway that involves
melatonin deacetylation (see Figure 1). Several attempts to detect this pathway in the
mammalian retina have failed (Rogawski et al., 1979; Hsu 1982; Grace et al., 1991) and
therefore it is not clear whether melatonin is metabolized in the retina of mammals.

While melatonin synthesis in the retina is well established in many mammalian and non-
mammalian species, its synthesis in the retina of primates, including humans, has been
questioned. Melatonin has been detected in human retina using a specific gas
chromatography mass spectrometric assay (Leino, 1984) and AANAT mRNA is expressed
in human and macaque retinas (Coon et al., 1996; Coon et al., 2002). Melatonin receptors
are present in human retina (Reppert et al., 1995; Scher et al., 2002; Savaskan et al., 2002;
Savaskan et al., 2007). However, ASMT transcripts and activity are barely detectable in
human and macaque retinas (Rodriguez et al., 1994; Coon et al., 2002). These observations
suggest that primate retinas may not contain the complete melatonin biosynthetic pathway
and that the source of melatonin in the retina is the circulating pool of pineal gland-derived
hormone. Thus, retinal melatonin receptors may be occupied by pineal melatonin.
Alternatively, retinal melatonin receptors might by occupied by N-acetylserotonin, the
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AANAT product, but the affinity of human melatonin receptors for N-acetylserotonin is
several orders of magnitude lower than for melatonin (Yuan et al., 1991). The role of
AANAT in primate retina is uncertain. In addition to binding to melatonin receptors, N-
acetylserotonin activates TrkB receptors in the retina (Jang et al., 2010) and may provide
neuroprotection to photoreceptors and retinal neurons (review in: Tosini et al., 2012). It has
also been proposed that AANAT may serve to detoxify reactive arylalkylamines in the retina
to prevent them from reacting with retinaldehyde (Klein 2004).

Melatonin: Site of Action and Signaling
Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors
(GPCR) that are negatively coupled with adenylyl cyclase (Reppert, 1997, Jockers et al.,
2008) although cAMP-independent transduction pathways are also involved (Dubocovich et
al., 2010). Two subtypes of melatonin receptors have been identified in mammals, the MT1
and MT2 receptors, which are encoded by the MTNR1A and MTNR1B genes, respectively.
Both subtypes are expressed in the retina (reviewed in: Wiechmann and Summers, 2008). In
rats MT1 receptors are found in the inner nuclear layer (horizontal and amacrine cells), the
inner plexiform layer, retinal ganglion cells (RGCs), and the retinal pigmented epithelium
(RPE) (Fujieda et al., 1999). Dopaminergic neurons in the guinea pig express MT1 receptors
(Fujieda et al., 2000), suggesting that melatonin can directly modulate the activity of these
cells. In humans, melatonin receptors (MT1 and MT2) have been located on the rod
photoreceptors and on GCs (Savaskan et al., 2002; Scher et al., 2002; Meyer et al., 2002;
Savaskan et al., 2007). In the mouse, MT1 receptors have been localized to photoreceptors,
inner retinal neurons and RGCs (Baba et al., 2009; Sengupta et al., 2011). The fact that
melatonin receptors are expressed on the same cells responsible for its synthesis raises the
intriguing hypothesis that melatonin may feedback on the photoreceptors to regulate its own
levels.

The signaling pathways activated by MT1 and MT2 receptors are very similar for the two
subtypes when expressed heterologously (Jockers et al., 2008). The widely observed co-
expression of MT1 and MT2 and their potential to form heteromeric complexes in vitro are
of particular interest in this context. MT1 and MT2 were indeed among the first GPCRs that
have been shown to homo- and heteromerize in a constitutive manner when transfected in
HEK 293 cell at physiological levels (Ayoub et al., 2002). Interestingly, the propensity of
melatonin receptors to form homo- and heteromers is not identical. Whereas the propensity
of MT1/MT2 heteromer and MT1 homomer formation is similar, that of MT2 homomer
formation is 3 to 4-fold lower, suggesting that the MT2 receptor preferentially exists as
heteromeric complexes with MT1 or as monomers (Ayoub et al., 2004). Hence, it is possible
that in the retina - and more specifically in the photoreceptors - MT1 and MT2 form
functional melatonin receptor heteromeric units that may activate different pathways from
those activated by MT1 and MT2 monomers.

