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ABSTRACT

Motivation: Residue–residue contact prediction is important for pro-

tein structure prediction and other applications. However, the accur-

acy of current contact predictors often barely exceeds 20% on

long-range contacts, falling short of the level required for ab initio

structure prediction.

Results: Here, we develop a novel machine learning approach for

contact map prediction using three steps of increasing resolution.

First, we use 2D recursive neural networks to predict coarse contacts

and orientations between secondary structure elements. Second, we

use an energy-based method to align secondary structure elements

and predict contact probabilities between residues in contacting

alpha-helices or strands. Third, we use a deep neural network archi-

tecture to organize and progressively refine the prediction of contacts,

integrating information over both space and time. We train the archi-

tecture on a large set of non-redundant proteins and test it on a large

set of non-homologous domains, as well as on the set of protein do-

mains used for contact prediction in the two most recent CASP8 and

CASP9 experiments. For long-range contacts, the accuracy of the

new CMAPpro predictor is close to 30%, a significant increase over

existing approaches.

Availability: CMAPpro is available as part of the SCRATCH suite at

http://scratch.proteomics.ics.uci.edu/.

Contact: pfbaldi@uci.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Protein residue–residue contact prediction is the problem of pre-

dicting whether any two residues in a protein sequence are spa-
tially close to each other in the folded 3D structure. Contacts

occurring between sequentially distant residues, i.e. long-range

contacts, impose strong constraints on the 3D structure of a
protein and are particularly important for structural analyses,

understanding the folding process and predicting the 3D struc-
ture. Even a small set of correctly predicted long-range contacts

can be useful for improving ab initio structure prediction for
proteins without known templates (Tress and Valencia, 2010).

The performance of many contact predictors has been assessed
every 2 years during the Critical Assessment of protein Structure

Prediction (CASP) experiments since CASP2 in 1996.
Unfortunately, the �20% accuracy for long-range contacts,

routinely reported at CASP for the best predictors (Ezkurdia

et al., 2009; Kryshtafovych et al., 2011), suggests that contact

prediction is not yet accurate enough to be systematically useful

for ab initio protein structure prediction or engineering.
In broad terms, there are four main approaches for residue–

residue contact prediction. Machine learning approaches use

methods such as neural networks (Fariselli et al., 2001; Punta

and Rost, 2005; Shackelford and Karplus, 2007), recursive

neural networks (Baldi and Pollastri, 2003; Vullo et al., 2006),

support vector machines (Cheng and Baldi, 2007) and hidden

Markov models (Björkholm et al., 2009) to learn how to predict

contact probabilities from a training set of experimentally deter-

mined protein structures. Inputs to these approaches typically

include predicted secondary structure, predicted solvent accessi-

bility as well as evolutionary information in the form of profiles.

Template-based approaches use homology or threading methods

to identify structurally similar templates from which residue–resi-

due contacts are then inferred (Misura et al., 2006; Skolnick

et al., 2004). Correlated mutations approaches apply statistical

measures, such as Pearson correlation (Göbel et al., 1994; Olmea

and Valencia, 1997) and mutual information (Burger and van

Nimwegen, 2010; Dunn et al., 2008), to multiple alignments in

order to identify pairs of residues that co-evolve and thus are

likely to be in contact. Recently, a new elegant mutual

information-based measure for correlated mutations, PSICOV,

has been proposed in Jones et al. (2011) and used for fold rec-

ognition (Taylor et al., 2011). Although this method has been

reported to yield significant accuracy improvements, its perform-

ance is very dependent on the availability and quality of multiple

alignments. Finally, 3D model-based approaches rely on pre-

dicted 3D structures for deriving distance constraints through a

consensus strategy. Although 3D model-based approaches have

been reported to be the most accurate at CASP (Kryshtafovych

et al., 2011), in practice, their applicability remain somewhat

limited since the main goal of contact prediction is to improve

ab initio structure prediction and not the converse.
Here, we introduce several new ideas for contact prediction

using primarily a multi-stage machine learning approach, with

increasingly refined levels of resolution. First, we predict coarse

contact maps corresponding to contacts between secondary

structure elements. By itself, the idea of coarse contact maps is

not new, and several useful methods have been developed (Baldi

and Pollastri, 2003; Pollastri et al., 2006; Vullo and Frasconi,

2003). Yet, none of these approaches has been able to convin-

cingly demonstrate that coarse prediction is useful for residue–

residue contact prediction. Here, we both refine the previous

coarse prediction methods, in part, by extending the notion of*To whom correspondence should be addressed.
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coarse contact beyond a simple binary value to include informa-
tion about orientation (parallel versus anti-parallel) between con-

tacting segments and demonstrate that coarse-grained prediction
can be used to improve fine-grained prediction of contact maps.
Second, we use a novel energy-based neural network approach to

refine the prediction of the alignment and orientation of contact-
ing secondary structure elements and predict residue–residue

contact probabilities for residues in contacting pairs of alpha-
helices or beta-strands. Finally, we introduce a deep neural net-

work architecture in the form of a deep stack of neural networks,
with the same topology but different parameters, to predict all

the residue–residue contact probabilities by integrating informa-
tion both spatially and temporally. Spatial integration refers to

the idea that contacts are spatially correlated; for instance,
long-range contacts often include other long-range contacts in

their neighborhood. Temporal integration refers to the idea that
protein folding is not an instantaneous physical process.

Although the stack is not necessarily meant to mimic the
actual physical process, the stack is used to organize the predic-

tion in such a way that each level in the stack is meant to refine
the prediction produced by the previous level. Inputs at a given

level of the stack include both information coming from the
previous level in the stack as well as static information produced

by the previous coarse prediction stages, as well as predicted
secondary structure and solvent accessibility, and evolutionary

profiles. Thus, these dynamic and static inputs are used to itera-
tively refine the contact prediction. We next describe these meth-

ods in detail together with the data used for rigorous training and
assessment results.

