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Abstract

The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for
intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile
juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development
and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the
barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize
barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts
encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has
been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology
search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle
transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of
peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms
and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide
genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression
level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an
inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of
real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement.
Overall, new insight into neuropeptides/peptide hormones characterized in this study shall provide a platform for
unraveling peptidergic control of barnacle larval behavior and settlement process.
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Introduction

Neuropeptides constitute the largest class of intercellular

messenger molecules and play key roles in many physiological

processes, e.g. reproduction, homeostasis and locomotion [1]. In

general, they are produced from endocrine cells or neurons as

precursors (preprohormones) and become biologically active after

post-translational modifications. Secreted neuropeptides can have

autocrine, paracrine and hormonal effects, by binding to

membrane receptors of organ systems [2]. The earliest traceable

ancestral neuropeptides date back to primitive metazoans, i.e.

cnidarians [3,4]. In arthropods, neuropeptide studies have so far

been limited to insects and decapods. For instance, eclosion

hormone and ecdysis triggering hormone are the most well-known

neuropeptides extensively studied in the moth Manduca sexta and

the fruit fly Drosophila melanogaster [5]. Prothoracicotropic hormone

has been characterized in various insects and proposed to initiate

larval metamorphosis through stimulating prothoracic glands via

G protein-coupled receptor/cAMP [6]. The crustacean hypergly-

cemic hormone family, originally isolated from X-organ-sinus

gland (XO-SG) complex of decapods, was involved in regulating

energy and ionic metabolism, or inhibiting molting and repro-

duction [7]. Besides insects and decapods, only very limited

information is available on arthropod neuropeptides.

Barnacles are common in intertidal communities worldwide,

and often cause biofouling problems. The life-history of barnacles

consists of six naupliar stages and one cypris stage when larvae

become competent to attach to substratum and then metamor-

phose into sessile juveniles (collectively referred to as ‘‘settlement’’).

Cyprid is non-feeding stage and has evolved highly specialized

features and behavior for settlement [8]. Besides the various

exogenous inducers such as conspecific biogenic cues [9,10],

various biogenic amines and hormones such as serotonin [11,12],

dopamine, methyl farnesoate and 20-Hydroxyecdysone were also

reported to regulate larval attachment and metamorphosis

[13216]. While extensive studies have been carried out on

neurotransmitters/hormones in barnacle, only limited information

is available on barnacle settlement.

PLOS ONE | www.plosone.org 1 October 2012 | Volume 7 | Issue 10 | e46513



Bioinformatics-based mining of neuropeptides from Expressed

Sequence Tag (EST) library, transcriptome and genome has

been recently conducted and numerous novel peptides have been

uncovered in several species [17,18]. The barnacle has been

subjected to deep sequencing of EST recently [19]. In our study,

we obtained the transcriptome of the barnacle Balanus amphitrite

using 454 pyrosequencing technology, which contained more

than 90,000 predicted open reading frames [20]. This rich source

of transcriptomic information made large-scale in silico discovery

of peptides feasible since we can overcome the difficulties of

collecting and sectioning enough amounts of nervous tissues from

B. amphitrite larvae for mass spectrometry analysis. In this study,

we conducted in silico transcriptome mining of neuropeptides/

peptide hormones in B. amphitrite, and quantified their expression

levels at different developmental stages. We then examined the

effect of proprotein convertase inhibitor on larval settlement to

explore the possible function of the neuropeptides characterized.

Our results provide a comprehensive catalog of neuropeptidome

of B. amphitrite, and insights on the possible functional roles of

some neuropeptides in barnacle larval settlement.

Materials and Methods

1. Sample Preparation
Adult barnacles were collected from the Pak Sha Wan public

piers, Hong Kong (22u219450 N, 114u159350 E). No specific

permits were required for the field collection. The field studies did

not involve any endangered or protected species. Broods were

isolated from adult barnacle in the laboratory and nauplii were

hatched and cultured according to Thiyagarajan & Qian 2008

[21], and larvae were collected once they reached cypris stages

after 4 days’ culture. For expression analysis of peptide precursor

genes, nauplii II, nauplii VI, cyprids, newly metamorphosed

juveniles, and adults were collected. Total RNA extraction and

cDNA synthesis were conducted according to Chen et al. 2011

[20]. Briefly, total RNA of barnacles of different developmental

stages was extracted with TRIzolH reagent (Invitrogen, Carlsbad,

CA, USA). Trace DNA contaminants were removed by TURBO

DNA-freeTM Kit (Ambion Inc, Austin, TX, USA). cDNA was

synthesized using M-MLV reverse transcriptase (USB, Cleveland,

OH, USA) with oligo dT primer for Rapid Amplification of cDNA

Ends (RACE) reactions and real-time PCR assays.

2. Database Mining of Neuropeptide Precursors
Several methods from recent publications [17,18,22] were

combined and modified to search for neuropeptide/peptide

hormone encoding genes in barnacle transcriptome, which

contains 23,451 contiguous sequences including 182 contigs,

23,269 isotigs and 77,785 singletons [20]. Protein sequences of

the known neuropeptides and peptide hormones in arthropod

were obtained from UniProt Knowledgebase (http://www.

uniprot.org/) using ‘‘neuropeptide’’, ‘‘hormone’’ and ‘‘peptide’’

as search keywords without "receptor", "signal anchor", or

"transmembrane". NCBI non-redundant protein sequences

(http://www.ncbi.nlm.nih.gov/) were also used for known

arthropod peptides extraction, since different databases tend to

use different key-word searching criteria which may lead to

different results. After removing the unrelated sequences, such as

enzymes and transcription factors, the remaining sequences were

transformed into FASTA format to generate a local arthropod

neuropeptide database. The program ‘‘tBLASTn’’ was used to

mine for putative cDNA sequences that encode for active

peptides in the barnacle transcriptome via queries using

Table 1. Neuropeptide/peptide hormones predicted based on transcriptome mining of Balanus amphitrite.