Finally it is worth noting that there is a very large body of evidence documenting melatonin
as an antioxidant (Reiter et al., 2009). In the retina melatonin acts as antioxidant in retinal
photoreceptors (Marchiafava and Longoni, 1999). It decreases lipid peroxidation of
polyunsaturated fatty (Guajardo et al., 2003), reduces NO-induced lipid peroxidation in rat
retinal homogenates (Siu et al., 1999) and may also reduce retinal oxidative damage from
ischemia-reperfusion injury (Celebi et al., 2002).

Role of Melatonin in the Modulation of Retinal Functions
Melatonin may alter the sensitivity of photoreceptors and second-order neurons at night
when photopic input is at its lowest level (Wiechmann et al., 1988). In the carp retina
melatonin can modulate glutamatergic transmission from cones to cone-driven bipolar cells
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(Huang et al., 2005) and may potentiate responses of ON bipolar cells to rod signals (Ping et
al., 2008). In Xenopus laevis, melatonin, acting through melatonin receptors on rod
photoreceptor membranes, directly stimulates the responsiveness of rod photoreceptors to
light (Wiechmann et al., 2003). This supports the hypothesis that melatonin acts both as an
autocrine and a paracrine signal and binds to specific receptors in photoreceptors and other
retinal cells to increase visual sensitivity. Administration of exogenous melatonin in X.
laevis and in the carp increases the amplitude of the scotopic ERG (Wiechmann et al., 2003;
Ping et al., 2008). In chickens and pigeons, administration of exogenous melatonin during
the day reduces the amplitude of the b-wave (Lu et al., 1995), and constant administration of
melatonin abolishes rhythmicity of a-wave and b-wave implicit times and b-wave amplitude
(McGoogan and Cassone, 1999). In humans, oral administration of melatonin decreases the
amplitude of the cone ERG (Gagne et al., 2009) and the amplitude of the cone and mixed
rod-cone response was negatively correlated with the concentration of endogenous salivary
melatonin (Rufiange et al., 2002). In mice, administration of exogenous melatonin (1 mg/kg)
during the day increases the amplitudes of a- and b- waves and lowers the scotopic threshold
response to levels observed at night under control conditions (Baba et al., 2009); removal of
MT1 receptors abolishes these effects (Baba et al., 2009). In melatonin proficient mice
(C3H-f+/+) there are daily rhythms in both the scotopic and photopic ERG responses; these
are absent in MT1 knock-out (MT1

−/−) mice (Baba et al., 2009; Sengupta et al., 2011).
Therefore, it is clear that melatonin has influence over many different visual functions,
although the precise mechanisms by which this hormone mediates these functions are likely
to vary in a species-dependent manner.

Photoreceptor rod outer segments (ROS) are continuously renewed by the assembly of new
membrane disks at the base of the ROS and by displacement of older disks at the top of the
outer segment. These old disks are shed from the apical part of the ROS and phagocytized
by the RPE. These two phenomena occur every day in a synchronized fashion shortly after
the onset of light in the rod photoreceptors, and at the onset of night in the cones. Moreover,
the daily rhythms of disk shedding and phagocytosis persist in constant darkness, indicating
that they are under the control of circadian clocks located in the retina (LaVail, 1976;
Teirstein et al., 1980; Terman et al., 1993; Grace et al., 1996).

Earlier studies suggested a role for melatonin in the regulation of disk shedding. Exogenous
melatonin led to activation of disk shedding in Xenopus retina (Besharse and Dunis, 1983)
and an increase in the frequency of large phagosomes in rat RPE cells (White and Fisher,
1989). However, a study in which the circadian regulation of disk shedding was compared
between in melatonin proficient mice (C3H/f+/+) and melatonin-deficient mice (C57/BL6)
questioned the contribution of melatonin in the regulation of disk shedding in mice (Grace et
al., 1999). This study reported that disk shedding was rhythmic in both strains and was not
affected by administration of exogenous melatonin, thus suggesting that circadian factors
other than melatonin are important for the regulation of the circadian rhythm in disk
shedding. Additional studies are needed to determine the mechanisms regulating circadian
disk shedding in mammals.