2 MATERIALS AND METHODS

2.1 Contact definition and evaluation criteria

We adopted the same intra-molecular contact definition and the same

evaluation criteria as in the most recent CASP experiments. Two residues

are defined to be in contact if the Euclidean distance between their C�
atoms (C� for glycines) is 58 Å. Three distinct classes of contacts are

defined depending on the linear sequence separation between the residues:

(i) long-range contacts, with separation �24 residues; (ii) medium-range

contacts, with separation between 12 and 23 residues and (iii) short-range

contacts, with separation between 6 and 11 residues. Contacts between

residues separated by56 residues are dense and can be easily predicted

from the secondary structure. Conversely, the sparse long-range contacts

are the most informative and also the most difficult to predict. Thus, as in

the CASP experiments, we focus primarily on long-range contact

prediction.

The performance is evaluated using two main measures: the accuracy

(Acc) and the distance distribution (Xd). The accuracy is defined as the

fraction of correctly predicted contacts with respect to the total number

of contacts evaluated:

Acc ¼ TP=ðTPþ FPÞ,

where TP and FP are the true-positive and false-positive predicted con-

tacts, respectively. The distance distribution score measures the weighted

harmonic average difference between the predicted contacts distance dis-

tribution and the all-pairs distance distribution. The Xd is defined by

Xd ¼
X15
i¼1

ðPpi � PaiÞ

i
,

where Ppi is the fraction of predicted pairs whose distance is in the bin

di ¼ ½4ði� 1Þ,4i� and Pai is the fraction of all pair of targets in the bin di.

The higher Xd is, the better the performance (a random predictor corres-

ponds to Xd¼ 0). Contact predictors usually assign a probability score to

every possible pair of residues or to a subset of the possible pairs. The Acc

and Xd measures are computed for the sets of L/5, L/10 and five

top-scored predicted pairs, where L is the length of the domain sequence.

Although predictions are evaluated on all three sets, the most widely used

performance measure is Acc for L/5 pairs and sequence separation �24.

2.2 Training and test sets

The training set is derived from the ASTRAL database (Chandonia et al.,

2004). We extract from the ASTRAL release 1.73 the (pre-compiled) set

of protein domains with520% pairwise sequence identity, removing do-

mains of length550 residues, domains with multiple 3D structures, as

well as non-contiguous domains (including those with missing backbone

atoms). We further filter this list by selecting just one representative

domain—the shortest one—per structural classification of proteins

(SCOP) family (Murzin et al., 1995) ending up with a final set of 2356

structures. For cross-validation purposes, this set is then partitioned into

10 disjoint groups of roughly the same size and average domain lengths so

that no domains from two distinct groups belong to the same SCOP fold.

In this way, training and validation sets share neither sequence nor struc-

tural similarities.

For performance assessment, a non-redundant test set is derived from

ASTRAL release 1.75, by selecting all the new folds, with respect to

version 1.73, belonging to the main SCOP classes (all-alpha, all-beta,

alpha/beta and alphaþ beta). From this set (256 new folds and 287

new families), we remove all the domains of length 550 residues and

those with 5L/5 long-range contacts (239 new folds and 268 new

families). Redundancy is filtered out by clustering each group of domains

belonging to the same SCOP family at 40% of sequence similarity. The

final set of 364 domains contains at least one representative for each one

of the 268 new families. A BLAST (Altschul et al., 1990) search with E-

value cutoff 0.01 of the test domain sequences against the set of training

domain sequences returns no hit.

For comparison with the current state-of-art contact predictors, the

performance is tested on the template-based/free-modeling (TBM/FM)

domain targets used in the last two CASP experiments, CASP8 (Ezkurdia

et al., 2009) and CASP9 (Monastyrskyy et al., 2011) for contact predic-

tion assessment. Note that ASTRAL 1.73 was released in 2007, before the

CASP8 experiment held in 2008, thus no structural similarities exist

between the domains in the training set and those from CASP8 (12 do-

mains) and CASP9 (28 domains). An additional test is performed with

BLAST to detect sequence similarities between the CASP and the training

target sequences. A BLAST search with an E-value cutoff of 0.01 returns

no similar domain pairs. The predictions for the groups participating at

the CASP8 and CASP9 meetings are obtained from the CASP website

http://predictioncenter.org/. As in CASP, performance is assessed here

only at the domain level, although predictions are available for the

entire protein targets. To simplify the comparison, we select only those

groups that submitted a prediction for all the targets in the respective

CASP8 and CASP9 sets. Furthermore, we considered all the domain

targets for each group, regardless of the number of predicted contacts

per domain. CASP assessors typically exclude from the analysis the re-

sults of a predictor on any domain where the number of predicted con-

tacts is not high enough. This filtering step is not used here since it does

not affect the performance of the top-scoring predictors.

2.3 Coarse contact and orientation prediction (bidirec-

tional recurrent neural network)

We use 2D bidirectional recurrent neural networks (2D-BRNNs; Baldi

and Pollastri, 2003) to predict coarse contact probabilities and orienta-

tions between secondary structure elements. Specifically, ignoring for ro-

bustness coils, short strands (�3 residues) and short helices (�6 residues),
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we predict the probability of whether two elements are in parallel contact,

anti-parallel contact or no-contact. The distance between two secondary

structure elements is defined to be the minimum Euclidean distance

among all the possible pairs of C� atoms, one from each element. A

pair of elements is defined to be in contact if and only if their distance

is58 Å. The orientation angle of two elements is defined as the angle

between their orientation vectors. The orientation vector is computed by

joining the centers of gravity (C� coordinates) of the first and second half

of the element. Two elements are in parallel contact if their distance is

58 Å and their orientation angle is 590�, anti-parallel contact if their

distance is 58 Å and their orientation angle is 490� and no-contact if

their distance is48 Å.