Peptide family
Barnacle accession
No.

Reference accession
No.&

RACE
confirmed E-value Score

A-type allatostatin JQ864191 BAF64528.1 + 1E-22 1122

B-type allatostatin JQ864192 NP_001036890.1 + 7E-22 249

C-type allatostatin JQ864193 P85798.1 + 5E-23 94

Bursicon a JQ864194 XP_003485714.1 + 3E-60 193

Bursicon b JQ864195 ADI86243.1 + 5E-43 148

Calcitonin-like diuretic hormone-isoform A JQ864196 EEZ99367.1 + 2E-14 71.6

Calcitonin-like diuretic hormone-isoform B JQ864197 ACX47068.1 + 4E-21 90.5

Corticotrophin-like diuretic hormone isotig15071# UniRef100_P82373 2 0.005 36.6

Eclosion hormone JQ864198 EGI68318.1 + 3E-11 64.7

Insulin-related peptide JQ864199 NP_001233285.1 + 1E-08 57.4

Ion transport peptide GBQDZ6L01AXT7W# UniRef100_E0VME9 2 5E-19 89.4

GBQDZ6L01BA9KU# UniRef100_E2BEL2 2 0.003 37.4

Neuropeptide F JQ864200 UniRef100_C9EAB8 + 0.005 36.6

Orcokinin JQ864201 EFX70781.1 + 3E-27 110

Pigment dispersing hormone JQ864202 JC4756 + 4E-14 70.1

SIFamide JQ864203 NP_001161182.1 + 7E-06 47.8

Sulfakinin JQ864204 NP_492344.2 + 1E-06 51.2

Tachykinin-relate peptide GBQDZ6L01CRRE4# BAD06363.1 2 0.0002 32

JQ864205 BAC82426.1 + 3E-15 78.6

&Reference accession No. is the accession No. of the known neuropeptide that has the highest hit against barnacle transcript.
#NCBI accession numbers were not designated to sequences that were not confirmed by RACE.
doi:10.1371/journal.pone.0046513.t001

Neuropeptides in the Barnacle Balanus amphitrite
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arthropod neuropeptide sequences mentioned above. For each

query, the top three blast hits with an E-value lower than 0.01

were screened out and chosen as candidates and manually

checked for homology to known peptides.

3. Peptide Prediction
Neuropeptide candidate sequences generated by database

mining were translated using ExPASy translate tool (http://web.

expasy.org/translate/). Three typical neuropeptide precursor

criteria, which are signal sequence, pro-hormone processing sites

and length less than 300 amino acids, were applied to evaluate

candidate sequences. Signal peptide identification was deduced by

online program SignalP 3.0, using both the neural networks and

Hidden Markov Model algorithms [23]. Pro-hormone cleavage

sites were predicted based on work by Veenstra 2000 [24], and

Neuropred online program (http://neuroproteomics.scs.illinois.

edu/neuropred.html) and/or by homology to the known arthro-

pod precursors. Sulfation state of Tyr residues was predicted using

the online program Sulfinator [25] and/or by homology to known

arthropod neuropeptides. In some cases, other post-translational

modifications, e.g. cyclization of N-terminal Glu/Gln residues and

C-terminal amidation were predicted mainly by homology to

known peptide isoforms.

4. RACE Sequencing and Peptide Confirmation
Since neuropeptide precursor sequences generated from tran-

scriptome are usually fragmented or incomplete, further confir-

mation on the predicted neuropeptide candidates by full length

open reading frame (ORF) is required. Two sets of specific primers

were designed from the partial cDNA sequences obtained from the

transcriptome database. For RACE, a first run of amplification

Figure 1. Sequence alignment of barnacle pigment dispersing hormone, SIFamide and neuropeptide F with arthropods. (A)
Sequence alignment of mature pigment dispersing hormone. Decapods peptide sequences are from: Uca pugilator P08871, Procambarus clarkii
Q9TWW7 and Cancer productus ABV68725; isopod peptide is from Eurydice pulchra ACX49752; insect peptides are from: Drosophila melanogaster
AAL49303, Schistocerca gregaria ACY02888 and Musca domestica Q76JT9. (B) Alignment of barnacle SIFamide mature peptides. Sequences are from:
decapods Homarus americanus, Cancer borealis; branchiopod Daphnia pulex; insects Drosophila melanogaster, Tribolium castaneum, Bombyx mori,
Rhodnius prolixus and Ixodes scapularis [38]. (C) Alignment of barnacle NPF mature peptide. Insect NPF are from: Drosophila melanogaster AF117896,
Bombyx mori NP_001124361, Locusta migratoria CO854418 and Pediculus humanus EEB15547. Decapods NPF are from shrimps Marsupenaeus
japonicus CI998017 and Litopenaeus vannamei AEC12204; copepod NPF is from Lepeophtheirus salmonis FK933794; branchiopods NPF are from
Daphnia magna EG565358 and Daphnia pulex EFX90018. Asterisks ‘‘*’’ represent typical motif residues of each peptide. ‘‘x’’ indicates unique amino
acid residues of B. amphitrite compared to other arthropods. Line marks the unique five amino acids insertion of NPF in B. amphitrite.
doi:10.1371/journal.pone.0046513.g001