Melatonin as a Key Regulator of Retinal Circadian Rhythms
Several studies have shown that melatonin and dopamine play opposing roles in the
regulation of retinal adaptive physiology (reviewed in: Green and Besharse, 2004; Tosini et
al., 2008). Dopamine functions as a humoral signal for light, producing light adaptive
physiology. Melatonin, on the other hand, produces dark-adaptive effects. In many species,
the synthesis and release of both melatonin and dopamine are under circadian control, with
melatonin released at night and dopamine during the daytime. Melatonin inhibits the release
of dopamine through an action on melatonin receptors (Dubocovich, 1983; Boatright et al.,
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1994; Ribelayga et al., 2004a), and dopamine inhibits the synthesis and release of melatonin
from photoreceptor cells by acting on D2-like dopamine receptors (Zawilska and luvone,
1992; Nguyen-Legros et al., 1996; Tosini and Dirden, 2000). Thus, the melatonin secreting
photoreceptors and dopamine secreting amacrine/interplexiform cells form a cellular
feedback loop functioning to regulate circadian retinal physiology. The circadian rhythm of
dopamine release and metabolism appears to be dependent on melatonin. Retinal dopamine
content and metabolism are circadian in mice that synthesize melatonin, but not in mice that
are genetically incapable of synthesizing melatonin (Nir et al., 2000; Doyle et al., 2002,
Pozdeyev et al., 2008); and daily injections of melatonin induce circadian rhythms of
dopamine in retinas of mice that are unable to synthesize the neurohormone (Doyle et al.,
2002). The role of melatonin in controlling DA rhythmicity is not unique to mice. Previous
work in Xenopus laevis has also indicated that DA and D2-like receptors are involved in the
entrainment of circadian rhythm of retinal melatonin synthesis (Cahill and Besharse, 1991;
Hasegawa and Cahill, 1999). DA and quinpirole, a D2R-like agonist, induce Per2 mRNA
levels in Xenopus photoreceptors (Steenhard and Besharse, 2000; Besharse et al., 2004)
suggesting that DA -- via D2R-like receptors -- and Per2 are involved in the entrainment of
the circadian clock located in the photoreceptors of X. laevis and thus in the regulation of
retinal melatonin synthesis. In fish, regulation of rhythmic dopamine release also depends on
activation of melatonin receptors (Ribelayga et al., 2004b).

Melatonin may have a profound impact of the function of the molecular clockwork. For
example, disruption of MT1 melatonin signaling has a profound impact on the regulation of
clock genes and clock-controlled genes in many tissues. Von Gall et al. (2002) reported that
rhythmic expression of Period 1 (gene and protein) in the pituitary gland depends on
melatonin via MT1 signaling and that melatonin affects the amplitude and phase of the
transcripts of others clock genes (e.g., Per1, and Cry1) in the mouse retina (Dinet and Korf,
2007; Dinet et al., 2007). Such results indicated that melatonin, at least in some tissues, is
not only a clock output, but can also regulates the expression of canonical clock genes. In
this context, is important to mention that circadian clocks are directly involved in the
regulation of cellular metabolism (Bass and Takahashi, 2010) and, consequently, alteration
of the clock in cells like the photoreceptors with a high metabolic rate may result in adverse
outcomes.