For each pair, Sn and Sm, of secondary structure elements, the output

of the 2D-BRNN is a probability vector corresponding to the probability

of parallel contact, anti-parallel contact or no-contact. The input of the

2D-BRNN for the pair Sn and Sm consists of two feature vectors Fn and

Fm as well as the number of elements between Sn and Sm. The feature

vector Fn for segment Sn has the following components:

(1) Three vectors (20 entries each) representing the average amino acid

distribution computed over the profiles of Sn – 1, Sn and Snþ 1.

(2) The lengths (three entries) in residues of Sn – 1, Sn and Snþ 1.

(3) The lengths (two entries) in residues of the intervals between Sn – 1

and Sn and Sn and Snþ 1. These intervals correspond to the sum of

the lengths of the coils and short elements that are ignored between

the elements under consideration. This length is 0 for adjacent

elements (Supplementary Fig. S1).

(4) A vector of flags (four binary entries) to identify the first, second,

second-to-last and last elements in the sequence.

(5) Two vectors (20 entries each) containing the average amino acid

distribution for alternate even- and odd-numbered columns in the

profile of Sn. Specifically, if Sn consists of residues s1, s2, s3, . . . , the

first vector contains the average sequence profile over residues (s1,

s3, s5, . . .) and the second vector over (s2, s4, s6, . . .). This feature is

designed explicitly for strands, since these two sets of positions tend

to have similar properties when the two strands are paired in a

beta-sheet.

The 2D-BRNN is trained using 10-fold cross-validation.

2.4 Element alignment prediction (energy)

We use an energy-based method (Nagata et al., 2011) to assign energies

then probabilities to the alignment between contacting secondary struc-

ture elements and derive approximate probabilities of contact for their

residue pairs. This approach is used only for helix–helix and strand–

strand contacting elements, since these are by far the most frequent

among well-defined secondary structure elements (i.e. strand–helix con-

tacts are relatively rare). Furthermore, it is generally hard to align strand

and helix elements at the residue-level because helices are more compact

when compared with strands.

Alignments between secondary structure elements are described by two

components: the relative shift and the phase. The relative shift is an in-

teger representing how the residues in the first element are shifted with

respect to the second element. For instance, the shift between two strands

of length 5 can have any integer value from 0 to 9. The phase is an integer

assigned to pairs of residues, one from each contacting element, which is

meant to capture in approximate fashion the periodic component of

strand–strand and helix–helix contacts with some partial correlation to

physical distance. Since the side chains of contacting strands are alterna-

tively distributed on each side of the corresponding beta-sheet, and

alpha-helices make approximately two turns every seven residues, it is

reasonable to view strands and helices as periodic structures with periods

2 and 7, respectively. The phase value is assigned periodically by starting

from the two residues with the closest C�s and moving away from it in

both directions. For strand–strand contacts, the phase values alternate

between 0 and 1, whereas for helix–helix contacts, the phase values cycle

periodically from 0 to 6 (Supplementary Fig. S2a and b).

Given a pair of contacting elements, Sn and Sm, we need to evaluate

the energy of all the possible alignments obtained by shifting Sn over Sm

(which is kept fixed), such that at least one residue in Sn is paired with one

residue in Sm. If jSnj ¼ kn þ 1 and jSmj ¼ km þ 1 are the lengths of Sn

and Sm, respectively, there are exactly kn þ km þ 1 possible shifts num-

bered a ¼ 0,1,::,kn þ km. Each one of these shifts can be in O different

phases numbered � ¼ 0,::,O� 1 with O¼ 2 for strands and O¼ 7 for

helices. Thus, we need to evaluate the energy of O � ðkn þ km þ 1Þ align-

ments. Assume that the segment Sn consists of residues i,iþ 1,::,iþ kn
and Sm of residues j,jþ 1,:::,jþ km. Then, the energy for the ath shift

with phase � of segment Sn versus segment Sm is given by

EPða,�Þ ¼
Xkm
k¼0

gPði� km þ aþ k,jþ k,ð� þ kÞ mod OÞ ð1Þ

EAða,�Þ ¼
Xkm
k¼0

gAði� km þ aþ k,jþ km � k,ð� þ kÞ mod OÞ ð2Þ

where the function gPði,j,kÞ (respectively, gAði,j,kÞ) returns the estimated

energy for the residue pair i, j, under the assumption that Sn and Sm are

parallel contacting (respectively, anti-parallel contacting) and that the

phase of i, j is k (Supplementary Fig. S2c). As a manageable example,

Figure S3a in the Supplementary Material shows all the alignment pos-

itions and the corresponding energies for two anti-parallel strands of

hypothetical length 3. The alignment energies EPða,�Þ and EAða,�Þ are

normalized into probabilities by

PPða,�Þ ¼
e�K�EPða,�Þ

Pkmþkn
j¼0

PO�1
k¼0

e�K�EPðj,kÞ

ð3Þ

PAða,�Þ ¼
e�K�EAða,�Þ

Pkmþkn
j¼0

PO�1
k¼0

e�K�EAðj,kÞ

ð4Þ

where K is a fixed constant.

In order to compute the alignment energies (1) and (2) and the corres-

ponding normalized probabilities (3) and (4), we need to define the resi-

due–residue energy functions gPði,j,kÞ and gAði,j,kÞ. We model these

functions by using two-layer feedforward Neural Networks (NN).

