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ABSTRACT Conditions for natural selection to increase a
polygenic behavioral trait are derived for a model in which the
population is divided into a very large number of partially isolated
groups of variable and varying size. Specifically, we consider an
altruistic trait that is deleterious to the individual but raises the
mean fitness of the group. We assume, for each generation, that
all groups have the same proportion of males, k, at the time of
migration and that each group contributes Mf females and Mm
males to a pool of migrants, from which Mffemales and Mm males
are randomly parceled out to each group. This assumption ensures
that, at equilibrium between random drift and a low level of mi-
gration and neglecting the small per locus effect of selection, each
group has the same expected value of Wright's fixation index, FST
= F. At equilibrium, this is approximately 1/(1 + 4M6), where Me
= 2kMf + 2(1 - k)Mm. The trait will increase when (b - c)/c
> (1- F)/2F = 2M., where b is the expected benefit to the group
and c is the expected cost of a unit change in the mean value of
the altruistic trait. In particular, the group selection analogue of
Hamilton's inequality, c/b < r, where r is the coefficient of re-
lationship, is obtained. The effect of isolation is enhanced if mi-
gration is mainly between adjacent groups and if group splitting
is along family lines, as data on population structure of primates
seem to indicate.

Although it is widely believed that most behavioral traits are
multifactorial, most models for the evolution of altruism have
been monogenic. A notable exception is the kin-selection model
of Yokoyama and Felsenstein (1). Slatkin and Wade (2) have
presented an analysis of group selection on a quantitative char-
acter subject to within-group normalizing selection. Their in-
terest, however, was not in altruism and the assumed mecha-
nism of group selection was the differential extinction of
groups. (For general reviews and references, see refs. 3 and 4.)
Here we consider a polygenic trait in a structured population
and inquire into the condition whereby between-group selec-
tion can prevail over within-group selection. The form of be-
tween-group selection we have in mind is the differential pro-
liferation of subpopulations (i.e., groups). An approach similar
to ours has been used by Price (5, 6), Hamilton (7), and Wade
(8) to divide the effects of selection into within- and between-
group components. While the trait we specifically consider is
altruism, the formulation has more general applicability.
We assume that the trait is determined by a number of un-

linked or loosely linked genes, acting additively within and be-
tween loci, and by an independent environmental component.
Later we shall discuss the consequences of relaxing the addi-
tivity assumption. The number of loci is assumed to be so large
that the effect of selection at any single locus is small and there-
fore that Hardy-Weinberg ratios can be assumed within each

randomly mating subpopulation and departures from linkage
equilibrium will be negligible. We also ignore any possible ef-
fect of random drift in producing linkage disequilibrium
throughout the population (9, 10). Finally, we assume that se-
lection at individual loci is so small as not to affect Wright's fix-
ation index (11) or the variance of the trait. The within- and
between-group variances will, however, be affected by random
gene frequency drift and migration.
To fix ideas, consider a quantitative behavioral trait. The trait

might, for example, be the magnitude ofhelp (increased fitness)
dispensed to others or the probability of giving such help. In
any case, the numerical value of the trait increases linearly with
the genic value. In addition, the trait is assumed to cause some
harm to the individual, this also increasing linearly with the
value of the trait.
Conditions for the altruistic trait to increase
Let C be the value of the polygenic trait and A be the fitness
ofan individual whose trait measurement is C. For the moment,
fitness is measured in Malthusian parameters-roughly the log-
arithm of Wright's fitness measure. The population is divided
into subpopulations or groups and P, is the proportion of all in-
dividuals that are in group s.
From the "secondary theorem of natural selection" (12), the

rate of change of the mean value of a character correlated with
fitness in any subpopulation is the additive genetic covariance
of that character and fitness:

C = Covg(A,C) = BACV(C). [1]

Since we assume Hardy-Weinberg proportions, the average
effect and average excess (13) are identical. Thus, V(C) is the
additive genetic variance of the trait and BAC is the regression
of the average effect of fitness on the average effect of the trait.
The Newtonian superior dot indicates the time derivative. This
is a special case of equations 20 and 21 of Crow and Nagylaki
(14), with complications of dominance, epistasis, and noncon-
stant fitnesses ignored.
The change in mean value ofthe character for the entire pop-

ulation caused by selection within the subpopulations is

C = BACPSVS(C)

where Vw is the average genetic variance of the trait within sub-
populations and Bw = BAC is the intragroup regression offitness
on the value of the trait. It is the regression of genic, not phen-
otypic, values.
We have regarded Bw as a constant. If it is not, we can replace

Bw by BW,, defined by

>PsBs(AC)V(C) =-BwVw
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where BI is the average ofthe Bw values, weighted by the group
size and the within-group genic variance of the character. This
is an appropriate weighting, since the rate at which selection
changes the character is proportional to the genic variance.