Figure 2. Comparison of barnacle sulfakinin peptide with other
arthropods. (A) Sequence alignment of mature sulf. (B) Precursor
structure of barnacle sulf compared with other crustaceans and insects.
Insects Sulf are from: Drosophila melanogaster AAF52173, Tribolium
castaneum EFA04708, Anopheles gambiae AAR03495, Bombyx mori
NP_001124354 and Culex quinquefasciatus XP_001846221; branchiopod
is from Daphnia pulex EFX80896; decapods Sulf are from Homarus
americanus and Penaeus monodon [38]. Asterisks ‘‘*’’ represent typical
motif residues of each peptide. ‘‘x’’ indicates unique amino acid
residues of B. amphitrite compared to other arthropods.
doi:10.1371/journal.pone.0046513.g002

Neuropeptides in the Barnacle Balanus amphitrite
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was performed using gene specific primer 1st and adaptor with

oligo (dT)/oligo (dG) primer. Then gene specific primer 2nd (up or

down to primer 1st) and adapter primers were used for second run

PCR amplification. RACE products were cloned and sequenced.

Complete amino acid sequences of candidate genes were

submitted to NCBI BLAST again and checked manually for the

precursor structure. If BLAST result of the new sequence didn’t

match the corresponding neuropeptide genes, it was excluded.

5. Sequence Analysis
Corresponding neuropeptide sequences from crustaceans and

insects were searched and collected. All the crustacean neuropep-

tide genes and proteins discovered through in silico data mining,

cloning or mass spectrometric approach were compiled. Predicted

mature peptide sequences were used for alignment using ClustalW

(version 2.0) with default parameters and manually checked.

6. Quantitative Real-time PCR
Gene specific primers were designed manually based on

nucleotide sequences from the barnacle transcriptome database.

Details of the primers are listed in Table S3 as additional

information. The cytochrome b gene was used as the inner

reference for normalizing the expression levels of target genes [26].

All real-time PCR assays for each peptide-encoding gene were

performed on Stratagene Mx3005P QPCR System (Agilent, Santa

Clara, CA, USA), using KAPATM SYBRH FAST qPCR Kit

Master Mix (2X) Universal (KAPA Biosystems, Woburn, MA,

USA). For each neuropeptide gene, three replicates were

conducted using each batch of larvae, and three batches of larvae

were collected for real-time PCR analysis. Generated qRT-PCR

Ct values were analyzed by 2-DDCt method [27] and further

tested by using one-way ANOVA, followed by Tukey test post-hoc

analysis. Gene expression level in juvenile stage was standardized

in order to better characterize genes that are up-regulated in cypris

stage and down-regulated after metamorphosis, which might be

involved in settlement regulation.

7. Proprotein Convertase Inhibitor Assay
To test the hypothesis that neuropeptides/peptide hormones are

involved in larval settlement, we incubated cyprids in solution of

peptidyl chloromethylketone (Enzo life sciences, Farmingdale, NY,

USA) and compared the percentage of metamorphose between the

treatment and control. This compound is a highly specific and

potent inhibitor against proprotein convertases responsible for

maturation of bioactive peptides [28]. Specifically, stock solution

(20 mM) was prepared by dissolving the compound in dimethyl

sulfoxide (DMSO) and stored at 220uC. Experiments were

conducted in triplicates and repeated three times with different

batches of cyprids. Around 20 cyprids were added to each well of a

24-well plate (#3047, BD FalconTM, Franklin Lakes, NJ, USA)

each containing 1 mL of test solution. The treatment group

consisted of three concentrations (1, 10, and 100 mmolL–1), with

two negative controls, i.e. autoclaved filtered seawater (AFSW)

only and 0.5% DMSO in AFSW. The plates were incubated at

28uC in darkness for 48 hours, and the number of metamorphosed

Figure 3. Comparison of barnacle tachykinin-related peptide
with that of insects and crustaceans. (A) TRP sequence alignment.
Decapods TRP are from: Cancer borealis [72] and Homarus americanus
ACB41786; isopod TRP is from Eurydice pulchra CO869025; branchiopod
TRP is from Daphnia pulex [38]. Insects TRP are from: Tribolium
castaneum EFA09176, Drosophila melanogaster AAF89172, Bombyx mori
NP_001124364 and Rhyparobia maderae AAX11211. (B) Barnacle TRP
precursor structure compared with other crustaceans and insects.
Decapods TRP are from: Homarus americanus ACB41786 and Procam-
barus clarkia BAC82426. Insects TRP are from: Drosophila melanogaster
AAF89172, Camponotus floridanus EFN66667 and Periplaneta americana
AAX11212. Branchiopod TRP is from Daphnia pulex [38]. Asterisks ‘‘*’’
represent typical motif residues of each peptide.
doi:10.1371/journal.pone.0046513.g003