There are four NNs: two for the strand–strand parallel and anti-parallel

cases and two for the helix–helix parallel and anti-parallel cases. In all

four cases, the NN input simply encodes the two sequence profile vectors

(20 entries each) for the residue pair (i and j). The output size of the NNs

is O¼ 2 for the strand-related predictors and O¼ 7 for the helix-related

predictors and represents the phases. The function gAði,j,kÞ thus repre-

sents the kth output of the (anti-parallel) NN for the residue pair (i and j).

The network weights for the anti-parallel case are trained by

gradient-descent minimization of the log-likelihood objective function

EA ¼ �
Xn
i¼1

logPAðâi,�̂iÞ, ð5Þ

where n is the number of anti-parallel contacting element pairs used in

training and âi,�̂i are the true shift and phase for the ith example (the

objective function is similar for the parallel case). Thus, we can train the

NNweights by gradient descent, back-propagating the partial derivatives:

@EA

@EAðai,�iÞ
¼
�K � ðPAðai,�iÞ � 1Þ, ðai,�iÞ ¼ ðâi,�̂iÞ
�K � PAðai,�iÞ, otherwise

�
: ð6Þ

The four alignment predictors are also trained using 10-fold cross-

validation on the data described in Section 2.2.
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The alignment probabilities provide an estimation of the possible spa-

tial arrangement of two secondary structure elements. These probabilities

can easily be mapped to residue–residue contact probabilities. The map-

ping is obtained by choosing the probability score of the unique align-

ment in which the two residues are paired together and are close (i.e. their

phase is 0). For instance, assume that i and j belong to two anti-parallel

elements Sn and Sm. Then, there is a unique shift a of Sn over Sm in which

i and j are paired together. For this shift, there is a unique overall phase

0 � �5O such that i and j are given phase 0. Then, the probability

PAða,�Þ represents the probability of contact for the pair (i and j;

Supplementary Fig. S3b).

2.5 Residue–residue contact prediction (deep NN)

The deep neural network architecture for residue–residue contact predic-

tion consists of a 3D stack of neural networks NNk
ij. Each network NNk

ij

in the stack is a standard three-layer feedforward network trainable by

back propagation, and all the networks share the same topology: same

input size, same hidden layer size, with one single output, which repre-

sents the residue–residue contact probability computed at position i, j and

level k. Thus, i and j are spatial indexes over the contact map, whereas k is

a ‘temporal’ index. Each layer k of NNs in the stack produces a contact

map prediction, which is then refined in the subsequent layers. The range

of k is determined during the training phase, as described below. Each

NNk
ij has two different kinds of input features: purely spatial features and

temporal features. For fixed i and j, the purely spatial features are iden-

tical for all the NNk
ij as k varies and consist of typical features used in

contact map prediction. The temporal input features for NNkþ1
ij consist of

the predicted contact map around i and j at the previous level of the stack,

i.e. the outputs of the networks NNk
rs, where r, s ranges over a ‘receptive

field’ neighborhood of i and j. The receptive fields used in the simulations

results are essentially 15	 15 square patches (Supplementary Fig. S4).

The integration over time provided by the different levels in the stack

corresponds to the intuition that folding is a somewhat organized,

non-instantaneous, process which proceeds through successive stages of

refinement. The integration over space provided by the receptive fields of

the temporal features captures the idea that residue–residue contacts in

native protein structures are generally not isolated: a contacting residue

pair is very likely to be in the proximity of a different pair of contacting

residues. Over 98% of long-range contacting residues are in close prox-

imity of another contact, compared with 30% for non-contacting pairs.

Furthermore, over 60% of contacting pairs are in the proximity of at least

10 different contacts, compared with 2.5% for non-contacting pairs

(Supplementary Fig. S5). In other words, for a residue pair (i and j),

the higher the number of its neighboring contact pairs, the higher

the probability that i and j are in contact. Most previous machine

learning-based contact predictors learn the contact probabilities of resi-

due pairs independently of the contact probabilities in their neighbor-

hoods. Thus, one of the aims of the deep-NN architecture (DNN) is to

leverage this important information during the learning phase. Note that

even if the individual contact predictions at a given stage are inaccurate,

the contact probabilities can still provide a rough estimate of the number

of contacts in a given neighborhood. (Fig. 1)

There are three types of purely spatial input features: residue–residue

features coarse features and alignment features.

Residue–residue features encodes three kinds of information (for a

total of 25 values): evolutionary information (20 values, one for each

amino acid type), predicted secondary structure (three binary values:

�-sheet, �-helix or coil) and predicted solvent accessibility (two binary

values: buried or exposed). The evolutionary information is encoded in

the standard way, as residue frequency profiles extracted from multiple

sequence alignments. Frequency profiles are obtained by running

PSI-BLAST (Altschul et al., 1997) with E-value cutoff equal to 0.001

and up to 10 iterations against NCBI’s non-redundant protein sequence

database NR. The secondary structure is predicted with SSpro (Pollastri

et al., 2002a) and the solvent accessibility with ACCpro (Pollastri et al.,

2002b). We used two previously published versions of SSpro (Pollastri

et al., 2002a) and ACCpro (Pollastri et al., 2002b), derived before 2008

(Cheng et al., 2005), without retraining them. The residue–residue fea-

tures for the pair (i and j) are included in the network input by taking a

fixed-size window centered at each residue. That is, for the pair (i and j),

the network input includes the residue–residue feature vectors for residues

i0 2 ½i� l,iþ l� and j0 2 ½j� l,jþ l�, where l � 0 is the radius of the

window. After some experimentation, we use l¼ 4 since larger radiuses

lead to slower training with no significant performance improvement.

