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ABSTRACT

Summary: With the rapid advances and prevalence of high-

throughput genomic technologies, integrating information of multiple

relevant genomic studies has brought new challenges. Microarray

meta-analysis has become a frequently used tool in biomedical re-

search. Little effort, however, has been made to develop a systematic

pipeline and user-friendly software. In this article, we present

MetaOmics, a suite of three R packages MetaQC, MetaDE and

MetaPath, for quality control, differentially expressed gene identifica-

tion and enriched pathway detection for microarray meta-analysis.

MetaQC provides a quantitative and objective tool to assist study in-

clusion/exclusion criteria for meta-analysis. MetaDE and MetaPath

were developed for candidate marker and pathway detection, which

provide choices of marker detection, meta-analysis and pathway ana-

lysis methods. The system allows flexible input of experimental data,

clinical outcome (case–control, multi-class, continuous or survival) and

pathway databases. It allows missing values in experimental data and

utilizes multi-core parallel computing for fast implementation. It gen-

erates informative summary output and visualization plots, operates

on different operation systems and can be expanded to include new

algorithms or combine different types of genomic data. This software

suite provides a comprehensive tool to conveniently implement and

compare various genomic meta-analysis pipelines.

Availability: http://www.biostat.pitt.edu/bioinfo/software.htm

Contact: ctseng@pitt.edu

Supplementary Information: Supplementary data are available at

Bioinformatics online.

Received and revised on May 2, 2012; accepted on July 29, 2012

1 INTRODUCTION

Many high-throughput genomic technologies have advanced
dramatically in the past decade. Microarray experiment is one

example that has evolved into maturity with generally consensus

experimental protocols and data analysis strategies. Its extensive

application in the biomedical field has led to an explosion of gene

expression profiling studies publicly available. Meta-analysis

methods for combining multiple microarray studies have been

widely applied to increase statistical power and provide validated

conclusions (Tseng et al., 2012). In this article, we present the

‘MetaOmics’ software suite that contains three unified R pack-

ages—MetaQC, MetaDE and MetaPath—for systematic micro-

array meta-analysis pipeline. The MetaQC (Kang et al., 2012)

package provides a quantitative and objective tool for determin-

ing the inclusion/exclusion criteria for meta-analysis. MetaDE

contains many state-of-the-art genomic meta-analysis methods

to detect differentially expressed genes. Finally, the MetaPath

package (Shen and Tseng, 2010) provides a unified meta-analysis

framework and inference to detect enriched pathways associated

with outcome.

2 THE THREE R PACKAGES

The three R packages in MetaOmics allow flexible input format

of experimental data and four different types of outcome vari-

ables (case–control, multi-class, continuous and survival). They

also allow missing values in the individual experimental study or

missing values caused by mismatched genes across studies (i.e.

genes covered in one study but not covered in another study).

For some computationally intensive routines, the packages allow

usage of multi-core parallel computing for timely implementa-

tion. Detailed help files, tutorial and a case study are available in

an online supplementary document as well as in the R packages.

Below, we briefly describe features and functionality of the three

packages.

2.1 MetaQC

MetaQC calculates the following six quantitative quality control

(QC) measures: internal homogeneity of co-expression structure
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among studies (IQC), external consistency of co-expression pat-

tern with pathway database (EQC) and accuracy and consistency

of differentially expressed gene detection (AQCg and CQCg) or

enriched pathway identification (AQCp and CQCp). Each QC

index is defined as the minus log-transformed P-values from

formal hypothesis testing in each QC criterion. Principal compo-

nent analysis (PCA) biplots and standardized mean ranks are

finally generated to assist visualization and decision. The identi-

fied problematic studies are suggested for further inspection to

detect potential technical or biological causes of their low quality

and to determine their exclusion from meta-analysis.

2.2 MetaDE

MetaDE package implements 12 major meta-analysis methods

for differential expression (DE) analysis: Fisher (Rhodes et al.,

2002), Stouffer, adaptively weighted statistic (AW) (Li and

Tseng, 2011), minimum P-value (minP), maximum P-value

(maxP), rth ordered P-value (rOP) (Song and Tseng, 2012),

fixed effects model (FEM), random effects model (REM)

(Choi et al., 2003), rank product (rankProd), rank sum

(rankSum) (Hong et al., 2006), naive sum of ranks and naive

product of ranks. Detailed algorithms, pros and cons of different

methods have been discussed in a recent review article (Tseng

et al., 2012). Two additional considerations are involved in the

implementation: (i) different choices of test statistics are available

for different outcome variables, for example t-statistics, F-statis-

tics, minimum multi-class correlation (Lu et al., 2010), linear

regression, correlation coefficient and log-rank test; (ii) one-sided

test correction may be needed to exclude genes with discordant

DE direction (e.g. up-regulation in one study but down-

regulation in another study). MetaDE also provides options

for gene matching across studies and gene filtering before

meta-analysis. Outputs of the meta-analysis results include DE

gene lists with corresponding raw P-values, q-values and various

visualization tools. Heatmaps can be plotted across studies.

2.3 MetaPath

MetaPath implements three meta-analysis framework for path-

way enrichment analysis: MAPE_G, MAPE_P and MAPE_I

(Shen and Tseng, 2010). Meta-analyses for pathway enrichment

are integrated either at the gene level (MAPE_G) or at the path-

way level (MAPE_P). For MAPE_G, information across studies

is combined at the gene level and then pathway enrichment ana-

lysis is applied. Conversely, for MAPE_P, pathway analysis is

first performed in each study independently. The information

across studies is then combined at the pathway level. Since

MAPE_G and MAPE_P have been found with complementary

advantages under different data structure, a hybrid framework

(MAPE_I) has been developed. Similar to MetaDE, MetaPath

also provides multiple options of gene matching, gene filtering,

meta-analysis methods and test statistics to associate with

outcomes.
Supplementary Figure S1 shows a workflow diagram of

meta-analysis pipeline using the three packages. After data are

preprocessed, MetaQC is applied to determine inclusion/exclu-

sion criteria. MetaDE and MetaPath are then used to detect

candidate markers or pathways associated with disease outcome.

3 PROSTATE CANCER EXAMPLE

To demonstrate application of MetaQC, MetaDE and
MetaPath, we collected nine prostate cancer studies (Welsh,
Yu, Lapointe, Varambally, Singh, Wallace, Nanni, Tomlins

and Dhanasekaran), which contained normal and primary
cancer samples. After gene matching by official gene symbols,
preprocessing and filtering, 4441 genes were used for

meta-analysis. Figure 1A shows result of the MetaQC PCA
biplot. Three of the nine studies (Nanni, Tomlins and
Dhanasekaran) were determined with lower quality and were

removed from meta-analysis. Figure 1B shows the number of
detected DE genes under different FDR threshold in the remain-
ing six single study analysis and meta-analyses by Fisher, maxP,

rOP (r¼ 4) and AW methods. It is clear that meta-analysis usu-
ally detects more candidate markers, except for maxP. Finally,
Figure 1C and D shows a heatmap of detected pathways

(q-value50.2 in any method) and Venn diagram of pathways
detected by MAPE_P, MAPE_G and MAPE_I using
MetaPath. The majority of the detected pathways appeared to

be cancer related. Single-study analyses showed very weak path-
way enrichment; MAPE_P and MAPE_G appeared to have
complementary detection power (identified 23 and 15 pathways

with only 5 in common). MAPE_I detected the largest number of
pathways (34 pathways).
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