Figure 4. Comparison of barnacle orcokynin with other
arthropods. (A) Sequence alignment mature orco. (B) Precursor
structure of barnacle orco compared with other crustaceans and
insects. Sequences of insects Orco are from: Nasonia vitripennis
XP_003426062, Bombyx mori NP_001124366, Danaus plexippus
EHJ77769, Harpegnathos saltator EFN80782 and Apis mellifera
XP_001120650; copepods Orco are from: Calius rogercresseyi and
Lernaeocera branchialis [22]; decapods Orco are from: Litopenaeus
vannamei [1], Marsupenaeus japonicas [73], Homarus americanus
ACD13197, Procambarus clarkii [73], Carcinus maenas [74] and
Orconectes limosus [75]. Branchiopod Orco is from Daphnia pulex
EFX70781. Asterisks ‘‘*’’ represent typical motif residues of each peptide.
doi:10.1371/journal.pone.0046513.g004

Neuropeptides in the Barnacle Balanus amphitrite
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and swimming cyprids was counted under a dissecting microscope

every 24 hours. Three replicates were conducted for each batch of

larvae and treatment, and in total three batches of larvae were

collected for bioassay. Percentage of larval metamorphosis was

calculated and arcsine transformed prior to one-way ANOVA

analysis followed by Tukey test post hoc analysis.

Results and Discussion

1. Neuropeptides Predicted from B. amphitrite
In this study, a combination of in silico prediction of putative

neuropeptide-encoding genes of B. amphitrite and molecular cloning

verification were performed using known peptides in Arthropoda

as queries. As a result, 16 neuropeptide families were predicted,

and 14 of them were confirmed by peptide homology and gene

cloning (Table 1), generating 64 predicted mature peptides (Table

S1). Since many neuropeptides are relatively fragmented (10–30

amino acids) in the transcriptome dataset, the BLAST score

tended to be low with a high E-value. Their full length open

reading frames were cloned by RACE, which not only served as a

secondary proof of the in silico predictions, but also provided large

coverage of peptide isoforms as possible. The neuropeptide

precursor sequences and predicted structures are listed in Table

S2. In comparison with the previous studies in which only pigment

dispersing hormone, crustacean cardioactive peptide and RFa-

mide family had been characterized by immunohistochemistry

[29,30,31], our results tremendously expand our knowledge of the

molecular endocrinology of barnacle species.

The neuropeptides identified in this study included A-type

allatostatin (ASTA), B-type allatostatin (ASTB), C-type allatostatin

(ASTC), bursicon subunit a (BurA), bursicon subunit b (BurB),

calcitonin-like diuretic hormone (Calci), eclosion hormone (EH),

insulin-related peptide (IRP), neuropeptide F (NPF), orcokinin

(Orco), pigment dispersing hormone (PDH), SIFamide, sulfakinin

(Sulf) and tachykinin-related peptide (TRP) (Table 1). Among

these predicted neuropeptides, pigment dispersing hormone was

previously also detected in all of the three barnacle species tested

by Webster 1998 [28]. In our in silico prediction, it was

characterized with precise amino acid sequence as NSE-

LINSLLGLPKIMNEAamide (Figure 1A, Table S1), which highly

resembled b-PDH discovered in the crab Uca pugilator [22]. Two

previously detected neuropeptides through immunohistochemis-

try, namely FMRF-like neuropeptide and crustacean cardioactive

peptide (CCAP), were not found in our study. It might be because

they were not covered by the transcriptome using 454 sequencing,

or too fragmented to pass our screening criteria.

2. Neuropeptide Sequences Analysis
Although most of the neuropeptides identified in the present

study are widely distributed among arthropod species, we found

some isoform variants that appeared to be unique, including those

that had previously been thought to be highly conserved in

arthropods. For instance, SIFamide family consists of two major

isoforms, namely Gly-SIFamide and Val-SIFamide, which are

extremely conserved among arthropods and only differ at one N-

terminal residues [32]. Gly-SIFamide peptide discovered in

B. amphitrite in this study was highly similar to that of other insects

and decapods, but with one amino acid Pro6 being changed into

Thr6 (Figure 1B). Likewise, NPF of B. amphitrite possessed extra

five-residues insertion between positions 19–23 from C-terminal,

which was a novel isoform for NPF peptide family (Figure 1C).

Furthermore, clear differences existed between sulfakinins from

barnacle and their arthropod counterparts. The precursor of

barnacle sulfakinin encoded for two more mature peptides than

that of other arthropods (Figure 2B). In addition, compared with

C-terminal typical signature YGHM/LRFamide with sulfated or

nonsulfated Tyr in other species, sulfakinin-2/3/4 in B. amphitrite

possessed Lys8 rather than the ubiquitous Arg8, and Met6/Phe6

instead of His6 in all known arthropod sulfakinin variants

(Figure 2A). Further support was derived from barnacle ASTC

with the mature sequence of SYWKQCSFNAVSCFamide (Table

S1). The typical motif of ASTC is either X6CYFNPISCF with N-

terminal blocked by pyro-Glu or SXWKQCAFNAVSCFamide

[33], where X represents a variable residue. Thus ASTC of

B. amphitrite highly resembled that of other decapods and insects,

but with the broadly conserved Ala7 being substituted by Ser7.