Coarse features (three values) contain the predictions obtained with the

coarse contact and orientation predictor (see Section 2.3). If residues i, j

are in elements Sn,Sm, the feature vector is setup with the predicted con-

tact orientation probabilities (parallel, anti-parallel and non-contact) for

Sn and Sm (Supplementary Fig. S1). If either Sn or Sm is an ignored

element (i.e. coil element or short helix/strand element), the three

values in the feature vector are set by default to zero. The coarse contact

features are included in the network input by taking a fixed-size window

(of radius 3) centered at the element pair.

Alignment features (four values) contain the predictions obtained with

the element alignment predictor (see Section 2.4). If residues i, j are in

elements Sn,Sm and Sn,Sm are both helix elements, the first and second

entries of the vector contain the alignment probability score between i

and j for the cases parallel and anti-parallel contact, respectively. The

remaining two entries are set to zero. The encoding is symmetrical for

the strand–strand case. If Sn and Sm are not both helix or both strand

elements, the four entries of the feature vector are set by default to zero.

Fig. 1. (a) The deep-NN architecture consists of a 3D stack of neural

networks NNk
ij with identical architecture but different weights. When i

and y vary, the outputs of the NNk
ij correspond to the predicted contact

map at level k of the stack. A neural network NNkþ1
ij purely spatial input

features that depend only on i and j and are identical at all levels of the

stack, and temporal input features associated with the contact probabil-

ities predicted in the previous layer over a receptive field neighborhood of

ij. (b) Input feature vector of each NNk
ij
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As for the coarse contact features, the alignment features are included in

the network input by taking a fixed-size window (of radius 3) centered at

the residue–residue pair.

2.5.1 Deep-NN training Training deep multi-layered neural net-

works is generally hard, since the backpropagated gradient tends to

vanish or explode with a high number of layers (Larochelle et al.,

2009). Here, we use an incremental approach to overcome this problem.

The weights of the first level networks, NN1
ij, are randomly initialized and

their temporal input features set to 0. These networks are then trained by

on-line backpropagation for one epoch. The weights of NN1
ij are then

used to initialize the weights of NN2
ij, and all the outputs of the NN1

ij

networks on the training set are stored and used to compute the temporal

input features of the networks NN2
ij, which are then trained by

back-propagation during one epoch. Then, the weights of the networks

NN2
ij are used to initialize the weights of the networks NN3

ij and so forth

all the way to the top of the stack. This progressive initialization is crit-

ical: initialization with random weights at each level of the stack results in

poor performance, from unstable learning to getting stuck in poor local

minima. Likewise, more stable training is obtained by using the same

training set at each level of the stack, as opposed to randomizing the

training data. Thus, in practice, at each training epoch, we append a

new neural network to the growing DNN, initialize it with the weights

of the previous level and train it by back-propagation using the true

contacts as the targets (or softer targets could be derived from folding

data). We have experimented with many variations such as growing the

stack up to a maximum of 100 networks or growing it to a smaller depth

but then repeating the training procedure through one or more epochs.

The approach described earlier in the text provides a good compromise

between training time and average cross-validation accuracy. Note that,

although a deep-NN with n levels comprises n	 3 layers, the number of

free training parameters is rather small. Only the parameters of the first

level are free, all other parameters are initialized in succession using the

parameters from the previous level after one training epoch.

Since the non-contact pairs are considerably more abundant than the

contact pairs, a standard approach to deal with unbalanced training set is

to rebalance the data. For contact map prediction, this is often done

randomly selecting only 5% of the negative examples, while keeping all

the positive examples. In our experiments, we obtain considerable better

overall performance by increasing this percentage to 20% (data not

shown).

We train 10 different deep-NN predictors by cycling through the 10

training subsets (Section 2.2), each time holding one subset for early

stopping or validation purposes. Furthermore, we synchronize the early

stopping across the 10 DNNs, so that they all have the same depth n,

retaining the depth providing the best prediction performance

(Supplementary Fig. S7).

3 RESULTS AND DISCUSSION

3.1 Coarse contact and orientation prediction

We evaluate the average classification performance of the coarse

contact and orientation predictor on the three classes Parallel

contact (P), Anti-parallel contact (A) and No-contact (N) on

the 364 test domains (Section 2.2). We evaluate the performance

using the percentage of correctly predicted pairs

Q3 ¼
PPþ AAþNNP

X

P
Y

XY
ð7Þ

the positive predictive value (or precision)

PPVX ¼ ðXXÞ=ðAXþ PXþNXÞ ð8Þ

and the true-positive rate (or recall)

TPRX ¼ ðXXÞ=ðXAþ XPþ XNÞ, ð9Þ

where XY denotes the number of segment pairs in class

X 2 fP,A,Ng predicted to be in class Y 2 fP,A,Ng. Table 1 re-

ports the cross-validation average performance on the full set of

protein domains (All) and as a function of the main structural

domain classes: all-alpha (mainly alpha-helices), all-beta (mainly

beta-sheets), alpha/beta (alpha-helices and beta-sheets, mainly

parallel beta sheets) and alphaþ beta (alpha-helices and beta-

sheets, mainly anti-parallel beta sheets). As shown in Table 1,

the performance of the coarse predictor on the Parallel (P) class

is highly affected by the protein structural domain; in particular,

the prediction precision and recall are higher for the alpha/beta

proteins and are quite low for the all-beta proteins. Conversely,

the performance on the Anti-parallel class (A) is nearly uniform,

regardless of the domain structural classification. The anti-

parallel contacts seem to be easier to predict than the parallel

contacts, even within the alphaþ beta class. Although not dir-

ectly comparable (due to a different definition of segment–

segment contact), the coarse contact predictor has higher preci-

sion and lower recall than the 2D-BRNN developed for the same

classification problem in Pollastri et al. (2006).