Melatonin and Retinal Pathophysiology
Melatonin has been implicated in the modulation of intraocular pressure (IOP) (Samples et
al., 1988; Osborne and Chidlow 1994; Pintor et al., 2001; Wiechmann and Wirsig-
Wiechmann, 2001; Alarma-Estrany et al., 2008) and it has been suggested that melatonin or
melatonin analogs may be useful in the treatment of glaucoma (Lundmark et al., 2007;
Belforte et al., 2010). In rabbits, topical application of melatonin or 5-
methoxycarbonylamino-N-acetyltryptamine (5-MCA-NAT, a melatonin analogue) leads to a
reduction in IOP, whereas luzindole (a MT1 and MT2 receptor antagonist) abolishes the
effect of both compounds, supporting a role for MT1 or MT2 in the regulation of IOP (Pintor
et al., 2001). 5-MCA-NAT application also reduces IOP in glaucomatous monkey eyes
(Serle et al., 2004). Additional studies have reported that many melatonin antagonists, such
as prazozin, DH-97 and 4-P-PDOT, reverse the effect of 5-MCA-NAT in a dose-dependent
manner (Pintor et al., 2003). A recent study demonstrated that 5-MCA-NAT acts via MT1 or
MT2 to reduce IOP (Alarma-Estrany et al., 2009). In humans, administration of oral
melatonin causes a small but significant decrease in the IOP of individuals kept in bright
light to suppress endogenous melatonin (Samples et al., 1988) and in patients undergoing
cataract surgery (Ismail and Mowafi, 2009).
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A recent study further supports a role for melatonin in the modulation of IOP levels and the
development of glaucoma that is consistent with the pattern of melatonin synthesis. IOP in
MT1

−/− mice was higher (about 2 mmHg) than in the wild type mice during the night, but
not during the day (Alcantara-Contreras et al., 2011). MT1

−/− mice also showed a significant
decrease in the number of cells in the ganglion cell layer during aging compared to wild type
mice (Baba et al., 2009; Alcantara-Contreras et al., 2011), suggesting that even a small
increase in nocturnal IOP may have a significant effect of RGCs survival. The observation
that administration of exogenous melatonin in WT mice reduced IOP at night but not during
the day further suggests a role for melatonin in the modulation of nocturnal IOP.
Interestingly, removal of MT2 receptors did not affect the daily rhythm in IOP. However,
exogenous melatonin was ineffective at lowering IOP in MT2 knock-out mice, suggesting
that MT2 receptors, as well as MT1 receptors, may be involved in the regulation of the IOP.
The observation that melatonin receptors (MT1 and MT2) are present in the ciliary body
(Osborne and Chidlow 1994; Wiechmann and Wirsig-Wiechmann, 2001; Alarma-Estrany et
al., 2008) further suggests a role for melatonin receptors in the regulation of IOP.

Altogether these results indicate that melatonin and its analogues could be a promising
resource in the management and treatment of glaucoma, but further studies are required to
understand the mechanism(s) by which melatonin and its receptors regulate IOP and
possibly protect ganglion cells.

Melatonin may also have protective effects on other retinal cell types, including retinal
pigment epithelial cells and photoreceptors. Melatonin protects cultured RPE cells from
oxidative stress and ischemia-induced cell death (Osborne et al., 1998; Liang et al., 2004; Fu
et al., 2012) and delays photoreceptor degeneration in rds mutant mice (Liang et al., 2001).
In addition, the age-related loss of photoreceptors cells is accelerated in MT1

−/− mice
compared to wild type controls (Baba et al., 2009; Alcantara-Contreras et al., 2011). A series
of studies have implicated melatonin in the pathogenesis of age-related macular
degeneration (AMD). Yi et al. (2005) reported that daily administration of melatonin (3mg)
may protect the retina and delay the progression of AMD. Rosen et al. (2009) reported that
production of melatonin is decreased in AMD patients with respect to age-matched controls,
suggesting that a deficiency in melatonin may play a role in the occurrence of AMD. In
pseudophakic patients with AMD, daytime levels of melatonin were significantly higher
than in pseudophakic patients without ocular pathology (Schmid-Kubista et al., 2009),
suggesting that the daily rhythm of melatonin may be disrupted in AMD patients. Elevated
daytime levels of melatonin may have a detrimental effect since melatonin enhances light-
induced retinal degeneration (see below). Expression of melatonin receptors is altered in
retinas of Alzheimer’s disease patients with degenerating photoreceptor cells, with increased
expression of MT1 receptors and decreased expression of MT2 receptors (Savaskan et al.,
2002, 2007). A further indication of the possible role of melatonin in age-related pathologies
can be found in the observation that retinal melatonin synthesis decreases during aging
(Pulido and Clifford, 1986; Tosini et al., 2006) and that the responsiveness to the
administration of exogenous melatonin steadily decreases during aging (Baba et al. 2012).
The mechanisms by which melatonin influences photoreceptor viability during aging are
unknown, but it is reasonable to speculate that melatonin can affect the circadian clocks in
photoreceptors and RPE cells and, thereby, metabolism in these cells.