During evolution, the non-synonymous mutations may either

radical, or promote or impair the neuropeptide’s biological

function [34]. Plenty of structural function studies on neuropep-

tides suggested even small variations of amino acid sequence can

lead to substantial functional changes in the potency of the

peptides, depending on the position of changes [35]. For instance,

the allatostatin Pea-AST2 of the cockroach Periplaneta americana was

reported to be more potent than Pea-AST1 over a 400-fold range,

in terms of their ability of inhibiting juvenile hormone synthesis

[36]. Thereby, unique neuropeptide structures found in barnacle

may implicate that their functional efficiency has been altered.

Whether, and in what way modified peptide sequences would alter

their bioactivity and subsequently physiological processes in

barnacles remains to be investigated.

3. Some Neuropeptides of B. amphitrite Indicate Closer
Relationship with Insects Rather than Decapods

Insects and decapods are two major groups of arthropods widely

studied in comparative endocrinology and neuropeptide physiol-

ogy. Thorough comparison of neuropeptide structures and

sequences revealed that some neuropeptides of barnacle were

structurally similar to their insect homologs. The first instance was

Figure 5. Comparison of barnacle B-type allatostatin with other
arthropods. (A) Mature ASTB sequences alignment. (B) Precursor
structure of barnacle ASTB compared with other crustaceans and
insects. Insects ASTB are from: Bombyx mori P82003, Tribolium
castaneum B8XQ58 and Gryllus bimaculatus Q5QRY7; branchiopod
ASTB is from Daphnia pulex E9GSK4. Asterisks ‘‘*’’ represent conserved
motif residues.
doi:10.1371/journal.pone.0046513.g005

Neuropeptides in the Barnacle Balanus amphitrite
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based on precursor structure of both the TRP and Orco genes of

B. amphitrite. Decapods’ TRP precursor generally gave rise to

several copies of a single TRP isoform or only one additional TRP

isoform [37], while the TRP precursor of insects tended to encode

multiple diverse isoforms [38]. The TRP precursor of B. amphitrite

contained four copies of different TRP mature peptides (Figure 3,

Table S2), which is structurally more similar to insects. In the case

of Orco, mature Orco of both insects and B. amphitrite encoded for

14 amino acids, while the Orco of decapods was strictly 13 amino

acids long (Figure 4A). Besides, comparison of their precursor

structures also indicated that barnacle Orco resembled that of

insects, with less mature peptides than crustaceans (Figure 4B).

The barnacle ASTB revealed in this study (Figure 5) lends

further support to our postulation above. Among the 10 peptide

isoforms encoded by ASTB precursor of B. amphitrite, 9 of them

showed high similarity with the ASTB of insects. In addition,

sequence alignment of IRP also indicated a similar result (Figure 6).

In general, the IRP precursor contains contiguous B-C-A peptides.

After maturation, A- and B-chain peptides are linked together by

two interchain disulfide bonds and one intrachain disulfide bond.

C-chain peptide assists the formation of linkage and will be clipped

off at the cleavage sites afterwards [39]. IRP of B. amphitrite

structurally resembled that of insects, with one more amino acid

between the two Cys on B-chain and four amino acids gap

between the second and third Cys of the A-chain (Figure 6). One

contradiction came from the ASTA of B. amphitrite, which resemble

that from decapods. Among predicted ASTA peptides of

B. amphitrite, ASTA-1/4/5/6/8/9 were similar to ASTA peptides

from the giant fresh water prawn Macrobrachium rosenbergii, while

the rests shared similarities with the lobster Panulirus interruptus

(Figure 7). Sequence comparison of other neuropeptides including

BurA/B, Calci and EH were shown in Figure 8 and 9, revealing

their conserved structures among arthropod species.

Based on molecular studies in the past decades, it is now widely

accepted that hexapods are associated with crustaceans, forming a

group called Pancrustacea within arthropods. However, the inner

relationships among Pancrustacean constituent lineages are far

from being resolved [40]. A recent phylogenetic analysis of

protein-coding nuclear genes demonstrates that Hexapoda is most

closely related to the crustacean Branchiopoda, Cephalocarida

and Remipedia, while Malacostraca including decapods are

grouped with Cirripedia (barnacles) making the traditional

Figure 6. Peptide alignment of insulin-related peptide of Balanus amphitrite with arthropods. Isopods IRP are from: Armadillidium vulgare
AB029615 and Porcellio dilatatus AB089811; decapods IRP are from: Marsupenaeus japonicus AB029615, Penaeus monodon GU208677.1 and Cherax
quadricarinatus DQ851163; branchiopod IRP is from Daphnia pulex [38]; insects IRP are from: Bombyx mori NP_001233285, Locusta migratoria P15131,
Drosophila melanogaster CG14173, Anopheles gambiae AAQ89693 and Camponotus floridanus EFN61735. Asterisks ‘‘*’’ mark the conserved Cysteine
residues, black frame indicates specific amino acids insertion and deletion in IRP of isopod and decapod species, compared to insects, branchiopod
and barnacle.
doi:10.1371/journal.pone.0046513.g006
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crustacean class Maxillopoda with copepod [41]. However in

B. amphitrite, neuropeptides such as TRP, Orco, IRP and ASTB,

were much similar to their homologs from insects rather than

decapods, as supported by structure comparison and sequence

alignment. High sequence similarity among different species may

represent independent evolution under shared evolutionary

constraints, which maintains structural and functional conserva-

tion of protein products [38]. The closer relationship of these

neuropeptides between B. amphitrite and insects inferred much

about their similar function in these two groups. Since molecular

neuroendocrine information of arthropods other than decapods

and insects is limited, data on neuropeptides from other taxa

would be helpful.