3.2 Element alignment prediction

We evaluate the contact prediction performance of the element

alignment predictor at the residue level on the (predicted) strand–

strand and helix–helix regions of the contact map. We use the

same accuracy measure adopted for the evaluation of contact

prediction performance on the entire contact map (Section 2.1).

Recall that the element alignment predictor can be used to

derive approximate probabilities of contacts for residue pairs in

helix–helix and strand–strand elements, under the assumption

that the elements are contacting (Section 2.4). A probability of

parallel or anti-parallel contact between two elements is provided

by the coarse contact and orientation predictor (Section 2.3).

One can thus evaluate two different probability measures of con-

tact at the residue level for the alignment predictor: a naive meas-

ure that uses only the alignment scores, and a more refined

Table 1. Average performance for the coarse contact and orientation

predictor

Parallel (P) Anti-parallel (A) No-contact (N)

Class Q3 PPVP TPRP PPVA TPRA PPVN TPRN

All 0.80 0.45 0.15 0.65 0.39 0.82 0.95

All-alpha 0.73 0.40 0.13 0.63 0.47 0.77 0.92

All-beta 0.86 0.29 0.06 0.69 0.35 0.88 0.97

Alpha/beta 0.81 0.57 0.25 0.67 0.36 0.83 0.96

Alphaþbeta 0.79 0.38 0.09 0.64 0.38 0.82 0.95

Parallel contact (P), Anti-parallel contact (A) and No-contact (N) are the three

classes considered by the coarse contact and orientation predictor. Q3 is the per-

centage of correctly predicted pairs in equation (7), PPVX is the Positive Predictive

Value on class X in equation (8) and TPRX is the True Positive Rate on class X in

Equation (9).
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measure that combines alignment and coarse scores. Specifically,

consider two residues i and j in secondary structure elements Sn

and Sm, where Sn and Sm are both helices or strands. A naive

probability of contact between i and j can be derived from the

alignment scores only by

pH�Hij ¼ aPH þ aAH, ð10Þ

pE�Eij ¼ aPE þ aAE, ð11Þ

where aPH (helix–helix parallel contact), aAH (helix–helix anti-

parallel contact), aPE (strand–strand parallel contact) and aAE
(strand–strand anti-parallel contact) are the contact probabilities

obtained with the alignment predictor for residues i and j. A

more refined probability of contact can be defined by combining

the alignment scores with the coarse predictor scores

pH�H
þ

ij ¼ pP � aPH þ pA � aAH, ð12Þ

pE�E
þ

ij ¼ pP � aPE þ pA � aAE, ð13Þ

where pP and pA are the probability of parallel and anti-parallel

contact, obtained with the coarse contact predictor, between the

secondary structure elements Sn and Sm.
The average accuracy on the 364 test domains for these two

probability measures and for long-range residue pairs is reported

in Table 2. The prediction accuracy is reported on the full set of

protein domains (All) as well as on the main structural classes

(all-alpha, all-beta, alpha/beta and alphaþ beta). Overall, the

prediction performance obtained by combining alignment and

coarse probabilities (H–Hþ and E–Eþ) is higher than the one

obtained by considering the alignment probabilities alone (H–H

and E–E). Thus the coarse contact and alignment features alone

contain relevant information on long-range residue–residue con-

tacts, although the accuracy of this information is unevenly dis-

tributed with respect to the different structural classes and

secondary structure elements. In particular, the prediction accur-

acy for beta-residues is much higher than for helix-residues,

regardless of the structural class. This uneven distribution of

performance is consistent with the native distribution of contacts

between the respective classes of secondary structure elements:

the strand–strand contacts are more dense than the helix-helix
contacts and thus also easier to predict.

3.3 Residue–residue contact prediction: test set

We compare the performance on the 364 test domains of dif-

ferent contact predictors in order to separate the contribution of
the DNN from the contribution of the features obtained with

the coarse contact/orientation and alignment predictors

(CA-features). Table 3 reports the performances of the full pre-

dictor (CMAPpro), a single-hidden-layer back-propagation
neural network with CA-features (NNþCA) and without

CA-features (NN), and a DNN that does not incorporate

CA-features. In order to consider separately the contribution
of coarse and alignment features, we also train a single-hidden-

layer neural network that incorporates only coarse (NNþC) and

only alignment (NNþA) features. For all such predictors, we
build a corresponding ensemble by averaging the 10

cross-validation models. In Table 3, note that the performance

of the basic neural network NN reflects the state-of-the-art in

contact prediction, as assessed by all previous CASP experi-
ments. Both the CA-features and the DNN help improve the

contact prediction accuracy in comparison with the performance

of the plain neural network NN. The performance of the NN
incorporating the CA-features (NNþCA) is indistinguishable

from the performance of the deep-NN without CA-features

(DNN). CMAPpro (deep-NN with CA-features) achieves the

Table 2. Average accuracy on long-range contacts for the element alignment predictor

E–E H–H E–Eþ H–Hþ

Class L/5 L/10 Best 5 L/5 L/10 Best 5 L/5 L/10 Best 5 L/5 L/10 Best 5

All 0.24 0.25 0.25 0.09 0.10 0.10 0.35 0.36 0.37 0.11 0.12 0.13

All-alpha — — — 0.09 0.10 0.11 — — — 0.10 0.11 0.11

All-beta 0.19 0.21 0.20 — — — 0.19 0.17 0.17 — — —

Alpha/beta 0.22 0.19 0.21 0.07 0.07 0.07 0.52 0.55 0.54 0.11 0.14 0.12

Alphaþbeta 0.26 0.27 0.27 0.08 0.08 0.08 0.34 0.37 0.35 0.09 0.11 0.10

Contact prediction accuracy (Acc, see Section 2.1) of the element alignment predictor for long-range residue pairs. The length L refers to the sum of the lengths of helix/strand

elements in the protein sequence. The protein domains having55 contacts in the strand–strand and helix–helix regions have been excluded from the evaluation. The strand–

strand predictions on the All-alpha class, as well as the helix-helix predictions on the All-beta class, are not included. The performance on the strand–strand regions, E–E, E–

Eþ and helix–helix regions, H–H, H–Hþ, are obtained by using the contact probabilities in Equations (10), (12), (11) and (13), respectively.