Circadian clocks prevent the occurrence of high melatonin levels in the presence of light. It
may be critical that melatonin levels are low during the daytime, as melatonin potentiates
light-induced oxidative damage in the retina. Albino rats injected with melatonin and
exposed to bright light showed significantly greater photoreceptor cell death than vehicle-
treated controls (Wiechmann and O’Steen, 1992). Administration of luzindole (a melatonin
receptor antagonist) at night significantly reduced light-induced photoreceptor degeneration
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of rats exposed to bright light on the following day (Sugawara et al., 1998). In addition,
there is a circadian rhythm of sensitivity to light-induced retinal degeneration (Organisciak
et al., 2000; Vaughn et al., 2002), which peaks at night when melatonin levels are high. The
mechanisms by which melatonin increases the susceptibility of the retina to light damage are
still unknown.

Conclusions and Future Research Directions
Recent genome wide association studies (GWAS) have indicated that polymorphisms in
genes encoding melatonin receptors or melatonin synthesizing enzymes are associated with
the pathogenesis of type 2 diabetes, polycystic ovary syndrome, and autism spectrum
disorders (Bonnefond et al., 2012; Li et al., 2011; Chaste et al., 2010). Melatonin may be
involved in several retinal pathologies but, unfortunately, no population studies using
GWAS have examined the association of polymorphisms in melatonin-related genes with
ocular diseases. Little is known about the mechanisms whereby melatonin regulates retinal
physiology or affects retinal cellular viability. We believe that the transgenic mice generated
by our laboratories may provide useful tools to probe the mechanisms by which melatonin
affects retinal physiology and pathology. Finally, it is important to note that melatonin and
its analogues are currently used by millions of people around the world to retard aging,
improve sleep performance, ameliorate jet-lag symptoms and treat depression.
Administration of exogenous melatonin at night may also benefit ocular health, but further
translational and clinical investigations are needed to establish its potential.
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Highlights

• Regulation of melatonin synthesis and metabolism.

• Distribution of melatonin receptors in the vertebrate eye

• Role of melatonin receptors in the regulation of retinal physiology

• Role of melatonin in the development of retinal pathology

• Use of melatonin to treat ocular diseases
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Figure 1.
Melatonin synthesis starts with up-take of the circulating amino acid tryptophan and the
subsequent 5-hydroxylation by tryptophan hydroxylase. 5-Hydroxytryptophan is then
converted to serotonin by the action of aromatic L-amino acid decarboxylase. Serotonin is
acetylated by arylalkylamine N-acetyltransferase (AANAT) to N-acetylserotonin, which is
subsequentely O-methylated and converted to melatonin by acetylserotonin
methyltransferase (ASMT), which is also known as hydroxyindole-O-methyltransferase.
The metabolism of retinal melatonin illustrated on the right has been demonstrated for
Xenopus, reptiles, teleost fish, and chicken but not in mammals (see text).
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Figure 2.
Regulation of retinal melatonin levels by light and the circadian clock. At night in darkness
cAMP levels are elevated, activating PKA, which induces Aanat gene transcription and
phosphorylates AANAT protein. Phosphorylated AANAT (pAANAT) associates with
14-3-3 proteins, which activate and stabilize the enzyme resulting in increased conversion of
serotonin to N-acetylserotonin, and ultimately to melatonin. Light exposure decreases cAMP
levels resulting in dephosphorylation of AANAT and its subsequent degradation by
proteasomal degradation. The circadian clock controls melatonin levels by directly
regulating Aanat transcription and by gating the cAMP signaling cascade.
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Figure 3.
Melatonin receptors are expressed in many retinal cell types. Activation of these receptors
may modulate several retinal functions such as: disk shedding, retinal cell viability; visual
sensitivity; and dopamine levels and metabolism. RPE=retinal pigmented epithelium; R=
rod photoreceptors; B= bipolar cells; A= amacrine cells; GC= retinal ganglion cells.

Tosini et al. Page 19

Exp Eye Res. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