4. Neuropeptides that are Specifically Up/down
Regulated in Cyprid Stage

To further explore the potential involvement of neuropeptide

genes in larval settlement of B. amphitrite, late nauplius VI, cyprid,

early juvenile and adult were chosen to assess developmental

variation of neuropeptide genes. Fourteen predicted neuropeptide

genes were subjected to quantitative real-time PCR (Figure 10).

Since the expression level of bursicon a subunit has already been

measured by Chen et al. [20], this gene was omitted in the current

developmental profiling. Using gene expression level in the

juvenile stage as a standard, calcia (A isoform of calcitonin-like

diuresis hormone), sif (SIFamide), pdh (pigment dispersing

hormone) and astb (B-type allatostatin) were found to be

specifically up-regulated in either late naupliar stage or cypris

stage but down-regulated in early juvenile and adult stages (Tukey

test, p,0.05). trp (Tachykinin-related peptide) was down-regulated

in cypris and early juvenile stage compared to naupliar and adult

stages (Tukey test, p,0.05); irp (Insulin-related peptide) was down

regulated in early juvenile compared to other stages (p,0.05, One-

way ANOVA); expression level of npf (neuropeptide F), burb

(bursicon subunit b), calcib (B isoform of calcitonin-like diuresis

hormone), orco (orcokinin), sulf (sulfakinin), eh (eclosion hormone),

asta and astc (A- and C- type allatostatin) remained unchanged

among naupliar VI, cypris, juvenile stages, but were down-

regulated in adults. The down regulation of neuropeptide genes in

adults could be due to the degenerated neural system since the

central nervous system of adult barnacle is highly reduced in the

sessile mode [29,42]. There was, however, an exception, which is

the high expression of tachykinin-related peptide (trp) in both

naupliar VI and adult stages. Since the nervous system of cyprid

larva is specifically cater for sensing settlement cues [43], we thus

expect that peptide B-type allatostatin, A isoform of calcitonin-like

diuresis hormone (Calci-A), pigment dispersing hormone and

SIFamide are involved in cypris attachment and metamorphosis,

or at least performs a specific function during these two stages,

since they were higher expressed in larval stage but down-

regulated after metamorphosis.

4.1 B-type allatostatin. All three families of ASTs were

found in the transcriptome of B. amphitrite, but only ASTB was up-

regulated in both naupliar VI and cypris stages, being almost 3-

fold higher than the juvenile stage (Figure 10B). Different

developmental expression patterns of these three types of ASTs

in B. amphitrite indicates that each type may be respectively

involved in different physiological processes, such as juvenile

hormone synthesis, stomatogastric or cardiac neuromuscular

functions reported in insects [44,45]. One major function of ASTs

in the insects studied is inhibiting juvenile hormone (JH) synthesis

[46]. JH is responsible for the maintenance of juvenile character-

istics during development, and prevents metamorphosis during

larval stage. Methyl farnesoate (MF), the unepoxidised form of JH

III discovered in crustacean, was recently considered as function-

ally equivalent to insect JH [47]. In barnacle, high concentration

of exogenous MF induced precocious metamorphosis without

attachment [14], while physiologically-relevant concentration of

natural isomer of MF inhibited larval settlement [16]. Further-

more, Yamamoto et al. [13] suggested that the balance of JH and

20-Hydroxyecdysone could regulate cypris metamorphosis, espe-

cially molting. Since ASTB was reported to have JH-inhibiting

Figure 7. Sequence comparison of barnacle A-type allatostatin with homologs in arthropods. Decapod ASTAs are from Macrobrachium
rosenbergii Q1AHE3, Panulirus interruptus A6BL33 and Procambarus clarkii Q3LI53; insect ASTAs are from Bombyx mori NP_001037036, Drosophila
melanogaster AAF97792. Asterisk ‘‘*’’ represents typical motif residues of ASTA peptide.
doi:10.1371/journal.pone.0046513.g007
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effects in other species, we presume that high expression level of

ASTB in late cyprid stage would suppress JH synthesis and

subsequently regulates metamorphosis.

4.2 Calcitonin-like diuretic hormone. In our study, two

isoforms of calcitonin-like diuretic hormone (CalciA and CalciB)

located at different transcripts were identified and distinct

expression patterns were detected. CalciA was highly expressed

in both Nauplii VI and cyprid compared with juvenile stage, while

CalciB’s expression didn’t significantly change during settlement

(Figure 10E, F). Calci belongs to the diuretic hormone (DH) family

and could promote fluid secretion of Malpighian tubule in insects

[48], acting as mosquito natriuretic peptide that can stimulate Na+
rich urine [49], or modulated diuresis-related hindgut activity

[50]. In crustaceans, Calci was characterized in the American

lobster Homarus americanus and functioned as an intrinsic modulator

of cardiac output [51]. Thus barnacle CalciA may be involved in

Figure 8. Sequence alignment of barnacle bursicon peptides. (A) Alignment of bursicon a subunit. Sequences are from: euphausiacean
Euphausia superba [22]; decapods Litopenaeus vannamei [22], Homarus gammarus ADI86242.1 and Carcinus maenas EU139428; branchiopod Daphnia
pulex [38]; insects Tribolium castaneum DQ138190, Drosophila melanogaster NM_142726, Apis mellifera NM_001098234, Musca domestica EF424614
and Bombyx mori NM_001098375; chelicerate Ixodes scapularis XM_002407468. (B) Alignment of bursicon b subunit. Sequences are from: decapods
Homarus americanus [22], Homarus gammarus ADI86243.1, Litopenaeus vannamei [22] and Carcinus maenas EU139429; branchiopod Daphnia pulex
[38]; insects Tribolium castaneum DQ156997, Drosophila melanogaster NM_135868, Apis mellifera NM_001040262, Musca domestica EF424613 and
Bombyx mori NM_001043824; chelicerate Ixodes scapularis XM_002407469. Asterisk ‘‘*’’ mark the conserved cysteine that will form dimers.
doi:10.1371/journal.pone.0046513.g008
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maintaining ionic homeostasis of hemolymph during barnacle

development.