Table 3. Average accuracy and Xd comparison on long-range contacts

Method Acc Xd

L/5 L/10 Best 5 L/5 L/10 Best 5

CMAPpro 0.28 0.32 0.36 0.14 0.15 0.16

NNþCA 0.25 0.29 0.32 0.13 0.14 0.15

DNN 0.25 0.28 0.32 0.13 0.14 0.15

NNþC 0.23 0.27 0.30 0.12 0.13 0.14

NNþA 0.21 0.23 0.26 0.11 0.12 0.13

NN 0.20 0.24 0.26 0.10 0.12 0.13
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best performance among the predictors, indicating that both CA
features and deep architecture play a role in improving contact
prediction. Furthermore, in Table 3, the coarse features

(NNþC) seem to be more informative than the alignment fea-
tures (NNþA). On the other end, the performance comparison

on the CASP datasets (Section 3.4) shows that in specific cases
the alignment features are more informative than the coarse fea-

tures (NNþA versus NNþC in Tables 5 and 6).
Table 4 shows the cross-validation performance of CMAPpro

as a function of the main protein structural classes. These per-

formances are somewhat consistent with what has been reported
in literature: the residue contacts in the alpha/beta class are rela-

tively easy to predict, whereas the contacts in the all-alpha class
are more difficult (Fariselli et al., 2008). The 20% accuracy of
CMAPpro on the all-alpha class still represents some improve-

ment with respect to the state-of-the-art for long-range contact
prediction (\sim15%) on this class of proteins (Fariselli et al.,

2008).
The prediction performance of CMAPpro as a function of

architecture depth is shown in Figure 2 for the full set of test

domains (All), as well as for different subsets organized by
domain lengths. Overall, the contact prediction accuracy im-

proves up to depth �50 and then remains roughly constant for
depths in the range of 50–100. Even for architectures with depth

as large as 100, CMAPpro does not show any sign of overfitting.
The apparent weaker performance on domains of length
4100–150 is artificially due to an uneven distribution of the

easiest targets across the different sets.

3.4 Residue–residue contact prediction: CASP sets

In addition to the top 8 (top 16 in Supplementary Material)

CASP predictors, we include in the comparison also the recent
mutual information-based approach, PSICOV, using multiple

alignments obtained by running jackhammer (http://hmmer
.org) for three iterations on the NR database (Jones et al.,
2011). The performance comparison on the CASP8 and

CASP9 datasets are shown in Tables 5 and 6, respectively.
On the CASP datasets, the performance improvements

obtained by considering separately the coarse/orientation and
alignment features (NNþCA) and the DNN are somewhat dif-
ferent from those in Table 3. NNþCA performs better on the

CASP8 dataset, whereas DNN performs better on the CASP9
dataset. CMAPpro combines and refines the qualities of these