By the same methods used in deriving Eq. 1, the rate of
change in the mean of the character because of differential
growth of the subgroups (between-group selection) is

C = Cov(A8,C8) = BACV(C8) BbVb.

Here, Bb is the genic regression of group mean fitnesses on the
group mean value ofthe trait and Vb is the between-group genic
variance of the trait.

Putting these equations together, the rate of change of the
mean value of the trait in the whole population is

C = BwVw + BbVb. [2]

When the trait is fitness itself, this becomes the extended form
of Fisher's (13) fundamental theorem of natural selection (ref.
15, p. 241). The relative importance of within- and between-
group selection is given by the terms BwVw and BbVb.

It is more convenient, when considering the effects of mi-
gration and random drift, to adopt a discrete-generation model.
In this case, Eq. 2 is replaced by

AC = (BwVw + BbVb)/W, [3]

where BW and Bb are now, and from now on, the within- and
between-group genic regressions of Wright's fitness on the
value of the trait and W is the population mean fitness, again
in Wrightian units.
We are especially interested in an altruistic trait for which

B. is negative and Bb is positive. A sufficient condition for the
mean value of the trait to increase in the entire population (in
addition, of course, to the requisite genic variance) is

value of the character in the population from migration. The
model of a constant absolute number of migrants is somewhat
contrived but has the desirable property we are after.

After migration, each migrant behaves as a regular member
of its new home and mates randomly with others of the sub-
population. The progeny generation is enumerated at young
adulthood just before migration starts in the next generation.
Changes in subpopulation size due to reproduction or random
loss of members do not affect the calculations. The sex ratio at
birth is also irrelevant if we assume, as we do, that sex differ-
ences in mortality are uncorrelated with the altruistic trait.
Any effects of selection on the fixation index are ignored; this

is justified as an approximation by the weak selection on any
individual locus contributing to the polygenic trait. The validity
of this approximation has been studied numerically by Aoki (17)
in a related monogenic model. Our model, as we now show,
ensures that at equilibrium between random drift and a low
level of migration each subpopulation has the same value of the
fixation index FST-

Consider an arbitrary subpopulation in which there are Nf
females and Nm males at the time of migration. The proportion
of males, k, is equal to Nm/(Nm + Nf). Let F be the inbreeding
coefficient and G be the coefficient of consanguinity. We need
not distinguish the sexes in defining F and G, since these quan-
tities are evaluated before migration. Recall that Mf and Mm are
the numbers of female and male migrants.

Of the NfNm possible matings, (Nf- Mf)(Nm - Mm) are be-
tween nonmigrants. Within this group of matings, the proba-
bility that two uniting gametes are identical by descent is G.
By our assumptions, all other matings are nonconsanguineous.
Thus, denoting the inbreeding coefficient in the next genera-
tion by F', we have

F (Nf - Mf )(Nm- Mm)F = G.
NfNm

Bb > VW
-Bw Vb [4]

Since Vb is the variance among means, whereas V,,, is the
variance among individuals, it is expected that Vu; will be much
larger than Vb. However, restricted migration converts within-
group variance to between-group, so the ratio VW/Vb decreases
with the degree of isolation of the subpopulations. If isolation
is strong, the condition for increase of the trait is weaker. We
now turn to the effects of partial isolation.
Migration between subpopulations
We should like to be able to express the ratio VW/Vb as a simple
function of the degree of isolation of the subpopulations, even
when the group sizes are different and changing and taking into
account the observed sex differences in dispersal (for review,
see ref. 16). To do so, we modify the Wright island model (11)
in the following way.