4.3 Pigment dispersing hormone. The expression level of

PDH was 4-fold higher in cyprid than that in juvenile (Figure 10K).

Crustacean PDH is homolog to pigment dispersing factor (PDF)

discovered in insects. In insects, PDF served as a major output

signal in the biological clock for fruit fly and cockcroach [52254],

which in turn regulated physiological processes and behavior

related to daily rhythms. PDF was also located at visual

interneurons in the synaptic neuropil (lamina) underlying the

compound eye of the housefly Musca domestica [55]. In crustaceans,

PDH has been reported to induce pigment movements in

chromatophores and retinal pigment cells [56], or affected

electrical response to photic stimulation of the compound eyes

[57]. According to Webster 1998 [30], strong PDH immunore-

activity was found in perikarya on the surface of the neuropil of the

ventral ganglion and supra-esophageal ganglia in adult barnacle

species, and thus PDH was suggested to have neuromodulatory

roles in somatic extensions in adult barnacles. At this moment no

information is available for localization of the PDH in barnacle

larvae. The nervous system of cyprid is more complicated than

adult, and only cypris larva has a pair of morphologically well-

differentiated compound eyes. Higher expression of PDH in the

cypris stage and its general function in vision suggest that it may be

related to the photoreception of compound eyes in cyprids during

larval settlement.

4.4 SIFamide. The expression level of SIFamide was nearly

6-fold higher in the cypris stage than in juvenile (Figure 10L).

SIFamide peptide family is broadly distributed among arthropod

and highly conserved. It has diverse functions and acts as a local

autocrine/paracrine modulator. In Drosophila, SIFamide could

modulate sexual behavior [58], while in crustaceans, it was related

to dominance hierarchy of the prawn M. rosenbergii [59], or

modulating pyloric neural circuit in the lobster H. americanus [60].

Immunohistochemistry work showed that SIFamide was densely

accumulated in the olfactory lobe in the crayfish Procambarus clarkii,

indicating its function in olfactory systems [59]. Another study

confirmed the presence of SIFamide in the eyestalk neuropils of a

crayfish and suggested its role in visual signal processing [61]. The

choice of substratum for permanent attachment of competent

cyprid relies on sensitive response to both physical and chemical

characteristics of environment as well as conspecific biogenic cues

[62]. Since SIFamide is related to processing high-order,

multimodal input and transmitting tactile, olfactory and visual

stimuli [32], a higher expression level in cypris stage is required for

transmitting neural signals and detecting exogenic cues in the

settlement processes.

4.5 Tachykinin-related peptide. Expression of TRP in

barnacle was down-regulated in the cypris and juvenile stages,

compared to its relatively high expression in naupliar VI and adult

stages (Figure 10N). The TRP family represents one of the largest

neuropeptide families in the animal kingdom and is widely

distributed across invertebrate, protochordate, and vertebrate

species [63]. Previous researches suggested that TRP might

function as both central neuromodulators and circulating

hormones [64]. The TRPs display multiple functions in the

nervous system and different kinds of muscle, and most

importantly in gut tissue among insects [65]. TRP is related to

Figure 9. Sequence alignment of calcitonin and eclosion hormone of barnacle. (A) Sequence alignment of barnacle calcitonin isoform A
and B. Sequences are from: decapods Homarus americanus ACX46386.1; copepods Caligus clemensi [22], Lepeophtheirus salmonis ADD38663;
branchiopod Daphnia pulex EFX90445; insects Tribolium castaneum EEZ99367, Drosophila melanogaster NP_523514, Anopheles gambiae XP_321755,
Bombyx mori NP_001124379, Camponotus floridanus EFN61187 and Nasonia vitripennis XP_001599948. (B) Alignment of barnacle eclosion hormone.
Sequences are from: decapods Callinectes sapidus CV224237, Penaeus monodon [22], Marsupenaeus japonicus [22]; branchiopods Daphnia pulex [37],
Triops cancriformis [22]; insects Acromyrmex echinatior EGI68318, Anopheles gambiae XP_001230805, Drosophila melanogaster NP_524386, Bombyx
mori NM_001043842 and Tribolium castaneum XP_969164. Asterisks ‘‘*’’ mark the six conserved Cysteine residues in EH.
doi:10.1371/journal.pone.0046513.g009
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feeding status in locust evident by a decrease in immunoreactivity

after 48 hours of starvation [66]. In crustaceans, TRP was first

discovered in the crab Cancer borealis and exactly the same sequence

was then found in other seven crab species [37]. In general, TRP is

related to food intake and digestion related functions. Since the

cyprid larvae do not feed, the subsequent habitat selection and

settlement behavior are dependent on energy reservation [67], i.e.

lipids and vitellin-like protein [68]. During settlement, barnacle

larvae undergo tremendous morphological changes and begin to

feed from 2 to 5 days afterward [69]. TRP expression attained a

relatively low level in the two non-feeding stages, cyprid and early

juvenile, indicating its paracrine/hormonal control of feeding-

related behavior of barnacle.