two predictors achieving higher accuracy on both the CASP8

and CASP9 datasets. This behavior can be explained by con-

sidering an example. Figures 3 and 4 show the predicted contacts

for the CASP9 domain T0604-D1. The red and blue dots in the

picture represent the L top-scored true positive and false positive

contacts, respectively. The predictions obtained by DNN and

NNþCA are compared in Figure 4. Globally, the two predictors

assign a high probability of contact (grey dots) to approximately

the same regions. Locally, however, they assign different contact

probabilities to the individual pairs of residues, leading to differ-

ent sets of correctly predicted contacts (blue dots). CMAPpro

combines and refines the characteristics of these two predictors

(Fig. 3): the segment–segment features improve the identification

Table 6. Average Acc and Xd for seq. sep. � 24 on CASP9 set

Method Acc Xd

L/5 L/10 Best 5 L/5 L/10 Best 5

RR490 0.32 0.37 0.44 0.15 0.17 0.20

CMAPpro 0.31 0.35 0.34 0.13 0.15 0.15

DNN 0.27 0.31 0.41 0.12 0.14 0.16

NNþCA 0.23 0.27 0.29 0.11 0.12 0.13

RR051 0.22 0.24 0.24 0.11 0.12 0.12

RR103 0.21 0.27 0.31 0.10 0.12 0.12

NNþC 0.21 0.27 0.25 0.10 0.11 0.11

RR002 0.21 0.23 0.23 0.11 0.12 0.12

PSICOV 0.20 0.28 0.33 0.08 0.10 0.11

NNþA 0.20 0.20 0.21 0.09 0.09 0.09

RR138 0.19 0.23 0.26 0.09 0.11 0.11

NN 0.19 0.19 0.19 0.09 0.09 0.09

RR375 0.18 0.21 0.24 0.08 0.09 0.10

RR204 0.18 0.20 0.22 0.09 0.10 0.11

RR422 0.17 0.20 0.21 0.09 0.10 0.09

Table 5. Average Acc and Xd for seq. sep. � 24 on CASP8 set

Method Acc Xd

L/5 L/10 Best 5 L/5 L/10 Best 5

CMAPpro 0.32 0.41 0.42 0.13 0.15 0.15

NNþCA 0.28 0.38 0.40 0.12 0.15 0.15

NNþA 0.26 0.33 0.32 0.11 0.12 0.14

DNN 0.25 0.35 0.37 0.11 0.13 0.14

RR157 0.24 0.30 0.32 0.09 0.10 0.11

RR072 0.24 0.30 0.28 0.11 0.13 0.13

NNþC 0.23 0.32 0.30 0.10 0.12 0.11

RR453 0.23 0.30 0.38 0.11 0.13 0.15

RR477 0.23 0.28 0.28 0.10 0.12 0.11

RR197 0.22 0.22 0.22 0.09 0.09 0.11

RR131 0.21 0.24 0.22 0.10 0.09 0.08

PSICOV 0.21 0.20 0.20 0.07 0.08 0.08

RR249 0.20 0.25 0.28 0.12 0.14 0.15

RR413 0.20 0.24 0.20 0.10 0.12 0.11

NN 0.20 0.25 0.27 0.09 0.10 0.10

Table 4. Average accuracy and xd on long-range contacts for CMAPpro

Set Acc Xd

L/5 L/10 Best 5 L/5 L/10 Best 5

All 0.28 0.32 0.36 0.14 0.15 0.16

All-alpha 0.20 0.22 0.25 0.12 0.13 0.13

All-beta 0.28 0.31 0.36 0.12 0.13 0.15

Alpha/beta 0.50 0.59 0.68 0.22 0.24 0.27

Alphaþbeta 0.27 0.32 0.36 0.14 0.15 0.16
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of contacting regions between secondary structure elements and

the DNN is able to refine the prediction scores.
Compared with other methods, CMAPpro is considerably

more accurate on both CASP datasets. In particular, on the

CASP8 dataset, CMAPpro achieves the best ranking both in

terms of Acc and Xd. The only method (Wang et al., 2010) out-

performing CMAPpro on the CASP9 dataset by a small margin

relies on 3D structure models for deriving contact predictions

through consensus, which defeats the purpose of predicting con-

tact maps from scratch. Indeed, if we remove the only three

TBM domains from the CASP9 dataset and focus exclusively

on the FM targets, which are harder to predict, then RR490’s

accuracy (L/5) drops down from 0.32 to 0.28, whereas

CMAPpro’s accuracy increases from 0.31 to 0.32.

Due to the small number of targets, the average performances

on the CASP8 and CASP9 are consistently affected by the net-

work depth (Supplementary Fig. S6). In particular, on the

CASP8 set, for architectures depths in the range of 10–100, the

average accuracy on L/5 long range contacts varies from 0.30 to

0.35. On the CASP9 set, the average accuracy varies from 0.28 to

0.31. Notwithstanding such variability, on both CASP datasets,

the performance of CMAPpro remains above the performance of

the other methods at all depth values. As a general trend, on

both CASP8 and CASP9 datasets, the improvement obtained in

contact prediction with CMAPpro is �10% or higher with re-

spect to methods that do not use 3D structures. In Tables 5 and

6, we also note that the performance of the plain neural network

predictor NN is comparable with the average performance across

all groups. This confirms that the overall good performance of

CMAPpro is not due to the particular set of protein domains

used for training.

The accuracy of PSICOV (�20%) is lower than previously

reported (450%; Jones et al., 2011). The performance of

PSICOV is considerably affected by the quality of the multiple

alignments. Since TBM/FM targets for contact prediction at

CASP usually have few homologs in the protein sequence data-

bases, this considerably lowers the prediction accuracy of

PSICOV. The performance of PSICOV may suggest that even

the most updated database of protein sequences (i.e. the NR

database used to extract sequence profiles) does not contain

enough information to derive rich evolutionary profiles for the

CASP hardest targets. On the other hand, PSICOV relies only on

multiple alignments and thus a direct comparison with methods

that make use of predicted secondary structure or solvent acces-

sibility is somewhat unfair.
Finally, Tables 3 and 4 in Supplementary Materials report the

head-to-head comparison of the 10 top predictors on the CASP

data. These results show that the average accuracies of the best

Fig. 4. Predicted contact map for the T0604-D1 target from CASP9

dataset. The lower triangle shows the predictions obtained with DNN

and the upper triangle those obtained with NNþCA. The blue and red

dots represent the correctly and incorrectly predicted contacts, respect-

ively, among the L top-scored residue pairs

Fig. 3. Native and predicted contact map for the T0604-D1 target from

CASP9 set. The lower triangle shows the native contacts. The upper

triangle shows contacts predicted by CMAPpro. The blue and red dots

represent the correctly and incorrectly predicted contacts, respectively,

among the L top-scored residue pairs

Fig. 2. Accuracy (L/5 long range contacts) versus network depth for the

set of test domains (All), the test domains of length between 50 and 100

residues (50–100, 87 domains), between 101 and 150 (4100–150 and 111

domains), between 151 and 200 (4150–200 and 76 domains) and longer

than 200 (4200, 90 domains)
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performing methods are not biased by just a few very good pre-
dictions. With very few exceptions, in head-to-head comparisons,
CMAPpro achieves a better accuracy for over 60% of the targets
and worse accuracy for530% of the targets.

4 CONCLUSION

Here, we have introduced a new approach for the prediction of
protein contact maps. In particular, partly inspired by the obser-

vation that nature uses an iterative refinement approach to ‘com-
pute’ the structure of proteins, we have developed modular deep
architectures that can integrate information over multiple tem-

poral and spatial scales. In rigorous tests, these architectures
have been shown to predict contact maps with an accuracy
close to 30%, a significant improvement. Although further im-

provements are necessary, it should be obvious that there are
many generalizations and variations on the architectures and
training methods we have described that remain to be explored,

giving us hope that further progress lies ahead.
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