Let the proportion of males be k in all subpopulations at the
time of migration. It seems biologically realistic, at least for
mammals, to assume that migration occurs after selective mor-
tality but before reproduction. Assume that each subpopulation
contributes Mf females and Mm males to a pool ofmigrants from
which Mf females and Mm males are randomly parceled out to
each subpopulation. We emphasize that k, Mp and Mm are as-
sumed to be constant for all subpopulations and for all gener-
ations and that Mf and Mm are absolute numbers of migrants.
We assume that the number ofsubpopulations is so large that

there is no decay of overall variability, that no member of the
migrant pool returns to its population of origin, and that no two
immigrants into a subpopulation come from the same subpopu-
lation. Note that with this model there is no change in the mean

[5]

To obtain the coefficient of consanguinity in the next gen-
eration, G', we note that two homologous genes in two different
randomly chosen individuals can be identical by descent only
if they are both derived from the nonmigrant fraction or from
the same individual in the migrant fraction. Ifwe collect terms,
the recursion becomes

4G (Nf-Mf + NM- MM) G

+ (NfM2 + Nm2M) (1+

+ Kf+Mm 1+F
VN2 7,J 2 ~'

- G) [6]

where F is the population mean of F.
An equilibrium can be obtained by setting F' = F = F and

GP = G in these equations, where for notational brevity we
denote the equilibrium values by F and G. If both Mf/Nf and
Mm/Nm are sufficiently small, we have approximately

1 + 4[2kMf + 2(1 - k)Mml [

The convergence to and the accuracy of Eq. 7 were studied
by numerical iteration of Eqs. 5 and 6. In these computations,
each subpopulation was permitted to fluctuate randomly in size
or to grow steadily larger or smaller, and the approximate ac-
curacy of Eq. 7 was verified. Thus, at equilibrium each sub-
population has essentially the same value of the fixation index,
FST, that we are designating by F.
We can define the effective number of migrants, Me, as
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Me = 2kMf + 2(1 - k)Mm. [8]

If k = 1/2 or if Mf = Mm, Me reduces to the actual number of
migrants, M. In this case, Eq. 7 becomes F = 1/(1 + 4M), the
standard formula for equilibrium among groups having constant
size and migration rate (11).
When the proportion of males deviates significantly from

1/2, the effective number of migrants differs substantially, de-
pending on which sex migrates. For example, in chimpanzees,
the migrants are mainly adolescent or young females (18). On
the other hand, in olive baboons, the migrants are predomi-
nantly adult males (19). In both populations, k is roughly 1/3.
Thus, for the same number of migrants, olive baboons have
about twice the effective number of migrants as chimpanzees.
We should note, however, that the observed migration rates
are quite high in both species (18, 19).

Since the expected value of F is the same in all subpopula-
tions and with Hardy-Weinberg proportions and linkage equi-
librium, we can write the within- and between-subpopulation
genic variances as

Vw= V0(1 - F)

Vb = VO(2F), [9]

where VO is the genic variance in a randomly mating population
(11). Substituting Eqs. 7-9 into Eq. 4 gives, as the condition
for the trait to increase in the population,

Bb 1-F
- > 2F = 2Me. [10]-BW 2F

Relationship to Hamilton's inequality
The quantitative trait is considered to be the frequency and/
or the degree of altruistic behavior. Behaving altruistically en-
tails a cost measured in reduced fitness while dispensing a ben-
efit to the subpopulation. The fitness increment to any indi-
vidual is the sum of the benefits received from all sources.

The trait is determined by additive genes with an indepen-
dent environmental component. We define c as the expected
cost in reduced fitness per unit change in the character, which
is -Bw. Likewise, b - c is the expected increase in group fit-
ness per unit change in the average value ofthe character, which
is Bb. Therefore, we can replace Eq. 10 by

b-c>-F [11]
c 2F

The intraclass correlation between genotypic trait values in
a subpopulation is

Vbr=
Vb + Vw

and substituting into this from Eq. 9 gives

2F
rl F. [12]1 + F['

Finally, substituting Eq. 12 into Eq. 11 and rearranging yields

r > - [13]
b

as the condition for the increase of the trait in the population.
We have recovered the familiar cost-benefit inequality (ref. 20;
for a simple proof in the context of kin selection, see refs. 21
and 22). We have assumed that there is no dominance, but this
does not imply that the validity of Eq. 13 in a randomly mating

population requires that the causative genes be without
dominance.
From Eqs. 12 and 10, we can express the average coefficient

of relationship within a subpopulation, relative to the entire
population, as a function of the number of migrants. This is

1
r=

2Me + 1
[14]

as was shown by Hamilton (7) for a somewhat different model.

Effects of dominance and epistasis
We have assumed that all the genetic variance is additive. If
there is dominance and epistasis, this will reduce the first term
on the right side of Eqs. 2 and 3 relative to the second. As em-
phasized in earlier writings (ref. 15, p. 241; ref. 23) within-group
selection depends mainly on the additive component ofthe var-
iance whereas between-group selection depends on the total
genetic variance. Thus we should expect that the lower the her-
itability of the trait, the greater the relative effectiveness of
group as opposed to individual selection.