5. Prohormone Convertase Inhibitor Effectively Delayed
Larval Settlement of B. amphitrite

Neuropeptides are derived from larger proprotein precursors

which carry one or more mature peptides. Highly regulated

posttranslational transformation is required for generating mature

peptides with biological functions. After cleavage of N-terminal

signal peptide, proprotein convertase (PC) cleaves at the mono- or

diabasic cleavage sites of the remaining part of precursor, giving

rise to peptide products that will undergo subsequent peptidase

modification [70]. Two members of proprotein convertase family,

PC2 and PC1/PC3, appear to play a preeminent role in

neuroendocrine precursor maturation process in both mammalian

and invertebrates [71]. In Caenorhabditis elegans, HPLC-MALDI-

TOF analysis indicated a drastic reduction of types and

abundance of neuropeptides in KPC-2/KPC-3 (PC homologs)

mutant strains compared to wild type strains [70]. The kpc-2/egl-3

mutant was still viable, but its responsiveness to mechanical stimuli

and egg-laying behavior were impaired [70].

To further explore peptidergic control of larval settlement of B.

amphitrite, we performed settlement This inhibitor is the most

potent commercial compound that specifically inhibits peptide

production and maturation [28]. Bioassay result showed that this

inhibitor effectively delayed larval attachment and metamorphosis

of B. amphitrite, on a dose dependent manner. After 24 hours, larval

metamorphosis was significantly inhibited when the inhibitor

concentration $10 mmolL–1 (Tukey test, **p,0.01, ***p,0.001),

compared with cyprids incubated in AFSW or 0.5% DMSO as the

control, while no significant effect was observed at 1 mmolL–1

(Tukey test, p = 0.081). The inhibition was unlikely to be caused by

toxicity of PC inhibitor since the unsettled cyprids in treatment

group were swimming normally. After incubation for 48 hours,

most of the swimming cyprids in the treatment group settled and

metamorphosed normally into early juveniles, and larval meta-

morphosis percentage among the controls and treatments was not

different (Tukey test, p.0.05) (Figure 11). No mortality was

observed for all the tested concentrations within the experimental

duration. We may deduce that PC inhibitor restrained peptide

maturation and thus cyprids delayed metamorphosis into juvenile.

The real concentration of the compound in cyprids might be lower

than the nominal concentration [11], and the peptide may be

degraded by enzymes in hemolymph 48 hours after treatment.

The complimentary peptide maturation pathways in addition of

Figure 10. Real-time PCR results of predicted neuropeptide genes in four developmental stages. Stages include the late nauplius VI
(NauVI), cyprid (Cyp), young juvenile (Juv) and the adult (Adu). Gene expression was measured for (A) A-type allatostatin (asta), (B) B-type allatostatin
(astb), (C) C-type allatostatin (astc), (D) bursicon subunit b (burb), (E) calcitonin-like diuretic hormone isoform A (calcia), (F) calcitonin-like diuretic
hormone isoform B (calcib), (G) eclosion hormone (eh), (H) insulin-related peptide (irp), (I) neuropeptide F (npf), (J) orcokinin (orco), (K) pigment
dispersing hormone (pdh), (L) SIFamide (sif), (M) sulfakinin (sulf), (N) tachykinin-related peptide (trp). Values are showed as mean 6 SD from three
biological replicates. Asterisks indicate significant difference detected by one-way ANOVA comparing to gene expression level in juvenile stage
(Tukey test, * p,0.05, **p,0.01).
doi:10.1371/journal.pone.0046513.g010

Figure 11. Proprotein convertase inhibitor bioassay result. Autoclaved filtered seawater (AFSW) and 0.1% DMSO served as positive control.
Error bar represents mean 6 SD for three biological replicates. Asterisks indicate significant difference detected by one-way ANOVA comparing the
treatments to the positive control (Tukey test, **p,0.01 and ***p,0.001).
doi:10.1371/journal.pone.0046513.g011
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PC could be another reason why settlement was not completely

blocked by inhibitor.

Conclusion
In conclusion, we discovered fourteen neuropeptide and peptide

hormone families/subfamilies through in silico transcriptome

mining of Balanus amphitrite. The analysis of mature structure and

sequence of the predicted neuropeptides provided a new evidence

on evolution of barnacle neuropeptides. B-type allatostatin,

calcitonin, pigment dispersing hormone and SIFamide were up-

regulated in cypris stage and down-regulated after metamorphosis.

Together with our bioassay result of proprotein convertase

inhibitor, we demonstrated the involvement of neuropeptides in

larval metamorphosis. Our neuropeptidome data also provide a

platform for further elucidating the physiological functions of

individual peptide. Specifically, synthetic peptide could be raised

based on the predicted peptide structure, for exploring their spatial

expression pattern through specific antibodies, or for in vivo test of

their functions in barnacle through peptide treatment. Given that

B. amphitrite is an important biofouling species worldwide,

neuropeptide genes and their postulated functional role in larval

settlement revealed in this study may shed light on the future

development of novel antifouling compounds.
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