Maintenance of genetic variability
Formally, in this model the mean value of the trait continues
to increase indefinitely, because the restricted migration pat-
tern maintains the ratio of between- to within-group variance.
Between-group variance is continuously generated by the ran-
dom sampling of gametes and other factors that contribute to
making the effective number smaller than the census number.
The group differentiation measured by F attains the quasi-equi-
librium value given by Eq. 7 in the balance between random
drift and migration. (In the absence of selection, there is a true
equilibrium, but with selection, there are small departures;
hence the designation, quasi-equilibrium.) By the assumption
that the effective number of migrants, Me, is constant, this
structure is maintained regardless of the increase and decrease
in the size of groups. The variance of the entire population is
maintained ultimately by the process of mutation, and possibly
by such factors as heterosis and frequency-dependent selection,
along with the variance-conserving power of particulate Men-
delian inheritance.

It is expected that large groups will tend to split into new
subpopulations. This too will increase the between-group var-
iance if the split is assortative (24). Studies of the Yanomamo
Indians (25) show that splitting is such that close relatives stay
together. In contemporary macaques (26, 27), group fission ap-
pears to proceed along lines of matrilineage.

Although the major mechanism invoked here for the increase
of C is the differential proliferation of groups, other mecha-
nisms exist. A smaller group usually has a smaller value of C.
Small groups tend to become extinct for nongenetic as well as
genetic reasons and this should tend to increase the value ofC
but at the price of reducing the ratio of between- to within-
group variance. An equation analogous to our Eq. 10 can be
derived from a model of differential group extinction (unpub-
lished data).

Another mechanism that reduces between-group variance is
differential migration from large to small groups. In his shifting-
balance theory, Wright (ref. 28 and earlier work) envisaged the
less successful groups as requiring a mass influx of immigrants
to carry them across a saddle. More favorable to the model of
this paper is extinction of small groups and assortative splitting
of large ones.

Discussion
Many authors, starting with Haldane (24), have considered the
possibility that the group structure of early human populations
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was important in developing cooperative and altruistic behavior
toward members of the group. The point has been especially
elaborated by Muller (ref. 29 and earlier work). Yet, the kind
of quantitative comparison of theory with data-that would be
required to reach a decision is only in its infancy. Studies of
contemporary group-living primates (18, 19, 30) suggest rather
higher migration rates than Eq. 10 would appear to permit. But,
on the other hand, we have only very crude ideas of the mag-
nitude of -Bb/B., and if the migration is more frequent be-
tween adjacent than between distant groups, this will permit
more migration while still maintaining the same level of group
differentiation. If Me is very small, 1/2 for example, the pop-
ulation comes to have the same relationship between members
ofa group as sibs in a panmictic population (Eq. 14; see also ref.
7). This would very likely satisfy the conditions for increase of
altruism, provided the appropriate genetic variance for such
traits exists. Yet such a population would suffer the ravages of
inbreeding deterioration, so the outcome is not clear.
The lesser effect of migration between near neighbors in

preventing group differentiation can be illustrated by a rather
extreme example, the two-dimensional stepping-stone model
(31), in which migration occurs only between adjacent groups.
In this model, there is a rough correspondence with Eq. 7. Me
in Eq. 7 is replaced by TMe/(-In 2g), where u is the mutation
rate (32). The stepping-stone model assumes constant size of
groups and differs from our model in other ways, such as the
introduction of mutation (which has a negligible effect in our
model if mutation is much smaller than the migration rate). If
,u = 106, (-In 21k)/ir = 4.2; if u = 10-5, the value is 3.4. Very
crudely, one migrant randomly chosen from the whole popu-
lation, as in the island model, is as effective as three or four when
migration is restricted to neighboring groups in determining the
equilibrium value of F.

If a species becomes so successful that the population in-
creases greatly and the structure breaks down, then selection
for altruism of the type modeled here would cease. As the pop-
ulation becomes increasingly panmictic, the altruists will be
selected against. Altruistic traits developed through more im-
mediate kin selection would be more likely to persist.

Whether altruistic genetic traits have developed from the
type of population structure modeled here or have been an ex-
tension of parental and sib care to less close kin is, we believe,
an open question. Our presentation of the model in this paper
is not intended as arguing for it in preference to others.
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